Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

xFe/Bi0.5Sb1.5Te3 thermoelectromagnetic films with coexistence of positive and negative magnetoresistance

Ke Shao-Qiu Ye Xian-Feng Zhang Hao-Jun Nie Xiao-Lei Chen Tian-Tian Liu Cheng-Shan Zhu Wan-Ting Wei Ping Zhao Wen-Yu

Citation:

xFe/Bi0.5Sb1.5Te3 thermoelectromagnetic films with coexistence of positive and negative magnetoresistance

Ke Shao-Qiu, Ye Xian-Feng, Zhang Hao-Jun, Nie Xiao-Lei, Chen Tian-Tian, Liu Cheng-Shan, Zhu Wan-Ting, Wei Ping, Zhao Wen-Yu
cstr: 32037.14.aps.73.20240701
PDF
HTML
Get Citation
  • Thermoelectric (TE) films with excellent electrical transport property are key materials for developing efficient in-plane heat dissipation technology, but their low electrical transport property is a challenge that restricts their application. Recently, a new thermo-electro-magnetic coupling effect has been proposed to significantly improve the comprehensive TE performance. In order to explore the influence of the above effects on the electric transport property of TE films, we develop an integrated preparation method through ball milling dispersion, screen-printing and hot-pressing curing, obtaining a series of xFe/Bi0.5Sb1.5Te3 (BST)/epoxy TE films in which Fe nanoparticles serve as the second phase, resulting in the thermo-electro-magnetic coupling effect , and also we study their influence on the electrothermal transport performance. The results are shown below. The positive and negative magnetoresistance are co-existent in xFe/BST/epoxy thermoelectromagnetic films; the preferred orientation factor of BST (000l) is positively proportional to the positive magnetoresistance (MR+), resulting in an increase of the conductivity; the spin-dependent scattering of negative magnetoresistance (MR) derived from the local magnetic moment of strong ferromagnetic Fe nanoparticles increases the Seebeck coefficient. Hence, the power factor of Fe/BST/epoxy thermoelectromagnetic film near room temperature reaches 2.87 mW⋅K–2⋅m–1, which is 78% higher than that of BST/epoxy thermoelectric film. These results indicate that the coexistence of positive and negative magnetoresistance in thermoelectromagnetic films can not only relieve the coupling relationship between conductivity and Seebeck coefficient in TE materials, but also provide a new physical mechanism for the excellent TE conversion performance induced by magnetic nanoparticles.
      Corresponding author: Nie Xiao-Lei, xiaoleinie@whut.edu.cn ; Zhao Wen-Yu, wyzhao@whut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFB3809400), the National Natural Science Foundation of China (Grant Nos. 52130203, 52102301, 52102298, 52172232, 92163122, 52202034, 52201256), the Natural Science Foundation of Hubei Province, China (Grant No. 2024AFB811), and the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2022B1515120005).
    [1]

    Wang L M, Zhang Z M, Liu Y C, Wang B R, Fang L, Qiu J J, Zhang K, Wang S R 2018 Nat. Commun. 9 3817Google Scholar

    [2]

    Yang Q Y, Yang S Q, Qiu P F, Peng L M, Wei T R, Zhang Z, Shi X, Chen L D 2022 Science 377 854Google Scholar

    [3]

    He S Y, Li Y B, Liu L, Jiang Y, Feng J J, Zhu W, Zhang J Y, Dong Z R, Deng Y, Luo J, Zhang W Q, Chen G 2020 Sci. Adv. 6 eaaz8423Google Scholar

    [4]

    Hinterleitner B, Knapp I, Poneder M, Shi Y, Müller H, Eguchi G, Eisenmenger-Sittner C, Stöger-Pollach M, Kakefuda Y, Kawamoto N, Guo Q, Baba T, Mori T, Ullah S, Chen X Q, Bauer E 2019 Nature 576 85Google Scholar

    [5]

    Qin B C, Wang D Y, Liu X X, Qin Y X, Dong J F, Luo J F, Li J W, Liu W, Tan G J, Tang X F, Li J F, He J Q, Zhao L D 2021 Science 373 556Google Scholar

    [6]

    Jiang B B, Wang W, Liu S X, Wang Y, Wang C F, Chen Y N, Xie L, Huang M Y, He J Q 2022 Science 377 208Google Scholar

    [7]

    Chang C, Wu M H, He D Q, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Huang L, Li J F, He J Q, Zhao L D 2018 Science 360 778Google Scholar

    [8]

    Zhao W Y, Liu Z Y, Sun Z G, Zhang Q J, Wei P, Mu X, Zhou H Y, Li C C, Ma S F, He D Q, Ji P X, Zhu W T, Nie X L, Su X L, Tang X F, Shen B G, Dong X L, Yang J H, Liu Y, Shi J 2017 Nature 549 247Google Scholar

    [9]

    Zhao W Y, Liu Z Y, Wei P, Zhang Q J, Zhu W T, Su X L, Tang X F, Yang J H, Liu Y, Shi J, Chao Y M, Lin S Q, Pei Y Z 2017 Nat. Nanotechnol. 12 55Google Scholar

    [10]

    Ma S F, Li C C, Wei P, Zhu W T, Nie X L, Sang X H, Zhang Q J, Zhao W Y 2020 J. Mater. Chem. A 8 4816Google Scholar

    [11]

    Ma S F, Li C C, Cui W J, Sang X H, Wei P, Zhu W T, Nie X L, Sun F H, Zhao W Y, Zhang Q J 2021 Sci. China Mater. 64 2835Google Scholar

    [12]

    Li C C, Ma S F, Wei P, Zhu W T, Nie X L, Sang X H, Sun Z, Zhang Q J, Zhao W Y 2020 Energy Environ. Sci. 13 535Google Scholar

    [13]

    Li C C, Ma S F, Cui W J, Sang X H, Wei P, Zhu W T, Nie X L, Zhao W Y, Zhang Q J 2021 Mater. Today Phys. 19 100409Google Scholar

    [14]

    Xing L, Cui W, Sang X H, Hu F, Wei P, Zhu W T, Nie X L, Zhang Q J, Zhao W Y 2021 J. Materiomics. 7 998Google Scholar

    [15]

    Li C C, Zhao W Y, Zhang Q J 2022 Sci. Bull. 67 891Google Scholar

    [16]

    Zhao Y, Nie X L, Sun C L, Chen Y F, Ke S Q, Li C, Zhu W T, Sang X H, Zhao W Y, Zhang Q J 2021 ACS Appl. Mater. Interfaces 13 58746Google Scholar

    [17]

    Chen Y F, Nie X L, Sun C L, Ke S Q, Xu W J, Zhao Y, Zhu W T, Zhao W Y, Zhang Q J 2022 Adv. Funct. Mater. 32 2111373Google Scholar

    [18]

    Boona S R, Vandaele K, Boona I N, McComb D W, Heremans J P 2016 Nat. Commun. 7 13714Google Scholar

    [19]

    Uchida K I 2022 Nat. Mater. 21 136Google Scholar

    [20]

    Sakai A, Minami S, Koretsune T, Chen T T, Higo T, Wang Y, Nomoto T, Hirayama M, Miwa S, Nishio-Hamane D, Ishii F, Arita R, Nakatsuji S 2020 Nature 581 53Google Scholar

    [21]

    Pan Y, Le C, He B, Watzman S J, Yao M, Gooth J, Heremans J P, Sun Y, Felser C 2022 Nat. Mater. 21 203Google Scholar

    [22]

    Chen T T, Minami S, Sakai A, Wang Y, Feng Z, Nomoto T, Hirayama M, Ishii R, Koretsune T, Arita R, Nakatsuji S 2022 Sci. Adv. 8 eabk1480Google Scholar

    [23]

    Lotgering F K 1959 J. Inorg. Nucl. Chem. 9 113Google Scholar

    [24]

    Zhao L, Deng H, Korzhovska I, Chen Z, Konczykowski M, Hruban A, Oganesyan V, Krusinelbaum L 2014 Nat. Mater. 13 580Google Scholar

    [25]

    Pippard A B 1989 Magnetoresistance in Metals (New York: Cambridge University Press) pp23–24

    [26]

    Mu X, Zhou H Y, He D Q, Zhao W Y, Wei P, Zhu W T, Nie X L, Liu H J, Zhang Q J 2017 Nano Energy 33 55Google Scholar

    [27]

    Khosla R P, Fischer J R 1970 Phys. Rev. B 2 4084Google Scholar

    [28]

    Kawabata A 1980 Solid State Commun. 34 431Google Scholar

  • 图 1  xFe/BST/环氧树脂热电磁薄膜物相组成 (a) xFe/BST/环氧树脂热电磁薄膜的XRD谱; (b) 2θ为27.8°—28.6°的放大XRD谱

    Figure 1.  Phase constituents of xFe/BST/epoxy thermoelectromagnetic films: (a) XRD patterns of xFe/BST/epoxy thermoelectromagnetic films; (b) the enlarged XRD patterns in the 2θ range of 27.8°–28.6°.

    图 2  xFe/BST/环氧树脂热电磁薄膜的HRTEM微观结构 (a) Fe02的HAADF-STEM像; (b)—(f) Bi, Te, Sb, Fe和O的面分布

    Figure 2.  Microstructures of xFe/BST/epoxy thermoelectromagnetic films from HRTEM: (a) HAADF-STEM image of Fe02; (b)–(f) corresponding elemental mappings of Bi, Te, Sb, Fe, and O.

    图 3  xFe/BST/环氧树脂热电磁薄膜电输运性能 (a)电导率和Seebeck系数; (b) 功率因子

    Figure 3.  Electrical transport properties of the xFe/BST/epoxy thermoelectromagnetic films: (a) Electrical conductivity and Seebeck coefficient; (b) power factor.

    图 4  xFe/BST/环氧树脂热电磁薄膜的磁各向异性 (a) 测量装置; (b) Fe00, (c) Fe01, (d) Fe02, (e) Fe03和(f) Fe04在300 K时⊥H和∥HM-H曲线. 图(b)—(f)中右下插图是零场(H = 0)附近的M-H曲线, 所有xFe/BST/环氧树脂热电磁薄膜的M-H曲线已经进行了扣除BST/环氧树脂热电薄膜背底的数据处理

    Figure 4.  Magnetic anisotropy of xFe/BST/epoxy thermoelectromagnetic films: (a) Measuring setup; M-H curves of (b) Fe00, (c) Fe01, (d) Fe02, (e) Fe03, and (f) Fe04⊥H (and ∥H) at 300 K. The lower-right insets in panels (b)–(f) show the M-H curves near zero field (H = 0), the M-H curves of xFe/BST/epoxy thermoelectromagnetic films were processed by BST/epoxy films background subtraction.

    图 5  xFe/BST/环氧树脂热电磁薄膜磁阻特征 (a), (b) 1.0—2.5 T范围内, 50 K时Fe00和Fe02的MR随磁场H与面外方向夹角θ的变化曲线; (c), (d) 0—2.5 T范围内, 50—300 K时Fe00和Fe02的测量MR(MRm)随磁场的变化曲线; (e) 50 K时Fe00和xFe/BST/环氧薄膜热电磁薄膜(Fe0x, x = 1, 2, 3, 4)的MRm随磁场的变化曲线. MR-($ {\text{MR}}_{{\text{Fe0}}x}^{\text{m}} - {\text{MR}}_{{\text{Fe0}}x}^{+}$)和两种MR的拟合曲线分别显示在图(e)的下半部分, 并用虚线和颜色标注

    Figure 5.  Magnetoresistance characteristic of xFe/BST/epoxy thermoelectromagnetic films: (a), (b) The MR dependence of the included angle θ between the magnetic field H and the out-plane direction of (a) Fe00 and (b) Fe02 in the range of 1.0–2.5 T at 50 K; (c), (d) the magnetic field dependences of measured MR (MRm) of (c) Fe00 and (d) Fe02 at 50–300 K in the range of 0–2.5 T; (e) the magnetic field dependences of MRm of Fe00 and xFe/BST/epoxy flexible films (Fe0x, x = 1, 2, 3, 4) at 50 K. The MR- ($ {\text{MR}}_{{\text{Fe0}}x}^{\text{m}} - {\text{MR}}_{{\text{Fe0}}x}^{+} $) and fitting curves of two kinds of MR are shown in the lower half of panel (e) with the color remarks and the dotted lines, respectively.

    图 6  无MR的BST/环氧树脂热电薄膜的物相组成分析 (a) #0Fe00, #1Fe00, #2Fe00, #3Fe00和#4Fe00的XRD图案, 对应的压力为0, 4, 8, 12和16 MPa; (b) 在27.6°—28.5°范围内XRD谱放大图; (c) 取向因子F随烧结压力的变化曲线

    Figure 6.  Phase constituents and preferential orientation of BST/epoxy thermoelectricity films ignoring MR: (a) XRD patterns of #0Fe00, #1Fe00, #2Fe00, #3Fe00, and #4Fe00 corresponding the pressure being 0, 4, 8, 12, and 16 MPa; (b) the enlarged XRD patterns in the 2θ range of 27.6°–28.5°; (c) the pressure dependence of the F of (000l) preferential orientation of BST.

    图 7  BST/环氧树脂热电薄膜的$ {\text{MR}}_{{\text{\# }}x}^{+} $随(000l)择优取向度的变化曲线 (a) 50 K时, 不同F的BST/环氧树脂热电薄膜的测量$ {\text{MR}}_{{\text{\# }}x}^ + $随磁场的变化曲线; (b) 50 K时, 不同F的BST/环氧树脂热电薄膜的Δ$ {\text{MR}}_{{\text{\# }}x}^ + $随ΔF#x的变化曲线, 在H = 0.5—2.5 T下, 拟合方程为$ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} = {K_0}{{\Delta }}F_\# ^y{H^2} $, 其中(K0, y)分别是0.5 T为(30.67, 2.075), 1.0 T为(24.92, 2.049), 1.5 T为(19.79, 2.006), 2.0 T为(16.54, 1.983)和2.5 T为(13.79, 1.937); (c)拟合方程为$ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} = {K_0}{{\Delta }}F_\# ^2{H^2} $, 其中K0是常数

    Figure 7.  The $ {\text{MR}}_{{\text{\# }}x}^{+} $ dependences of the (000l) preferential orientation F#x of BST in BST/epoxy thermoelectricity films: (a) The variation of $ {\text{MR}}_{{\text{\# }}x}^ + $ with the magnetic field at 50 K in the range of 0–2.5 T; (b) the fitting correlation between ΔF# and $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} $ at H = 0.25–2.5 T, which is expressed as $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} = {K_0}{{\Delta }}F_\# ^y{H^2} $, where (K0, y) is (34.29, 2.129) for 0.5 T, (24.46, 2.021) for 1.0 T, (14.27, 1.902) for 1.5 T, (19.480, 2.063) for 2.0 T, and (16.12, 2.013) for 2.50 T; (c) $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} = {K_0}{{\Delta }}F_\# ^2{H^2} $, where K0 is constant.

    表 1  xFe/BST/环氧树脂热电磁薄膜的F, ΔF, MRm, MR和MR+

    Table 1.  Values of F, ΔF, MRm, MR, and MR+ of xFe/BST/epoxy thermoelectromagnetic films.

    No.FΔF0.5 T1.0 T1.5 T2.0 T2.5 T
    MRmMR+MRMRmMR+MRMRmMR+MRMRmMR+MRMRmMR+MR
    Fe000.260.000.850.850.002.362.360.004.874.870.007.707.700.0011.5111.510.00
    Fe010.310.050.300.86–0.571.072.42–1.342.294.98–2.693.867.87–4.015.7011.75–6.05
    Fe020.410.150.441.00–0.561.412.87–1.502.845.86–3.024.669.24–4.576.7813.67–6.90
    Fe030.380.120.730.94–0.211.962.69–0.733.615.50–1.905.638.68–3.067.9312.89–4.96
    Fe040.360.100.800.92–0.112.082.59–0.514.305.31–1.017.198.38–1.1910.4712.47–2.00
    DownLoad: CSV

    表 2  不同样品300 K时⊥H方向的实测磁性能参数

    Table 2.  Magnetic properties of the ⊥H of the different samples at 300 K.

    Samples x Ms/(emu·g–1) Hk/Oe Keff/(105 erg·g–1) ΔE/(104 erg·g–1) Hc/Oe Mr/(emu·g–1)
    Fe01 0.1% 107.76 9703.48 5.23 5.94 123.65 5.42
    Fe02 0.2% 122.17 14456.38 8.83 8.98 93.37 4.84
    Fe03 0.3% 95.80 10700.42 5.13 7.31 78.80 1.09
    Fe04 0.4% 95.12 10144.43 4.82 6.23 117.48 4.14
    DownLoad: CSV

    表 3  BST/环氧树脂热电薄膜的F#, ΔF#, $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} $和K0的值

    Table 3.  Values of F#, ΔF#, $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} $, and K0 of BST/epoxy thermoelectricity films.

    Sample F# ΔF# 0.5 T 1.0 T 1.5 T 2.0 T 2.5 T
    $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} $ K0 $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} $ K0 $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} $ K0 $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} $ K0 $ {{\Delta {\mathrm{MR}}}}_{\text{\# }}^{+} $ K0
    #0Fe00 0.26 0.00 0.00 26.99 0.00 22.91 0.00 19.59 0.00 17.04 0.00 15.35
    #1Fe00 0.34 0.08 0.04 26.99 0.11 22.91 0.31 19.59 0.44 17.04 0.63 15.35
    #2Fe00 0.37 0.11 0.07 26.99 0.28 22.91 0.49 19.59 0.88 17.04 1.21 15.35
    #3Fe00 0.42 0.16 0.18 26.99 0.60 22.91 1.15 19.59 1.69 17.04 2.48 15.35
    #4Fe00 0.46 0.20 0.28 26.99 0.95 22.91 1.83 19.59 2.85 17.04 3.96 15.35
    DownLoad: CSV

    表 4  xFe/BST/环氧树脂热电磁薄膜在不同H中的K1, K2, K3, $ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{S}}{\mathrm{D}}}^{-} $和$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{W}}{\mathrm{L}}}^{-} $值

    Table 4.  Values of K1, K2, K3, $ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{S}}{\mathrm{D}}}^{-} $, and $ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{W}}{\mathrm{L}}}^{-} $ of xFe/BST/epoxy thermoelectromagnetic films in different H

    No.K1K2K30.5 T1.0 T1.5 T2.0 T2.5 T
    $ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{S}}{\mathrm{D}}}^{-} $$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{W}}{\mathrm{L}}}^{-} $$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{S}}{\mathrm{D}}}^{-} $$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{W}}{\mathrm{L}}}^{-} $$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{S}}{\mathrm{D}}}^{-} $$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{W}}{\mathrm{L}}}^{-} $$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{S}}{\mathrm{D}}}^{-} $$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{W}}{\mathrm{L}}}^{-} $$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{S}}{\mathrm{D}}}^{-} $$ {{\mathrm{M}}{\mathrm{R}}}_{{\mathrm{W}}{\mathrm{L}}}^{-} $
    Fe000.000.000.000.000.000.000.000.000.000.000.000.000.00
    Fe0156.300.120.52–0.20–0.37–0.82–0.52–2.06–0.64–3.27–0.74–5.23–0.82
    Fe0236.770.170.45–0.24–0.32–1.02–0.47–2.47–0.55–3.94–0.64–6.18–0.71
    Fe0319.100.200.23–0.05–0.16–0.50–0.23–1.61–0.28–2.73–0.33–4.60–0.36
    Fe046.380.220.17–0.00–0.12–0.34–0.17–0.81–0.21–0.95–0.24–1.73–0.27
    DownLoad: CSV
  • [1]

    Wang L M, Zhang Z M, Liu Y C, Wang B R, Fang L, Qiu J J, Zhang K, Wang S R 2018 Nat. Commun. 9 3817Google Scholar

    [2]

    Yang Q Y, Yang S Q, Qiu P F, Peng L M, Wei T R, Zhang Z, Shi X, Chen L D 2022 Science 377 854Google Scholar

    [3]

    He S Y, Li Y B, Liu L, Jiang Y, Feng J J, Zhu W, Zhang J Y, Dong Z R, Deng Y, Luo J, Zhang W Q, Chen G 2020 Sci. Adv. 6 eaaz8423Google Scholar

    [4]

    Hinterleitner B, Knapp I, Poneder M, Shi Y, Müller H, Eguchi G, Eisenmenger-Sittner C, Stöger-Pollach M, Kakefuda Y, Kawamoto N, Guo Q, Baba T, Mori T, Ullah S, Chen X Q, Bauer E 2019 Nature 576 85Google Scholar

    [5]

    Qin B C, Wang D Y, Liu X X, Qin Y X, Dong J F, Luo J F, Li J W, Liu W, Tan G J, Tang X F, Li J F, He J Q, Zhao L D 2021 Science 373 556Google Scholar

    [6]

    Jiang B B, Wang W, Liu S X, Wang Y, Wang C F, Chen Y N, Xie L, Huang M Y, He J Q 2022 Science 377 208Google Scholar

    [7]

    Chang C, Wu M H, He D Q, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Huang L, Li J F, He J Q, Zhao L D 2018 Science 360 778Google Scholar

    [8]

    Zhao W Y, Liu Z Y, Sun Z G, Zhang Q J, Wei P, Mu X, Zhou H Y, Li C C, Ma S F, He D Q, Ji P X, Zhu W T, Nie X L, Su X L, Tang X F, Shen B G, Dong X L, Yang J H, Liu Y, Shi J 2017 Nature 549 247Google Scholar

    [9]

    Zhao W Y, Liu Z Y, Wei P, Zhang Q J, Zhu W T, Su X L, Tang X F, Yang J H, Liu Y, Shi J, Chao Y M, Lin S Q, Pei Y Z 2017 Nat. Nanotechnol. 12 55Google Scholar

    [10]

    Ma S F, Li C C, Wei P, Zhu W T, Nie X L, Sang X H, Zhang Q J, Zhao W Y 2020 J. Mater. Chem. A 8 4816Google Scholar

    [11]

    Ma S F, Li C C, Cui W J, Sang X H, Wei P, Zhu W T, Nie X L, Sun F H, Zhao W Y, Zhang Q J 2021 Sci. China Mater. 64 2835Google Scholar

    [12]

    Li C C, Ma S F, Wei P, Zhu W T, Nie X L, Sang X H, Sun Z, Zhang Q J, Zhao W Y 2020 Energy Environ. Sci. 13 535Google Scholar

    [13]

    Li C C, Ma S F, Cui W J, Sang X H, Wei P, Zhu W T, Nie X L, Zhao W Y, Zhang Q J 2021 Mater. Today Phys. 19 100409Google Scholar

    [14]

    Xing L, Cui W, Sang X H, Hu F, Wei P, Zhu W T, Nie X L, Zhang Q J, Zhao W Y 2021 J. Materiomics. 7 998Google Scholar

    [15]

    Li C C, Zhao W Y, Zhang Q J 2022 Sci. Bull. 67 891Google Scholar

    [16]

    Zhao Y, Nie X L, Sun C L, Chen Y F, Ke S Q, Li C, Zhu W T, Sang X H, Zhao W Y, Zhang Q J 2021 ACS Appl. Mater. Interfaces 13 58746Google Scholar

    [17]

    Chen Y F, Nie X L, Sun C L, Ke S Q, Xu W J, Zhao Y, Zhu W T, Zhao W Y, Zhang Q J 2022 Adv. Funct. Mater. 32 2111373Google Scholar

    [18]

    Boona S R, Vandaele K, Boona I N, McComb D W, Heremans J P 2016 Nat. Commun. 7 13714Google Scholar

    [19]

    Uchida K I 2022 Nat. Mater. 21 136Google Scholar

    [20]

    Sakai A, Minami S, Koretsune T, Chen T T, Higo T, Wang Y, Nomoto T, Hirayama M, Miwa S, Nishio-Hamane D, Ishii F, Arita R, Nakatsuji S 2020 Nature 581 53Google Scholar

    [21]

    Pan Y, Le C, He B, Watzman S J, Yao M, Gooth J, Heremans J P, Sun Y, Felser C 2022 Nat. Mater. 21 203Google Scholar

    [22]

    Chen T T, Minami S, Sakai A, Wang Y, Feng Z, Nomoto T, Hirayama M, Ishii R, Koretsune T, Arita R, Nakatsuji S 2022 Sci. Adv. 8 eabk1480Google Scholar

    [23]

    Lotgering F K 1959 J. Inorg. Nucl. Chem. 9 113Google Scholar

    [24]

    Zhao L, Deng H, Korzhovska I, Chen Z, Konczykowski M, Hruban A, Oganesyan V, Krusinelbaum L 2014 Nat. Mater. 13 580Google Scholar

    [25]

    Pippard A B 1989 Magnetoresistance in Metals (New York: Cambridge University Press) pp23–24

    [26]

    Mu X, Zhou H Y, He D Q, Zhao W Y, Wei P, Zhu W T, Nie X L, Liu H J, Zhang Q J 2017 Nano Energy 33 55Google Scholar

    [27]

    Khosla R P, Fischer J R 1970 Phys. Rev. B 2 4084Google Scholar

    [28]

    Kawabata A 1980 Solid State Commun. 34 431Google Scholar

  • [1] Ren Yan-Ying, Li Ya-Ning, Liu Hong-Sheng, Xu Nan, Guo Kun, Xu Zhao-Hui, Chen Xin, Gao Jun-Feng. Regulation of magnetic moment and magnetic anisotropy of magnetite by doping transition metal elements. Acta Physica Sinica, 2024, 73(6): 066104. doi: 10.7498/aps.73.20231744
    [2] Zhu Xin-Qiang, Wang Jian, Zhu Can, Luo Feng, Chen Shu-Quan, Xu Jia-Hui, Xu Feng, Wang Jia-Fu, Zhang Yan, Sun Zhi-Gang. Magnetic and electrical-thermal transport properties of Co3Sn2S2 single crystal. Acta Physica Sinica, 2023, 72(17): 177102. doi: 10.7498/aps.72.20230621
    [3] Fan Xiao-Zheng, Li Yi-Lian, Wu Yi, Chen Jun-Cai, Xu Guo-Liang, An Yi-Peng. Magnetism and spin transport properties of two-dimensional magnetic semiconductor kagome lattice Nb3Cl8 monolayer. Acta Physica Sinica, 2023, 72(24): 247503. doi: 10.7498/aps.72.20231163
    [4] Qing Yu-Lin, Peng Xiao-Li, Hu Ai-Yuan. Phase transition of spin-1 frustrated model on square-lattice bilayer. Acta Physica Sinica, 2022, 71(4): 047501. doi: 10.7498/aps.71.20211685
    [5] Meng Jing, Feng Xin-Wei, Shao Qing-Rong, Zhao Jia-Peng, Xie Ya-Li, He Wei, Zhan Qing-Feng. Magnetic anisotropy and reversal in epitaxial FeGa/IrMn bilayers with different orientations of exchange bias. Acta Physica Sinica, 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [6] Yang Xue, Yang Qing-Hui, Zhang Huai-Wu, Wen Qi-Ye, Bai Fei-Ming, Zhong Zhi-Yong, Zhang Ding, Huang Jian-Tao. Preparation and orientation mechanism analysis of (BiTm)3(GaFe)5O12 magneto-optical single crystal film with out-of-plane orientation. Acta Physica Sinica, 2021, 70(10): 107801. doi: 10.7498/aps.70.20202209
    [7] He Bin, He Xiong, Liu Guo-Qiang, Zhu Can, Wang Jia-Fu, Sun Zhi-Gang. Memristive and magnetoresistance effects of SnSe2. Acta Physica Sinica, 2020, 69(11): 117301. doi: 10.7498/aps.69.20200160
    [8] Lu Qi-Hai, Tang Xiao-Li, Song Yu-Zhe, Zuo Xian-Wei, Han Gen-Liang, Yan Peng-Xun, Liu Wei-Min. Thermal analysis on crystal phase synthesis of iron nitride film and its magnetic properties. Acta Physica Sinica, 2019, 68(11): 118101. doi: 10.7498/aps.68.20182195
    [9] Xu Xiao-Jia, Fang Zheng, Lu Xuan-Ang, Ye Hui-Qun, Fan Xiao-Zhen, Zheng Jin-Ju, He Xing-Wei, Guo Chun-Yu, Li Wen-Zhong, Fang Yun-Zhang. The characteristics of multiple isothermal tempered Fe-based alloy ribbons. Acta Physica Sinica, 2019, 68(13): 137501. doi: 10.7498/aps.68.20190017
    [10] Xiao Jia-Xing, Lu Jun, Zhu Li-Jun, Zhao Jian-Hua. Perpendicular magnetic properties of ultrathin L10-Mn1.67Ga films grown by molecular-beam epitaxy. Acta Physica Sinica, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [11] Ding Bin-Feng, Xiang Feng-Hua, Wang Li-Ming, Wang Hong-Tao. Amending the ferromagnetic properties of Ga0.94Mn0.06As films by He+ irradiation. Acta Physica Sinica, 2012, 61(4): 046105. doi: 10.7498/aps.61.046105
    [12] Chen Jia-Luo, Di Guo-Qing. Influence of magnetic anisotropy thermoelectric effect on spin-dependent devices. Acta Physica Sinica, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [13] Zhang Hui, Zeng De-Chang. The inverse magnetostrictive effect in Tb0.3Dy0.7Fe2. Acta Physica Sinica, 2010, 59(4): 2808-2814. doi: 10.7498/aps.59.2808
    [14] Wang Jing-Ping, Meng Jian. Tunneling magnetoresistance of Fe3O4 compacts prepared in magnetic field. Acta Physica Sinica, 2008, 57(2): 1197-1201. doi: 10.7498/aps.57.1197
    [15] Guo Yu-Xian, Wang Jie, Xu Peng-Shou, Li Hong-Hong, Cai Jian-Wang. Element-specific in-plane magnetic anisotropy in Co0.9Fe0.1 films. Acta Physica Sinica, 2007, 56(2): 1121-1126. doi: 10.7498/aps.56.1121
    [16] Nie Ying, Sui Yu, Song Xiu-Dan, Wang Xian-Jie, Cheng Jin-Guang, Qian Zheng-Nan, Su Wen-Hui. Influence of the compacting pressure on the transport properties of CrO2 at low temperatures. Acta Physica Sinica, 2006, 55(6): 3038-3042. doi: 10.7498/aps.55.3038
    [17] Wu Jian, Zhang Shi-Yuan. The magnetic and electronic transport properties in Ag-doped La-K-Mn-O inhomogeneous system. Acta Physica Sinica, 2006, 55(9): 4893-4900. doi: 10.7498/aps.55.4893
    [18] Li Rui-Peng, Wang Jie, Li Hong-Hong, Guo Yu-Xian, Wang Feng, Hu Zhi-Wei. In-plane anisotropy of iron single-crystal thin film using x-ray magnetic circular dichroism. Acta Physica Sinica, 2005, 54(8): 3851-3855. doi: 10.7498/aps.54.3851
    [19] Chen Wei-Ping, Feng Shang-Shen, Jiao Zheng-Kuan. Spin polarized dependent Hall effect in metallic granular film Fe15.16Ag84.84. Acta Physica Sinica, 2003, 52(12): 3176-3180. doi: 10.7498/aps.52.3176
    [20] GUO ZHONG-CHENG, ZHENG PING, WANG NAN-LIN, CHEN ZHAO-JIA, Y. MAENO, Z. Q. MAO. THE c-AXIS MAGNETORESISTANCE STUDY IN THE NORMAL-STATE Sr2RuO4. Acta Physica Sinica, 2001, 50(9): 1824-1828. doi: 10.7498/aps.50.1824
Metrics
  • Abstract views:  914
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  17 May 2024
  • Accepted Date:  24 September 2024
  • Available Online:  10 October 2024
  • Published Online:  20 November 2024

/

返回文章
返回