Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of terahertz detection based on plasma waves in monolayer MoS2 field-effect transistor

WANG Xiaoyun FAN Huichuan CHEN Xiaoshuang WANG Lin

Citation:

Simulation of terahertz detection based on plasma waves in monolayer MoS2 field-effect transistor

WANG Xiaoyun, FAN Huichuan, CHEN Xiaoshuang, WANG Lin
cstr: 32037.14.aps.74.20250517
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Low-dimensional material systems benefit from their extremely high carrier mobility and flexible integrability, making them a subject of research in the terahertz detection field and demonstrating significant potential for applications. At present, software is mainly used to simulate and analyze the structures relied upon for semiconductor terahertz detection of bulk materials, while the simulation analysis for terahertz detection in low-dimensional material systems is still relatively unexplored. Due to the low degrees of freedom in carrier motion in low-dimensional materials, the probability of scattering caused by collisions between electrons and the lattice in the channel during electron movement is effectively reduced, making these materials have immense potential in high-sensitivity detection. Their low equivalent noise power and high signal-to-noise ratio performance in signal detection highlight the broad development prospects of these materials in the field of communication. This work simulates and analyzes the plasmon wave effect in a monolayer MoS2 field-effect transistor (FET) for THz detection for the first time, and systematically elucidates the principle and analysis process of using plasmon waves for THz detection. The transmission characteristic curve of the device is simulated and measured at a source-drain voltage of 0.5 V, and, a gate-to-drain voltage of –0.1 V is selected based on this curve to preliminarily investigate the THz response performance of the device. By adjusting key parameters such as Ugs, THz wave irradiation frequency, and HfO2 layer thickness, it is found that the monolayer MoS2 FET THz detector can produce a maximum DC voltage signal of 14 μV. This signal exhibits a complex variation trend related to the bias voltage between the gate and drain. This trend correlates with the bias voltage-induced changes in carrier concentration and the corresponding momentum relaxation time. The research results obtained in this paper can provide an important reference for designing low-dimensional material THz detectors. Furthermore, they lay a foundation for optimizing the performance of two-dimensional material THz detectors through simulation analysis, thereby providing deeper insights into the study of THz photoelectric responses in 2D materials.
      Corresponding author: CHEN Xiaoshuang, xschen@mail.sitp.ac.cn ; WANG Lin, wanglin@mail.sitp.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0580000), the National Natural Science Foundation of China (Grant No. 62322515), the Natural Science Foundation Programe of Shanghai, China (Grant No. 24ZR1493100), the National Key Research and Development Program of China (Grant No. 2024YFA1211300), and the International Partnership Program of Chinese Academy of Sciences (Grant No. 112GJHZ2024039FN).
    [1]

    冯伟, 韦舒婷, 曹俊诚 2021 物理学报 70 244303Google Scholar

    Feng W, Wei S T, Cao J C 2021 Acta Phys. Sin. 70 244303Google Scholar

    [2]

    Wang C X, Wang J, Hu S, Jiang Z H, Tao J, Yan F 2021 IEEE Veh. Technol. Mag 16 27Google Scholar

    [3]

    Shafie A, Yang N, Han C, Jornet J M, Juntti M, Kürner T 2023 IEEE Network 37 162Google Scholar

    [4]

    Jiang W, Zhou Q H, He J G, Habibi M A, Melnyk S, El-Absi M, Han B, Renzo M D, Schotten H D, Luo F L, El-Bawab T S, Juntti M, Debbah M, Leung V C M 2024 IEEE Commun. Surv. Tutorials 26 2326Google Scholar

    [5]

    Liu Z L, Yang C, Peng M G 2024 IEEE Network 38 194Google Scholar

    [6]

    Chen W R, Li L X, Chen Z, Liu Y W, Ning B Y, Quek T Q S 2024 IEEE Trans. Veh. Technol. 73 19019Google Scholar

    [7]

    Han C, Wu Y Z, Chen Z, Chen Y, Wang G J 2024 IEEE Commun. Mag. 62 102Google Scholar

    [8]

    Taghinejad M, Xia C, Hrton M, Lee K T, Kim A S, Li Q, Guzelturk B, Kalousek R, Xu F, Cai W, Lindenberg A M, Brongersma M L 2023 Science 382 299Google Scholar

    [9]

    Mihnev M T, Kadi F, Divin C J, Winzer T, Lee S, Liu C H, Zhong Z, Berger C, de Heer W A, Malic E, Knorr A, Norris T B 2016 Nat. Commun. 7 11617Google Scholar

    [10]

    Zhang D H, Xu Z, Cheng G, Liu Z, Gutierrez A R, Zang W Z, Norris T B, Zhong Z H 2022 Nat. Commun. 13 6404Google Scholar

    [11]

    Krishna Kumar R, Li G, Bertini R, Chaudhary S, Nowakowski K, Park J M, Castilla S, Zhan Z, Pantaleón P A, Agarwal H, Batlle-Porro S, Icking E, Ceccanti M, Reserbat-Plantey A, Piccinini G, Barrier J, Khestanova E, Taniguchi T, Watanabe K, Stampfer C, Refael G, Guinea F, Jarillo-Herrero P, Song J C W, Stepanov P, Lewandowski C, Koppens F H L 2025 Nat. Mater. 24 1034Google Scholar

    [12]

    Dyakonov M, Shur M 1996 IEEE Trans. Electron Devices 43 380Google Scholar

    [13]

    Dyakonov M, Shur M 1993 Phys. Rev. Lett. 71 2465Google Scholar

    [14]

    Liu X Q, Shur M 2019 IEEE Radio and Wireless Symposium (RWS) Orlando, FL, USA, January 20−23, 2019 p1

    [15]

    Liu X Q, Shur M S 2020 IEEE Trans. Terahertz Sci. Technol. 10 15Google Scholar

    [16]

    Meng Q Z, Lin Q J, Jing W X, Han F, Zhao M, Jiang Z D 2018 IEEE Trans. Electron Devices 65 4807Google Scholar

    [17]

    Zhu Y J, Ji X L, Liao Y M, Wu F W, Yan F 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) Guilin, China, October 28–31, 2014 p1

    [18]

    Tong J Y, Muthee M, Chen S Y, Yngvesson S K, Yan J 2015 Nano Lett. 15 5295Google Scholar

    [19]

    Zhou J, Wang X Y, Chen Z Q Z, Zhang L B, Yao C Y, Du W J, Zhang J Z, Xing H Z, Fu N X, Chen G, Wang L 2022 Chin. Phys. B 31 050701Google Scholar

    [20]

    Shen J Z, Xing H Z, Wang L, Hu Z, Zhang L B, Wang X Y, Chen Z Q Z, Yao C Y, Jiang MJ, Fei F C, Chen G, Han L, Song F Q, Chen X S 2022 Appl. Phys. Lett. 120 063501Google Scholar

    [21]

    Shen Y, Tian H, Ren T L 2022 J. Semicond. 43 082002Google Scholar

    [22]

    Wang D, Yang L, Hu Z, Wang F, Yang Y G, Pan X K, Dong Z, Tian S J, Zhang L B, Han L, Jiang M J, Tang K Q, Dai F X, Zhang K, Lu W, Chen X S, Wang L, Hu W D 2025 Nat. Commun. 16 25Google Scholar

    [23]

    Han L, Zhang S, Tian S J, Zhang L B, Wei Y D, Zhang K X, Jiang M J, He Y, Liu C L, Tang W W, He J L, Shu H B, Politano A, Chen X S, Wang L 2025 ACS Nano 19 3740Google Scholar

    [24]

    Xiao K N, Zhang S, Zhang K X, Zhang L B, Wen Y F, Tian S J, Xiao Y L, Shi C F, Hou S C, Liu C L, Han L, He J L, Tang W W, Li G H, Wang L, Chen X S 2024 Adv. Sci. 11 2401716Google Scholar

  • 图 1  单层MoS2场效应管太赫兹探测器结构示意图

    Figure 1.  Structure of monolayer MoS2 FET terahertz detector.

    图 2  转移特性曲线 (a)不同HfO2厚度下的转移特性曲线; (b)不同沟道长度下的转移特性曲线

    Figure 2.  Transfer characteristic curves: (a) The transfer characteristic curves with different HfO2 thickness; (b) the transfer characteristic curves with different channel length.

    图 3  在太赫兹光激励下产生的源漏电压Vds随时间的关系

    Figure 3.  Time domain of Vds stimulated by terahertz radiation.

    图 4  Vds振荡信号经FFT后频率与振幅的关系

    Figure 4.  Frequency domain of Vds.

    图 5  不同结构参数下的直流电压输出 (a) 不同太赫兹波振幅下的直流信号输出; (b)不同HfO2厚度下的直流信号输出; (c)不同沟道长度下的直流信号输出

    Figure 5.  The DC voltages with different structure parameters: (a) The DC voltages with different U0; (b) the DC voltages with different HfO2 thicknesses; (c) the DC voltages with different channel lengths.

    图 6  不同结构参数下直流电压信号随偏置电压以及频率的变化 (a), (b) 不同HfO2厚度(a)和不同沟道长度(b)结构的直流电压信号输出随着偏置电压的变化; (c), (d) 不同HfO2厚度(c)和不同沟道长度(d)结构的直流电压信号输出随着太赫兹波频率的变化

    Figure 6.  The DC voltages with different structure parameters at different Ugs and terahertz frequencies: (a), (b) The variation of DC voltage signals with the bias voltage for structures with different HfO2 thicknesses (a) and different channel lengths (b); (c), (d) the variation of DC voltage signals with the frequency of terahertz waves for structures with different HfO2 thicknesses (c) and different channel lengths (d).

  • [1]

    冯伟, 韦舒婷, 曹俊诚 2021 物理学报 70 244303Google Scholar

    Feng W, Wei S T, Cao J C 2021 Acta Phys. Sin. 70 244303Google Scholar

    [2]

    Wang C X, Wang J, Hu S, Jiang Z H, Tao J, Yan F 2021 IEEE Veh. Technol. Mag 16 27Google Scholar

    [3]

    Shafie A, Yang N, Han C, Jornet J M, Juntti M, Kürner T 2023 IEEE Network 37 162Google Scholar

    [4]

    Jiang W, Zhou Q H, He J G, Habibi M A, Melnyk S, El-Absi M, Han B, Renzo M D, Schotten H D, Luo F L, El-Bawab T S, Juntti M, Debbah M, Leung V C M 2024 IEEE Commun. Surv. Tutorials 26 2326Google Scholar

    [5]

    Liu Z L, Yang C, Peng M G 2024 IEEE Network 38 194Google Scholar

    [6]

    Chen W R, Li L X, Chen Z, Liu Y W, Ning B Y, Quek T Q S 2024 IEEE Trans. Veh. Technol. 73 19019Google Scholar

    [7]

    Han C, Wu Y Z, Chen Z, Chen Y, Wang G J 2024 IEEE Commun. Mag. 62 102Google Scholar

    [8]

    Taghinejad M, Xia C, Hrton M, Lee K T, Kim A S, Li Q, Guzelturk B, Kalousek R, Xu F, Cai W, Lindenberg A M, Brongersma M L 2023 Science 382 299Google Scholar

    [9]

    Mihnev M T, Kadi F, Divin C J, Winzer T, Lee S, Liu C H, Zhong Z, Berger C, de Heer W A, Malic E, Knorr A, Norris T B 2016 Nat. Commun. 7 11617Google Scholar

    [10]

    Zhang D H, Xu Z, Cheng G, Liu Z, Gutierrez A R, Zang W Z, Norris T B, Zhong Z H 2022 Nat. Commun. 13 6404Google Scholar

    [11]

    Krishna Kumar R, Li G, Bertini R, Chaudhary S, Nowakowski K, Park J M, Castilla S, Zhan Z, Pantaleón P A, Agarwal H, Batlle-Porro S, Icking E, Ceccanti M, Reserbat-Plantey A, Piccinini G, Barrier J, Khestanova E, Taniguchi T, Watanabe K, Stampfer C, Refael G, Guinea F, Jarillo-Herrero P, Song J C W, Stepanov P, Lewandowski C, Koppens F H L 2025 Nat. Mater. 24 1034Google Scholar

    [12]

    Dyakonov M, Shur M 1996 IEEE Trans. Electron Devices 43 380Google Scholar

    [13]

    Dyakonov M, Shur M 1993 Phys. Rev. Lett. 71 2465Google Scholar

    [14]

    Liu X Q, Shur M 2019 IEEE Radio and Wireless Symposium (RWS) Orlando, FL, USA, January 20−23, 2019 p1

    [15]

    Liu X Q, Shur M S 2020 IEEE Trans. Terahertz Sci. Technol. 10 15Google Scholar

    [16]

    Meng Q Z, Lin Q J, Jing W X, Han F, Zhao M, Jiang Z D 2018 IEEE Trans. Electron Devices 65 4807Google Scholar

    [17]

    Zhu Y J, Ji X L, Liao Y M, Wu F W, Yan F 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) Guilin, China, October 28–31, 2014 p1

    [18]

    Tong J Y, Muthee M, Chen S Y, Yngvesson S K, Yan J 2015 Nano Lett. 15 5295Google Scholar

    [19]

    Zhou J, Wang X Y, Chen Z Q Z, Zhang L B, Yao C Y, Du W J, Zhang J Z, Xing H Z, Fu N X, Chen G, Wang L 2022 Chin. Phys. B 31 050701Google Scholar

    [20]

    Shen J Z, Xing H Z, Wang L, Hu Z, Zhang L B, Wang X Y, Chen Z Q Z, Yao C Y, Jiang MJ, Fei F C, Chen G, Han L, Song F Q, Chen X S 2022 Appl. Phys. Lett. 120 063501Google Scholar

    [21]

    Shen Y, Tian H, Ren T L 2022 J. Semicond. 43 082002Google Scholar

    [22]

    Wang D, Yang L, Hu Z, Wang F, Yang Y G, Pan X K, Dong Z, Tian S J, Zhang L B, Han L, Jiang M J, Tang K Q, Dai F X, Zhang K, Lu W, Chen X S, Wang L, Hu W D 2025 Nat. Commun. 16 25Google Scholar

    [23]

    Han L, Zhang S, Tian S J, Zhang L B, Wei Y D, Zhang K X, Jiang M J, He Y, Liu C L, Tang W W, He J L, Shu H B, Politano A, Chen X S, Wang L 2025 ACS Nano 19 3740Google Scholar

    [24]

    Xiao K N, Zhang S, Zhang K X, Zhang L B, Wen Y F, Tian S J, Xiao Y L, Shi C F, Hou S C, Liu C L, Han L, He J L, Tang W W, Li G H, Wang L, Chen X S 2024 Adv. Sci. 11 2401716Google Scholar

  • [1] LU Wenqiang, YI Yingting, SONG Qianju, ZHOU Zigang, YI Yougen, ZENG Qingdong, YI Zao. Simulation of terahertz tunable seven-band perfect absorber based on high frequency detection function of Dirac semi-metallic nanowires. Acta Physica Sinica, 2025, 74(3): 034101. doi: 10.7498/aps.74.20241516
    [2] Zuo Hui-Ling, Shen Quan, Li Jing, Liu Jing, Dong Jian-Sheng. Energy funneling effect and its carrier transfer behavior in MoS2: Layer number gradient effect. Acta Physica Sinica, 2025, 74(18): . doi: 10.7498/aps.74.20250661
    [3] Duan Cong, Liu Jun-Jie, Chen Yong-Jie, Zuo Hui-Ling, Dong Jian-Sheng, Ouyang Gang. Adhesion properties of MoS2/SiO2 interface: Size and temperature effects. Acta Physica Sinica, 2024, 73(5): 056801. doi: 10.7498/aps.73.20231648
    [4] Wu Peng, Tan Lun, Li Wei, Cao Li-Wei, Zhao Jun-Bo, Qu Yao, Li Ang. Preparation and photoelectric property of large scale monolayer MoS2. Acta Physica Sinica, 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [5] Wang Jing-Li, Yang Zhi-Xiong, Dong Xian-Chao, Yin Liang, Wan Hong-Dan, Chen He-Ming, Zhong Kai. VO2 based terahertz anisotropic coding metasurface. Acta Physica Sinica, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [6] Wang Wan-Yu, Shi Kai-Xi, Li Jin-Hua, Chu Xue-Ying, Fang Xuan, Kuang Shang-Qi, Xu Guo-Hua. Effect of MoO3-overlayer on MoS2-based photovoltaic photodetector performance. Acta Physica Sinica, 2023, 72(14): 147301. doi: 10.7498/aps.72.20230464
    [7] Wang Yue, Ma Jie. Non-adiabatic dynamic study of S vacancy formation in MoS2. Acta Physica Sinica, 2023, 72(22): 226101. doi: 10.7498/aps.72.20230787
    [8] Yang Ze-Hao, Liu Zi-Wei, Yang Bo, Zhang Cheng-Long, Cai Chen, Qi Zhi-Mei. Performance simulation of terahertz waveguide resonance biochemical sensor based on nanoporous gold films. Acta Physica Sinica, 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [9] Liu Zi-Yu, Qi Li-Mei, Dao Ri-Na, Dai Lin-Lin, Wu Li-Qin. Beam steerable terahertz antenna based on VO2. Acta Physica Sinica, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [10] Kong Yu-Han, Wang Rong, Xu Ming-Sheng. Photoluminescence properties of CuPc/MoS2 van der Waals heterostructure. Acta Physica Sinica, 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [11] Deng Wen, Wang Li-Sheng, Liu Jia-Ning, Yu Xue-Ling, Chen Feng-Xiang. Resistive switching behavior and mechanism of multilayer MoS2 memtransistor under control of back gate bias and light illumination. Acta Physica Sinica, 2021, 70(21): 217302. doi: 10.7498/aps.70.20210750
    [12] Zhang Peng, Liu Zheng, Dai Jian-Ming, Yang Zhao-Rong, Su Fu-Hai. Anisotropic resonance absorptions induced by high magnetic field in ZnCr2Se4. Acta Physica Sinica, 2020, 69(20): 207501. doi: 10.7498/aps.69.20201507
    [13] Zhang Xu-Tao, Que Xiao-Feng, Cai He, Sun Jin-Hai, Zhang Jing, Li Liang-Sheng, Liu Yong-Qiang. Simulations and time-domain spectroscopy measurements for terahertz radar-cross section. Acta Physica Sinica, 2019, 68(16): 168701. doi: 10.7498/aps.68.20190552
    [14] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [15] Li Na, Bai Ya, Liu Peng. Frequency control of the broadband ultrashort terahertz source generated from the laser induced plasma by two-color pluses. Acta Physica Sinica, 2016, 65(11): 110701. doi: 10.7498/aps.65.110701
    [16] Li Dan, Liu Yong, Wang Huai-Xing, Xiao Long-Sheng, Ling Fu-Ri, Yao Jian-Quan. Gain characteristics of grapheme plasmain terahertz range. Acta Physica Sinica, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [17] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [18] Hu Hai-Feng, Cai Li-Kang, Bai Wen-Li, Zhang Jing, Wang Li-Na, Song Guo-Feng. Simulation research on the control of terahertz beam direction by surface plasmon. Acta Physica Sinica, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [19] Wang Yue, He Xun-Jun, Wu Yu-Ming, Wu Qun, Mei Jin-Shuo, Li Long-Wei, Yang Fu-Xing, Zhao Tuo, Li Le-Wei. Properties of terahertz surface plasmon ploaritons on carbon nanotube film with periodic grating. Acta Physica Sinica, 2011, 60(10): 107301. doi: 10.7498/aps.60.107301
    [20] Li Hua, Han Ying-Jun, Tan Zhi-Yong, Zhang Rong, Cao Jun-Cheng. Device fabrication of semi-insulating surface-plasmon terahertz quantum-cascade lasers. Acta Physica Sinica, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
Metrics
  • Abstract views:  555
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  21 April 2025
  • Accepted Date:  03 June 2025
  • Available Online:  06 June 2025
  • Published Online:  05 August 2025
  • /

    返回文章
    返回