-
Compared to graphene, two-dimensional (2D) transition metal sulfides, represented by mono-/few-layer MoS2, have tunable non-zero bandgap, which make their application in optoelectronic devices more advantageous. By using classical electromagnetic theory and finite element method (FEM), we investigate the cavity coupled plasmon polaritons (CCPPs) formed through the coupling between cavity modes in a resonator and plasmons in monolayer MoS2, particularly calculate and verify the properties of the high-order CCPPs. In previous work, it was demonstrated that the substrates, defects, and polycrystalline grains of the CVD grown monolayer MoS2 usually induce weak electron localization, which leads to the deviation from the Drude model based on the approximation of free electron gas. Therefore, here we use the Drude-Smith model with characteristic parameters obtained experimentally to describe the optical conductivity of monolayer MoS2 in our theoretical calculation and simulation. Then, we not only derive and solve the dispersion equations of the high-order CCPPs, but also verify the existence and analyze the properties of these high-order modes. Specifically, there are three types of CCPPs in the asymmetric cavity-monolayer MoS2 system, i. e., the FP-like-modes (FPLMs), the surface-plasmon-like modes (SPLMs), and the quasi-localized modes (QLMs). Among them, the FPLMs and QLMs can support high-order modes whereas the SPLM only support the fundamental mode. Based on our model, we calculate the wave localization properties for the 7th-order and 8th-order FPLMs, the 3rd-order and 6th-order QLMs, and the SPLM. These theoretical results are in good agreement with the simulation results. Moreover, the effects of weak electron localization are also shown by comparing the field distributions of the CCPPs based on the Drude model and Drude-Smith model. It is found that weak electron localization can reduce the coupling between the cavity modes and the plasmons in monolayer MoS2. These results can deepen our understanding of the excitation of plasmons in 2D materials as well as the modulation of their properties. Furthermore, the theoretical model can also be extended to other plasmonic systems associated with low-dimensional and topological quantum materials.
-
Keywords:
- plasmons /
- monolayer MoS2 /
- cavity /
- terahertz
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004Science 306 666
[2] Geim A K, Novoselov K S 2007Nat. Mater. 6 183
[3] Fan Y C, Shen N H, Zhang F L, Zhao Q, Wu H J, Fu Q H, Wei Z Y, Li H Q, Soukoulis C M 2019Adv. Opt. Mater. 7 1800537
[4] Lu W, Ling J W, Xiu F X, Sun D 2018Phys. Rev. B 98 104310
[5] Hou L, Yang Y K, Li A L, Wang Q J, Li Q N, Wu M, Ji P C, Zhang Y J, Xiao Y M, Xu W, Xiu F X, Ding L 2023Phys. Rev. B 108 115416
[6] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010Phys. Rev. Lett. 105136805
[7] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012Nat. Nanotechnol. 7 699
[8] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017Nat. Rev. Mater. 2 17033
[9] Liu X, Hou L, Ji P C, Wang Q J, Wu M, Xiao Y M, Xu W, Ding L 2023Nanophotonics 12 4441
[10] Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014ACS Nano 8 4033
[11] Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014Nat. Commun. 5 4475
[12] Mak K F, Lee C, Hone J 2010Phys. Rev. Lett. 105 136
[13] Zhang S, Pei Y, Hu S, Wu N, Chen D Q, Lian C, Meng S 2023Chin. Phys. Lett. 40 077502
[14] Liu X Z, Galfsky T, Sun Z, Xia F N, Lin E C, Lee Y H, Kena-Cohen S, Menon V M 2015Nat. Photonics 9 30
[15] Kleemann M E, Chikkaraddy R, Alexeev E M, Kos D, Carnegie C, Deacon W, Pury A C de, Grosse C, Nijs B de, Mertens J, Tartakovskii A I, Baumberg J J 2017Nat. Commun. 8 1296
[16] Verre R, Baranov D G, Munkhbat B, Cuadra J, Kall M, Shegai T 2019Nat. Nanotechnol. 14 679
[17] Liu W J, Lee B, Naylor C H, Ee H S, Park J, Johnson A T C, Agarwal R 2016Nano Lett. 16 1262
[18] Hu G W, Krasnok A, Mazor Y, Qu C W, Alu A 2020Nano Lett. 20 3217
[19] Sun B, Wang Z, Liu Z, Tan X, Liu X, Shi T, Zhou J, Liao G 2019Adv. Funct. Mater. 29 1900541
[20] Leng Q, Su H, Liu J, Zhou L, Qin K, Wang Q, Fu J, Wu S, Zhang X 2021Nanophotonics 10 1871
[21] Lan H Y, Hsieh Y H, Chiao Z Y, Jariwala D, Shih M H, Yen T J, Hess O, Lu Y J 2021Nano Lett. 21 3083
[22] Petrić M M, Kremser M, Barbone M, Nolinder A, Lyamkina A, Stier A V, Kaniber M, Müller K, Finley J J 2022Nano Lett. 22561
[23] Zhu Y X, Yang J W, Abad-Arredondo J, Fernández-Domínguez A I, Garcia-Vidal F J, Natelson D 2024Nano Lett. 24 525
[24] Wang C, Xu W, Mei H Y, Qin H, Zhao X N, Zhang C, Yuan H F, Zhang J, Xu Y, Li P, Li M 2019Opt. Lett. 44 4139
[25] Liu J, Ding L, Zhao C X, Liang C N, Xiao Y M, Zhang J, Xu W 2019 IEEE Photon. J. 11 4800608
[26] Guo T Y, Hou L, Xu W, Xiao Y M, Ding L 2022J. Opt. Soc. Am. B 39 1711
[27] Ding L, Xu W, Zhao C, Wang S, Liu H 2015Opt. Lett. 404524
[28] Maier S A 2007Plasmonics: Fundamentals and Applications(Springer) pp 21
Metrics
- Abstract views: 100
- PDF Downloads: 4
- Cited By: 0