Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tri-band terahertz sensing and slow light based on graphene artificial microstructure

Chegn Yuxuan Xu Hui Yu Hongfei Huang Linqin Gu Zhichao Chen Yufeng He Longhui Chen Zhiquan Hou Hailiang

Citation:

Tri-band terahertz sensing and slow light based on graphene artificial microstructure

Chegn Yuxuan, Xu Hui, Yu Hongfei, Huang Linqin, Gu Zhichao, Chen Yufeng, He Longhui, Chen Zhiquan, Hou Hailiang
科大讯飞翻译 (iFLYTEK Translation)
PDF
Get Citation
  • In this paper, a monolayer graphene-based tunable triple-band terahertz plasmons device with superior sensing and slow light performance. A very obvious dual PIT phenomenon was obtained by adjusting the device structure. Then, the transmission curves and electric field distributions of the long and short graphene bands at the three transmission windows are analyzed, to further investigate the mechanism of the light and dark modes of this structure(Fig. 3). Afterward, By comparing the Coupled-Mode Theory(CMT) theoretical data with the Finite difference time domain(FDTD) simulation data, it can be found that they show a high degree of agreement(Fig. 4). In addition, by analyzing the magnitude of the effective refractive indices of the real and imaginary parts at different Fermi energy levels. It can be found that it has a linear relationship with the Fermi energy level(Fig. 5). Research findings the phase of the electromagnetic wave fluctuates strongly when it is at the transmission window. Along with the increase of the Fermi energy level, the peak frequency of the group refractive index peak value also increases. When the Fermi energy level is at 1.1eV, the peak value of the group refractive index reaches 327.1(Fig. 6). In order to study the sensing effect of this device in more depth, a variety of different refractive indices of the medium are to be tested in this paper(Fig. 7). Based on the results it can be seen that the device has excellent sensing performance. Its sensitivity and Figure of Merit(FOM) reach up to 1.442 THz/RIU and 39.6921, respectively(Table 1). And by having superior performance compared to other sensors of the same type(Table 2). The structure compared with the traditional structure is capable of regulating the Fermi energy levels very conveniently by applying a voltage, to modulate the resonant frequency of the dual PIT. This study hopes to add a theoretical basis and provide a design reference for potential applications in fields such as slow light technology and sensing.
  • [1]

    Cavin R K, Lugli P, Zhirnov V V 2012Proc. IEEE 100 1720

    [2]

    Lundstrom M 2003Science 299 210

    [3]

    Lundstrom M S, Alam M A 2022Science 378 722

    [4]

    Powell J R 2008Proc. IEEE 96 1247

    [5]

    Shalf J 2020Philos. Trans. R. Soc., A 378 20190061

    [6]

    Yang X J, Xu H, Xu H X, Li M, Yu H F, Cheng Y X, Hou H L, Chen Z Q 2024Acta Phys. Sin. 73 183(杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全2024物理学报73 183)

    [7]

    Yu Y F, Zhang Y, Zhong F, Bai L, Liu H, Lu J P, Ni Z H 2022Chin. Phys. Lett. 39 058501

    [8]

    Bai Z Y, Zhang Q, Huang G X 2019Chin Opt Lett 17 012501

    [9]

    Pitarke J M, Silkin V M, Chulkov E V, Echenique P M 2006Rep. Prog. Phys 70 1

    [10]

    Liu K J, Li J, Li Q X, Zhu J J 2022Chin. Phys. B 31 117303

    [11]

    Xu Q, Chen K, Sheng C J, Wang Q, Chen X X, Liu D W, Zhang K C 2019Sci. China Phys. Mech. Astron. 49 064201(徐倩, 陈科, 盛昌建, 王奇, 陈晓行, 刘頔威, 张开春2019中国科学: 物理学力学天文学49 064201)

    [12]

    Chen Y, Xie J Z, Zhou X D, Zhang C, Yang H, Li S H 2019 Acta Phys. Sin. 68 237301(陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华2019物理学报68 237301)

    [13]

    Artar A, Yanik A A, Altug H 2011Nano Lett. 11 1685

    [14]

    Kekatpure R D, Barnard E S, Cai W S, Brongersma M L 2010Phys. Rev. Lett. 104 243902

    [15]

    Zhu Y, Hu X Y, Yang H, Gong Q H 2014Sci. Rep. 43752

    [16]

    Otsuji T, Tombet S B, Satou A, Fukidome H, Suemitsu M, Sano E, Popov V, Ryzhii M, Ryzhii V 2012J. Phys. D 45 303001

    [17]

    Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L, Burke P 2012Nano Res. 5 667

    [18]

    Zhou Q G, Qiu Q X, Huang Z M 2023Opt. Laser Technol. 157 108558

    [19]

    He Z H, Li L Q, Ma H Q, Pu L H, Xu H, Yi Z, Cao X L, Cui W 2021Results Phys. 21 103795

    [20]

    Kumar S B, Guo J 2011Appl. Phys. Lett. 98 222101

    [21]

    Santos E J, Kaxiras E 2013Nano Lett. 13 898

    [22]

    Lukose V, Shankar R, Baskaran G 2007Phys. Rev. Lett. 98 116802

    [23]

    Yan J, Zhang Y B, Kim P, Pinczuk A 2007Phys. Rev. Lett. 98 166802

    [24]

    Glazov M, Ganichev S 2014Phys. Rep. 535 101

    [25]

    Kim T T, Kim H D, Zhao R k, Oh S S, Ha T, Chung D S, Lee Y H, Min B, Zhang S 2018ACS Photonics 5 1800

    [26]

    Yan S Q, Zhu X L, Frandsen L H, Xiao S S, Mortensen N A, Dong J J, Ding Y H 2017Nat. Commun. 814411

    [27]

    Zhang B H, Li H J, Xu H, Zhao M Z, Xiong C X, Liu C, Wu K 2019Opt. Express 27 3598

    [28]

    Xu H Y, Xu H, Yang X J, Li M, Yu H F, Cheng Y X, Zhan S P, Chen Z Q 2024 Phys. Lett. A 504 129401

    [29]

    Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017Acta Phys. Sin. 66 204101(张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博2017物理学报66 204101)

    [30]

    Xu H, Li M, Yang X J, Xu H Y, Chen Z Q 2024Sci. China Phys. Mech. Astron 54 234211(许辉, 李铭, 杨肖杰, 徐海烨, 陈智全2024中国科学:物理学力学天文学54 234211)

    [31]

    Safavi-Naeini A H, Alegre T M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011Nature 47269

    [32]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884

    [33]

    Xia S X, Zhai X, Wang L L, Wen S C 2020Opt. Express 28 7980

    [34]

    Xiao B G, Tong S J, Fyffe A, Shi Z M 2020Opt. Express 28 4048

    [35]

    Xu H, He Z H, Chen Z Q, Nie G Z, Li H J 2020Opt. Express 28 25767

    [36]

    Li Y C, Pan Y Z, Chen F, Ke S L, Yang W X 2024Opt. Quantum Electron. 56 1003

    [37]

    Yu Y S, Cui Z R, Wen K H, Lv H P, Liu W J, Zhang R L, Liu R M 2024Phys. Scr. 99 075529

    [38]

    Wu X X, Chen J N, Wang S L, Ren Y, Yang Y N, He Z H 2024Nanomaterials 14 997

    [39]

    Nene P, Strait J H, Chan W M, Manolatou C, Tiwari S, McEuen P L, Rana F 2014Appl. Phys. Lett. 105 143108

    [40]

    Li Q, Wang T, Su Y K, Yan M, Qiu M 2010Opt. Express 18 8367

    [41]

    Lin H, Xu D, Yang H L, Pantoja M, Garcia S 2014Chin. Phys. B 23 094203

    [42]

    Feng Y, Liu H, Chen C, Gao P, Luo H, Ren Z Y, Qiao Y J 2022Acta Photonica Sinica 51 0923001(冯越, 刘海, 陈聪, 高鹏, 罗灏, 任紫燕, 乔昱嘉2022光子学报51 0923001)

    [43]

    Liu J, Khan Z U, Wang C, Zhang H, Sarjoghian S 2020J. Phys. D 53 233002

    [44]

    Zhao H X, Cheng P H, Ding Z Q, Wang J X, Bao J L 2021Acta Optica Sinica 41 0728001(赵洪霞, 程培红, 丁志群, 王敬蕊, 鲍吉龙2021光学学报41 0728001)

    [45]

    Balci S, Balci O, Kakenov N, Atar F B, Kocabas C 2016Opt. Lett. 41 1241

    [46]

    Efetov D K, Kim P 2010Phys. Rev. Lett. 105 256805

    [47]

    Yang X J, Xu H, Xu H Y, Li M, He L H, Nie G Z, Chen Z Q 2023J. Phys. D 57 115101

    [48]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011Nature 472 69

    [49]

    Wang Y X, Cui W, Wang X J, Lei W L, Li L Q, Cao X L, He H, He Z H 2022Vacuum 206 111515

    [50]

    Fan Y C, Yang Z N, Xu Z Y, Zhang H, Sun K Y, Ye Z H, Zhang F L, Lou J 2024Laser Optoelectronics Progress 61 151(樊元成, 杨振宁, 徐子艺, 张宏, 孙康瑶, 叶哲浩, 张富利, 娄菁2024激光与光电子学进展61 151)

    [51]

    Li M, Xu H, Xu H Y, Yang X J, Yu H F, Cheng Y X, Chen Z Q 2024Opt. Commun. 554 130175

    [52]

    Zhang H, Yao P J, Gao E D, Liu C, Li M, Ruan B X, Xu H, Zhang B H, Li H J 2022J Opt Soc Am B 39 467

    [53]

    Xiao B G, Wang Y C, Cai W J, Xiao L H 2022Opt. Express 30 14985

    [54]

    Jiang W J, Chen T 2021Diam Relat Mater 118 108531

  • [1] Hou Lei, Guan Shu-Yang, Yin Jun, Zhang Yu-Jun, Xiao Yi-Ming, Xu Wen, Ding Lan. High-order cavity coupled plasmon polaritons in resonant cavity-monolayer MoS2 system. Acta Physica Sinica, doi: 10.7498/aps.73.20241106
    [2] Duan Yu, Dai Xiao-Kang, Wu Chen-Chen, Yang Xiao-Xia. Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.73.20240489
    [3] Yang Xiao-Jie, Xu Hui, Xu Hai-Ye, Li Ming, Yu Hong-Fei, Cheng Yu-Xuan, Hou Hai-Liang, Chen Zhi-Quan. Sensing and slow light applications of graphene plasmonic terahertz structure. Acta Physica Sinica, doi: 10.7498/aps.73.20240668
    [4] Jiang Yue, Wang Shu-Ying, Wang Zhi-Ye, Zhou Hua, Ka Ma-Le, Zhao Song, Shen Xiang-Qian. Plasmon modes of fishnet metastructure and its trapping and control of light for thin film solar cells. Acta Physica Sinica, doi: 10.7498/aps.70.20210693
    [5] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, doi: 10.7498/aps.69.20191645
    [6] Li Xue-Jian, Cao Min, Tang Min, Mi Yue-An, Tao Hong, Gu Hao, Ren Wen-Hua, Jian Wei, Ren Guo-Bin. Inter-mode stimulated Brillouin scattering and simultaneous temperature and strain sensing in M-shaped few-mode fiber. Acta Physica Sinica, doi: 10.7498/aps.69.20200103
    [7] Wang Chong, Xing Qiao-Xia, Xie Yuan-Gang, Yan Hu-Gen. Spectroscopic studies of plasmons in topological materials. Acta Physica Sinica, doi: 10.7498/aps.68.20191098
    [8] Xu Fei-Xiang, Li Xiao-Guang, Zhang Zhen-Yu. Some recent advances on quantum plasmonics. Acta Physica Sinica, doi: 10.7498/aps.68.20190331
    [9] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.68.20190903
    [10] Zhang Chao-Jie, Zhou Ting, Du Xin-Peng, Wang Tong-Biao, Liu Nian-Hua. Enhancement of quantum friction via coupling of surface phonon polariton and graphene plasmons. Acta Physica Sinica, doi: 10.7498/aps.65.236801
    [11] Yin Hai-Feng, Mao Li. Nonlinear excitation of localized plasmon in one-dimensional atomic chain. Acta Physica Sinica, doi: 10.7498/aps.65.087301
    [12] Chen Hua-Jun, Fang Xian-Wen, Chen Chang-Zhao, Li Yang. Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics. Acta Physica Sinica, doi: 10.7498/aps.65.194205
    [13] Yin Hai-Feng, Zhang Hong, Yue Li. Plasmon excitation in C60 fullerene dimers. Acta Physica Sinica, doi: 10.7498/aps.63.127303
    [14] Tan Zi, Wang Lu-Xia. Plasmon effects on linear spectra related to heterogeneous electron transfer. Acta Physica Sinica, doi: 10.7498/aps.62.237303
    [15] Xin Wang, Wu Reng-Lai, Xue Hong-Jie, Yu Ya-Bin. Plasmonic excitations in mesoscopic-sized atomic chains:a tight-binding model. Acta Physica Sinica, doi: 10.7498/aps.62.177301
    [16] Wei Wei, Zhang Xia, Yu Hui, Li Yu-Peng, Zhang Yang-An, Huang Yong-Qing, Chen Wei, Luo Wen-Yong, Ren Xiao-Min. Slow light based on stimulated Brillouin scattering in microstructured fiber. Acta Physica Sinica, doi: 10.7498/aps.62.184208
    [17] Zheng Di, Pan Wei. Feasibility study of nonlinear optical loop mirror in the cascaded stimwlated Brillouin scatteving-based slow light system. Acta Physica Sinica, doi: 10.7498/aps.60.064210
    [18] Wang Nan, Zhang Yun-Dong, Wang Jin-Fang, Tian He, Wang Hao, Zhang Xue-Nan, Zhang Jing, Yuan Ping. Research on CRIT property in ring-in-ring structure resonator. Acta Physica Sinica, doi: 10.7498/aps.58.7672
    [19] Wang Shi-He, Ren Li-Yong, Liu Yu. Theoretical study on stimulated-Brillouin-scattering gain-spectrum broadening and pulse-distortion reduction of slow-light propagation using double broadband pump in optical fibers. Acta Physica Sinica, doi: 10.7498/aps.58.3943
    [20] Lu Hui, Tian Hui-Ping, Li Chang-Hong, Ji Yue-Feng. Research on new type of slow light structure based on 2D photonic crystal coupled cavity waveguide. Acta Physica Sinica, doi: 10.7498/aps.58.2049
Metrics
  • Abstract views:  73
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  09 February 2025

/

返回文章
返回