Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Regulation of magnetic moment and magnetic anisotropy of magnetite by doping transition metal elements

Ren Yan-Ying Li Ya-Ning Liu Hong-Sheng Xu Nan Guo Kun Xu Zhao-Hui Chen Xin Gao Jun-Feng

Citation:

Regulation of magnetic moment and magnetic anisotropy of magnetite by doping transition metal elements

Ren Yan-Ying, Li Ya-Ning, Liu Hong-Sheng, Xu Nan, Guo Kun, Xu Zhao-Hui, Chen Xin, Gao Jun-Feng
PDF
HTML
Get Citation
  • Magnetic Fe3O4 nanoparticles show promising applications in nanomedicine. The saturation magnetization (MS) and magnetic anisotropy are critical for the applications of Fe3O4 nanoparticles in drug delivery and magnetic hyperthermia. Here, by density functional computation, the doping effects of 3d and 4d transition metal elements (including Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag and Cd) on the magnetic properties of Fe3O4 are investigated in-depth. A conventional cell of Fe3O4, containing 24 Fe atoms and 32 O atoms, has been used to investigate the doping of group III elements. One 3d or 4d atom is doped in one conventional cell of Fe3O4, resulting in the formation of X0.125Fe2.875O4 where X represents the dopant. The results show that the doping of most 3d and 4d transition metal elements will reduce the total magnetic moment, while the doping of Ag, Zn and Cd in Fe3O4 will increase the total magnetic moment by 19%–22%. However, it is hard to dope Ag into Fe3O4 according to the positive formation energy. Therefore, Zn and Cd are good candidates to improve the MS of Fe3O4. The doping of Zn and Cd has also an influence on the magnetic anisotropy of Fe3O4. For Zn0.125Fe2.875O4, the magnetic anisotropy energy is about 0.25 meV per cell, which is slightly larger than that of intrinsic Fe3O4 (0.2 meV per cell). Interestingly, the doping of Cd (Cd0.125Fe2.875O4) will greatly increase the magnetic anisotropy energy to 0.8 meV per cell, which is significant for the specific absorption rate in the magnetic hyperthermia application. In addition, the doping of Zn and Cd will not induce any defect states in the band gap according to the density of states. Zn0.125Fe2.875O4 and Cd0.125Fe2.875O4 are both semiconducting and both the top of valence band and the bottom of conduction band originate from octahedral Fe. This is because the impurity states are very deep in energy. Our research results show that doping Cd is a feasible way to improve the performance of Fe3O4 as a material for drug delivery and magnetic hyperthermia.
      Corresponding author: Chen Xin, chenxincjz@gmail.com ; Gao Jun-Feng, gaojf@dlut.edu.cn
    • Funds: Project supported by the Interdisciplinary Innovation Project of the Second Hospital of Dalian Medical University, China (Grant Nos. 2022JCXKYB21, 2022JCXKYB01), the National Natural Science Foundation of China (Grant Nos. 123374174, 12374253, 12004064, 12074053), the Fundamental Research Funds for the Central Universities, China (Grant Nos. DUT22LK11, DUT22QN207), and the Research Fund for International Cooperation of DUT-BSU Joint Institute, China (Grant No. ICR2202).
    [1]

    Perez J M, Josephson L, O'Loughlin T, Högemann D, Weissleder R 2002 Nat. Biotechnol. 20 816Google Scholar

    [2]

    Liu J, Sun Z, Deng Y, Zou Y, Li C, Guo X, Xiong L, Gao Y, Li F, Zhao D 2009 Angew. Chem. Int. Ed. 48 5875Google Scholar

    [3]

    Wu W, Wu Z, Yu T, Jiang C, Kim W S 2015 Sci. Technol. Adv. Mater. 16 023501Google Scholar

    [4]

    Martinkova P, Brtnicky M, Kynicky J, Pohanka M 2018 Adv. Healthc. Mater. 7 1700932Google Scholar

    [5]

    Pankhurst Q A, Thanh N T K, Jones S K, Dobson J 2009 J. Phys. D: Appl. Phys. 42 224001Google Scholar

    [6]

    Gupta A K, Gupta M 2005 Biomaterials 26 3995Google Scholar

    [7]

    Sun C, Lee J S H, Zhang M 2008 Adv. Drug. Deliv. Rev. 60 1252Google Scholar

    [8]

    Pankhurst Q A, Connolly J, Jones S K, Dobson J 2003 J. Phys. D: Appl. Phys. 36 R167Google Scholar

    [9]

    Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller R N 2008 Chem. Rev. 108 2064Google Scholar

    [10]

    Colombo M, Carregal-Romero S, Casula M F, Gutiérrez L, Morales M P, Böhm I B, Heverhagen J T, Prosperi D, Parak W J 2012 Chem. Soc. Rev. 41 4306Google Scholar

    [11]

    Mitchell M J, Billingsley M M, Haley R M, Wechsler M E, Peppas N A, Langer R 2021 Nat. Rev. Drug Discov. 20 101Google Scholar

    [12]

    Dilnawaz F, Singh A, Mohanty C, Sahoo S K 2010 Biomaterials 31 3694Google Scholar

    [13]

    Wang Y, Zhao R B, Wang S B, Liu Z M, Tang R K 2016 Biomaterials 75 71Google Scholar

    [14]

    Liao S H, Liu C H, Bastakoti B P, Suzuki N, Chang Y, Yamauchi Y, Lin F H, Wu K C 2015 Int. J. Nanomed. 10 3315

    [15]

    Rajan A, Sharma M, Sahu N K 2020 Sci. Rep. 10 15045Google Scholar

    [16]

    Sun S, Zeng H 2002 J. Am. Chem. Soc. 124 8204Google Scholar

    [17]

    Hou Y, Yu J, Gao S 2003 J. Mater. Chem. 13 1983Google Scholar

    [18]

    Sun S, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X, Li G 2004 J. Am. Chem. Soc. 126 273Google Scholar

    [19]

    Park J, An K, Hwang Y, Park J G, Noh H J, Kim J Y, Park J H, Hwang N M, Hyeon T 2004 Nat. Mater. 3 891Google Scholar

    [20]

    Tian Y, Yu B B, Li X, Li K 2011 J. Mater. Chem. 21 2476Google Scholar

    [21]

    Kovalenko M V, Bodnarchuk M I, Lechner R T, Hesser G, Schäffler F, Heiss W 2007 J. Am. Chem. Soc. 129 6352Google Scholar

    [22]

    Yang H, Ogawa T, Hasegawa D, Takahashi M 2008 J. Appl. Phys. 103 07D526Google Scholar

    [23]

    Kim D, Lee N, Park M, Kim B H, An K, Hyeon T 2009 J. Am. Chem. Soc. 131 454Google Scholar

    [24]

    Zhao L, Duan L 2010 Eur. J. Inorg. Chem. 2010 5635Google Scholar

    [25]

    Zhang L H, Wu J J, Liao H B, Hou Y L, Gao S 2009 Chem. Commun. 29 4378

    [26]

    Li X, Liu D, Song S, Wang X, Ge X, Zhang H 2011 CrystEngComm 13 6017

    [27]

    Cheng X L, Jiang J S, Jiang D M, Zhao Z J 2014 J. Phys. Chem. C 118 12588Google Scholar

    [28]

    Zheng R K, Gu H, Xu B, Fung K K, Zhang X X, Ringer S P 2006 Adv. Mater. 18 2418Google Scholar

    [29]

    Zhao L J, Zhang H J, Xing Y, Song S Y, Yu S Y, Shi W D, Guo X M, Yang J H, Lei Y Q, Cao F 2008 Chem. Mat. 20 198Google Scholar

    [30]

    Woo K, Hong J, Choi S, Lee H W, Ahn J P, Kim C S, Lee S W 2004 Chem. Mat. 16 2814Google Scholar

    [31]

    Li Q, Kartikowati C W, Horie S, Ogi T, Iwaki T, Okuyama K 2017 Sci. Rep. 7 9894Google Scholar

    [32]

    Liu J, Bin Y, Matsuo M 2012 J. Phys. Chem. C 116 134Google Scholar

    [33]

    Ahghari M R, Amiri-khamakani Z, Maleki A 2023 Sci. Rep. 13 1007Google Scholar

    [34]

    Qi Z L, Joshi T P, Liu R P, Liu H J, Qu J H 2017 J. Hazard. Mater. 329 193Google Scholar

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [36]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Liu H, Di Valentin C 2017 J. Phys. Chem. C 121 25736Google Scholar

    [39]

    Dovesi R, Orlando R, Erba A, Zicovich-Wilson C M, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D'Arco P, Noël Y, Causà M, Rérat M, Kirtman B 2014 Int. J. Quantum Chem. 114 1287Google Scholar

    [40]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [41]

    Liu H, Di Valentin C 2018 Nanoscale 10 11021

    [42]

    Liu H, Di Valentin C 2019 Phys. Rev. Lett. 123 186101Google Scholar

    [43]

    Hay P J, Wadt W R 1985 J. Chem. Phys. 82 299Google Scholar

    [44]

    Durand P, Barthelat J C 1975 Theor. Chim. Acta 38 283Google Scholar

  • 图 1  (a) 完美 Fe3O4, (b) Zn0.125Fe2.875O4, (c) V0.125Fe2.875O4和(d) Y0.125Fe2.875O4的优化结构(数据来源于CRYSTAL17的杂化泛函计算)

    Figure 1.  Optimized structures of (a) perfect Fe3O4, (b) Zn0.125Fe2.875O4, (c) V0.125Fe2.875O4, and (d) Y0.125Fe2.875O4 (data is from HSE calculation with CRYSTAL17).

    图 2  掺杂不同过渡金属元素的Fe3O4的总磁矩(数据来源于CRYSTAL17的杂化泛函计算)

    Figure 2.  Total magnetic moment of Fe3O4 doped with different transition metal elements (data is from HSE calculation with CRYSTAL17).

    图 3  本征和掺杂的 Fe3O4 的磁各向异性, 图中横坐标为不同的磁化方向, 磁化轴从[001]方向开始沿着(1, –1, 0)面旋转到[111]方向, 中间均匀取7个数据点, 再从[111]方向沿着(1, –1, 0)面旋转到[110]方向, 中间也均匀取7个数据点(数据来源于VASP的PBE + U计算)

    Figure 3.  Magnetic anisotropy of Fe3O4 with and without doping. The abscissas in the figure represent different magnetization directions. The magnetization axis starts from the [001] direction and rotates along the (1, –1, 0) plane to the [111] direction. Seven data points are evenly taken in the middle, and then the magnetization axis rotates from the [111] direction along the (1, –1, 0) plane to the [110] direction, and 7data points are evenly taken in the middle (data is from PBE + U calculation with VASP).

    图 4  (a) 未掺杂的完美 Fe3O4, (b) Zn0.125Fe2.875O4, (c) Cd0.125Fe2.875O4 的投影态密度, 费米能级归零, 如黑色虚线所示(数据来源于CRYSTAL17的杂化泛函计算)

    Figure 4.  Projected density of states of (a) perfect Fe3O4 without doping, (b) Zn0.125Fe2.875O4, (c) Cd0.125Fe2.875O4. The legend of colors is on the top, the Fermi level is scaled to zero as indicated by the dashed black lines (data is from HSE calculation with CRYSTAL17).

    表 1  过渡金属掺杂Fe3O4的能量差ΔE = ETEO, 其中ETEO分别表示掺杂剂取代四面体 Fe 和八面体 Fe 的掺杂 Fe3O4 的总能量(数据来源于CRYSTAL17的杂化泛函计算)

    Table 1.  Energy difference ΔE = ETEO for transition metal doped Fe3O4, where ET and EO represent the total energy of doped Fe3O4 with the dopant replacing tetrahedral Fe and octahedral Fe, respectively (data is from HSE calculation with CRYSTAL17).

    杂质 Sc Ti V Cr Mn Co Ni Cu Zn
    ΔE /eV 0.70 0.10 0.37 1.48 0.10 0.13 0.95 0.19 –0.14
    杂质 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
    ΔE /eV 4.23 0.13 0.01 0.72 2.14 2.27 1.31 0.96 –0.29 –0.32
    DownLoad: CSV

    表 2  过渡金属掺杂 Fe3O4 的形成能 Ef (数据来源于VASP的PBE + U计算)

    Table 2.  Formation energy Ef of transition metal doped Fe3O4 (data is from PBE + U calculation with VASP).

    杂质 Sc Ti V Cr Mn Co Ni Cu Zn
    Ef /eV –6.45 –5.75 –4.94 –4.97 –3.72 –2.09 –1.69 0.21 –1.93
    杂质 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
    Ef /eV –5.42 –6.09 –5.23 –2.60 –2.18 –1.00 –0.62 0.54 1.12 –0.61
    DownLoad: CSV

    表 3  Fe3O4掺杂时3d和4d过渡金属原子的原子磁矩(m)(数据来源于CRYSTAL17的杂化泛函计算)

    Table 3.  Atomic magnetic moment (m) of 3d and 4d transition metal atoms when doped in Fe3O4 (data is from HSE calculation with CRYSTAL17).

    杂质 Sc Ti V Cr Mn Co Ni Cu Zn
    mB–0.06–0.12–2.02–3.05–4.76–2.76–1.780.010.07
    杂质YZrNbMoTcRuRhPdAgCd
    mB–0.09–0.22–0.52–2.66–1.910.11–0.091.300.120.07
    DownLoad: CSV
  • [1]

    Perez J M, Josephson L, O'Loughlin T, Högemann D, Weissleder R 2002 Nat. Biotechnol. 20 816Google Scholar

    [2]

    Liu J, Sun Z, Deng Y, Zou Y, Li C, Guo X, Xiong L, Gao Y, Li F, Zhao D 2009 Angew. Chem. Int. Ed. 48 5875Google Scholar

    [3]

    Wu W, Wu Z, Yu T, Jiang C, Kim W S 2015 Sci. Technol. Adv. Mater. 16 023501Google Scholar

    [4]

    Martinkova P, Brtnicky M, Kynicky J, Pohanka M 2018 Adv. Healthc. Mater. 7 1700932Google Scholar

    [5]

    Pankhurst Q A, Thanh N T K, Jones S K, Dobson J 2009 J. Phys. D: Appl. Phys. 42 224001Google Scholar

    [6]

    Gupta A K, Gupta M 2005 Biomaterials 26 3995Google Scholar

    [7]

    Sun C, Lee J S H, Zhang M 2008 Adv. Drug. Deliv. Rev. 60 1252Google Scholar

    [8]

    Pankhurst Q A, Connolly J, Jones S K, Dobson J 2003 J. Phys. D: Appl. Phys. 36 R167Google Scholar

    [9]

    Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller R N 2008 Chem. Rev. 108 2064Google Scholar

    [10]

    Colombo M, Carregal-Romero S, Casula M F, Gutiérrez L, Morales M P, Böhm I B, Heverhagen J T, Prosperi D, Parak W J 2012 Chem. Soc. Rev. 41 4306Google Scholar

    [11]

    Mitchell M J, Billingsley M M, Haley R M, Wechsler M E, Peppas N A, Langer R 2021 Nat. Rev. Drug Discov. 20 101Google Scholar

    [12]

    Dilnawaz F, Singh A, Mohanty C, Sahoo S K 2010 Biomaterials 31 3694Google Scholar

    [13]

    Wang Y, Zhao R B, Wang S B, Liu Z M, Tang R K 2016 Biomaterials 75 71Google Scholar

    [14]

    Liao S H, Liu C H, Bastakoti B P, Suzuki N, Chang Y, Yamauchi Y, Lin F H, Wu K C 2015 Int. J. Nanomed. 10 3315

    [15]

    Rajan A, Sharma M, Sahu N K 2020 Sci. Rep. 10 15045Google Scholar

    [16]

    Sun S, Zeng H 2002 J. Am. Chem. Soc. 124 8204Google Scholar

    [17]

    Hou Y, Yu J, Gao S 2003 J. Mater. Chem. 13 1983Google Scholar

    [18]

    Sun S, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X, Li G 2004 J. Am. Chem. Soc. 126 273Google Scholar

    [19]

    Park J, An K, Hwang Y, Park J G, Noh H J, Kim J Y, Park J H, Hwang N M, Hyeon T 2004 Nat. Mater. 3 891Google Scholar

    [20]

    Tian Y, Yu B B, Li X, Li K 2011 J. Mater. Chem. 21 2476Google Scholar

    [21]

    Kovalenko M V, Bodnarchuk M I, Lechner R T, Hesser G, Schäffler F, Heiss W 2007 J. Am. Chem. Soc. 129 6352Google Scholar

    [22]

    Yang H, Ogawa T, Hasegawa D, Takahashi M 2008 J. Appl. Phys. 103 07D526Google Scholar

    [23]

    Kim D, Lee N, Park M, Kim B H, An K, Hyeon T 2009 J. Am. Chem. Soc. 131 454Google Scholar

    [24]

    Zhao L, Duan L 2010 Eur. J. Inorg. Chem. 2010 5635Google Scholar

    [25]

    Zhang L H, Wu J J, Liao H B, Hou Y L, Gao S 2009 Chem. Commun. 29 4378

    [26]

    Li X, Liu D, Song S, Wang X, Ge X, Zhang H 2011 CrystEngComm 13 6017

    [27]

    Cheng X L, Jiang J S, Jiang D M, Zhao Z J 2014 J. Phys. Chem. C 118 12588Google Scholar

    [28]

    Zheng R K, Gu H, Xu B, Fung K K, Zhang X X, Ringer S P 2006 Adv. Mater. 18 2418Google Scholar

    [29]

    Zhao L J, Zhang H J, Xing Y, Song S Y, Yu S Y, Shi W D, Guo X M, Yang J H, Lei Y Q, Cao F 2008 Chem. Mat. 20 198Google Scholar

    [30]

    Woo K, Hong J, Choi S, Lee H W, Ahn J P, Kim C S, Lee S W 2004 Chem. Mat. 16 2814Google Scholar

    [31]

    Li Q, Kartikowati C W, Horie S, Ogi T, Iwaki T, Okuyama K 2017 Sci. Rep. 7 9894Google Scholar

    [32]

    Liu J, Bin Y, Matsuo M 2012 J. Phys. Chem. C 116 134Google Scholar

    [33]

    Ahghari M R, Amiri-khamakani Z, Maleki A 2023 Sci. Rep. 13 1007Google Scholar

    [34]

    Qi Z L, Joshi T P, Liu R P, Liu H J, Qu J H 2017 J. Hazard. Mater. 329 193Google Scholar

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [36]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Liu H, Di Valentin C 2017 J. Phys. Chem. C 121 25736Google Scholar

    [39]

    Dovesi R, Orlando R, Erba A, Zicovich-Wilson C M, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D'Arco P, Noël Y, Causà M, Rérat M, Kirtman B 2014 Int. J. Quantum Chem. 114 1287Google Scholar

    [40]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [41]

    Liu H, Di Valentin C 2018 Nanoscale 10 11021

    [42]

    Liu H, Di Valentin C 2019 Phys. Rev. Lett. 123 186101Google Scholar

    [43]

    Hay P J, Wadt W R 1985 J. Chem. Phys. 82 299Google Scholar

    [44]

    Durand P, Barthelat J C 1975 Theor. Chim. Acta 38 283Google Scholar

  • [1] Meng Jing, Feng Xin-Wei, Shao Qing-Rong, Zhao Jia-Peng, Xie Ya-Li, He Wei, Zhan Qing-Feng. Magnetic anisotropy and reversal in epitaxial FeGa/IrMn bilayers with different orientations of exchange bias. Acta Physica Sinica, 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [2] Huang Yu-Hao, Zhang Gui-Tao, Wang Ru-Qian, Chen Qian, Wang Jin-Lan. Electronic structure and stability of two-dimensional bimetallic ferromagnetic semiconductor CrMoI6. Acta Physica Sinica, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [3] Wen Lin, Hu Ai-Yuan. Effect of biquadratic exchange and anisotropy on the critical temperature of antiferromagnet. Acta Physica Sinica, 2020, 69(10): 107501. doi: 10.7498/aps.69.20200077
    [4] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [5] Zhang Chen-Jun, Wang Yang-Li, Chen Chao-Kang. Density functional theory of InCn+(n=110) clusters. Acta Physica Sinica, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [6] Li Zhe-Fu, Jia Yan-Yan, Liu Ren-Duo, Xu Yu-Hai, Wang Guang-Hong, Xia Xiao-Bin. Irradiation effect of Sm2Co17 type permanent magnets. Acta Physica Sinica, 2017, 66(22): 226101. doi: 10.7498/aps.66.226101
    [7] Wang Ya-Jing, Li Gui-Xia, Wang Zhi-Hua, Gong Li-Ji, Wang Xiu-Fang. Diameter monodispersity of imogolite-like nanotube: a density functional theory study. Acta Physica Sinica, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [8] Xiao Jia-Xing, Lu Jun, Zhu Li-Jun, Zhao Jian-Hua. Perpendicular magnetic properties of ultrathin L10-Mn1.67Ga films grown by molecular-beam epitaxy. Acta Physica Sinica, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [9] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [10] Wen Jun-Qing, Xia Tao, Wang Jun-Fei. A density functional theory study of small bimetallic PtnAl (n=18) clusters. Acta Physica Sinica, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [11] Nie Shuai-Hua, Zhu Li-Jun, Pan Dong, Lu Jun, Zhao Jian-Hua. Structural characterization and magnetic properties of perpendicularly magnetized MnAl films grown by molecular-beam epitaxy. Acta Physica Sinica, 2013, 62(17): 178103. doi: 10.7498/aps.62.178103
    [12] Xie Xiao-Dong, Hao Yu-Ying, Zhang Ri-Guang, Wang Bao-Jun. Lithium-doped tris (8-hydroxyquinoline) aluminum studied by density functional theory. Acta Physica Sinica, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [13] Chen Jia-Luo, Di Guo-Qing. Influence of magnetic anisotropy thermoelectric effect on spin-dependent devices. Acta Physica Sinica, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [14] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [15] Zhang Hui, Zeng De-Chang. The inverse magnetostrictive effect in Tb0.3Dy0.7Fe2. Acta Physica Sinica, 2010, 59(4): 2808-2814. doi: 10.7498/aps.59.2808
    [16] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] Guo Yu-Xian, Wang Jie, Xu Peng-Shou, Li Hong-Hong, Cai Jian-Wang. Element-specific in-plane magnetic anisotropy in Co0.9Fe0.1 films. Acta Physica Sinica, 2007, 56(2): 1121-1126. doi: 10.7498/aps.56.1121
    [18] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [19] Ye Zhen-Cheng, Cai Jun, Zhang Shu-Ling, Liu Hong-Lai, Hu Ying. Studies on the density profiles of square-well chain fluid confined in a slit pore by density functional theory. Acta Physica Sinica, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [20] Li Rui-Peng, Wang Jie, Li Hong-Hong, Guo Yu-Xian, Wang Feng, Hu Zhi-Wei. In-plane anisotropy of iron single-crystal thin film using x-ray magnetic circular dichroism. Acta Physica Sinica, 2005, 54(8): 3851-3855. doi: 10.7498/aps.54.3851
Metrics
  • Abstract views:  2356
  • PDF Downloads:  79
  • Cited By: 0
Publishing process
  • Received Date:  02 November 2023
  • Accepted Date:  28 December 2023
  • Available Online:  02 February 2024
  • Published Online:  20 March 2024

/

返回文章
返回