Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Adhesion properties of MoS2/SiO2 interface: Size and temperature effects

Duan Cong Liu Jun-Jie Chen Yong-Jie Zuo Hui-Ling Dong Jian-Sheng Ouyang Gang

Citation:

Adhesion properties of MoS2/SiO2 interface: Size and temperature effects

Duan Cong, Liu Jun-Jie, Chen Yong-Jie, Zuo Hui-Ling, Dong Jian-Sheng, Ouyang Gang
PDF
HTML
Get Citation
  • The interface adhesion properties are crucial for designing and fabricating two-dimensional materials and related nanoelectronic and nanomechanical devices. Although some progress of the interface adhesion properties of two-dimensional materials has been made, the underlying mechanism behind the size and temperature dependence of interface adhesion energy and related physical properties from the perspective of atomistic origin remain unclear. In this work, we investigate the effects of size and temperature on the thermal expansion coefficient and Young’s modulus of MoS2 as well as interface adhesion energy of MoS2/SiO2 based on the atomic-bond-relaxation approach and continuum medium mechanics. It is found that the thermal expansion coefficient of monolayer MoS2 is significantly larger than that of its few-layer and bulk counterparts under the condition of ambient temperature due to size effect and its influence on Debye temperature, whereas the thermal expansion coefficient increases with temperature going up and almost tends to a constant as the temperature approaches the Debye temperature. Moreover, the variations of bond identity induced by size effect and temperature effect will change the mechanical properties of MoS2. When the temperature is fixed, the Young’s modulus of MoS2 increases with size decreasing. However, the thermal strain induces the volume expansion, resulting in the Young’s modulus of MoS2 decreasing. Furthermore, the size and temperature dependence of lattice strain, mismatch strain of interface, and Young’s modulus will lead the van der Waals interaction energy and elastic strain energy to change, resulting in the change of interface adhesion energy of MoS2/SiO2. Noticeably, the interface adhesion energy of MoS2/SiO2 gradually increases with MoS2 size decreasing, while the thermal strain induced by temperature causes interface adhesion energy of MoS2/SiO2 to decrease with temperature increasing. In addition, we predict the conditions of the interface separation of MoS2/SiO2 under different sizes and temperatures. Our results demonstrate that increasing both size and temperature can significantly reduce the interface adhesion energy, which is of great benefit in detaching MoS2 film from the substrate. Therefore, the proposed theory not only clarifies the physical mechanism regarding the interface adhesion properties of transition metal dichalcogenides (TMDs) membranes, but also provides an effective way to design TMDs-based nanodevices for desirable applications.
      Corresponding author: Dong Jian-Sheng, jsdong@jsu.edu.cn ; Ouyang Gang, gangouy@hunnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12364007), the Scientific Research Fund of Education Department of Hunan Province, China (Grant No. 21B0502), the National Students’ Platform for Innovation and Entrepreneurship Training Program (Grant No. 202210531007), and the Students’ Platform for Innovation and Entrepreneurship Training Program of Hunan Province, China (Grant No. S202310531036).
    [1]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [2]

    李耀华, 董耀勇, 董辉, 郑学军 2022 物理学报 71 194601Google Scholar

    Li Y H, Dong Y Y, Dong H, Zheng X J 2022 Acta Phys. Sin. 71 194601Google Scholar

    [3]

    Li N, Wang Q Q, Shen C, Zheng W, Yu H, Zhao J, Lu X B, Wang G L, He C L, Xie L, Zhu J Q, Du L J, Yang R, Shi D X, Zhang G Y 2020 Nat. Electron. 3 711Google Scholar

    [4]

    Duan X D, Wang C, Pan A L, Yu R Q, Duan X F 2015 Chem. Soc. Rev. 44 8859Google Scholar

    [5]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar

    [6]

    廖俊懿, 吴娟霞, 党春鹤, 谢黎明 2021 物理学报 70 028201Google Scholar

    Liao J Y, Wu J X, Dang C H, Xie L M 2021 Acta Phys. Sin. 70 028201Google Scholar

    [7]

    Tao Q Y, Wu R X, Li Q Y, Kong L G, Chen Y, Jiang J Y, Lu Z Y, Li B L, Li W Y, Li Z W, Liu L T, Duan X D, Liao L, Liu Y 2021 Nat. Commun. 12 1825Google Scholar

    [8]

    Song S, Sim Y, Kim S Y, Kim J H, Oh I, Na W, Lee D H, Wang J, Yan S L, Liu Y N, Kwak J, Chen J H, Cheong H, Yoo J W, Lee Z, Kwon S Y 2020 Nat. Electron. 3 207Google Scholar

    [9]

    Li T T, Guo W, Ma L, Li W S, Yu Z H, Han Z, Gao S, Liu L, Fan D X, Wang Z X, Yang Y, Lin W Y, Luo Z Z, Chen X Q, Dai N X, Tu X C, Pan D F, Yao Y G, Wang P, Nie Y F, Wang J L, Shi Y, Wang X R 2021 Nat. Nanotechnol. 16 1201Google Scholar

    [10]

    Chang H Y, Yang S X, Lee J H, Tao L, Hwang W S, Jena D, Lu N S, Akinwande D 2013 ACS Nano 7 5446Google Scholar

    [11]

    Deng S K, Gao E L, Xu Z P, Berry V 2017 ACS Appl. Mater. Interfaces 9 7812Google Scholar

    [12]

    Lloyd D, Liu X H, Boddeti N, Cantley L, Long R, Dunn M L, J. Bunch S 2017 Nano Lett. 17 5329Google Scholar

    [13]

    Torres J, Zhu Y S, Liu P, Lim S C, Yun M H 2018 Phys. Status Solidi A 215 1700512Google Scholar

    [14]

    Megra Y T, Suk J W 2019 J. Phys. D: Appl. Phys. 52 364002

    [15]

    Calis M, Lloyd D, Boddeti N, Bunch J S 2023 Nano Lett. 23 2607Google Scholar

    [16]

    Ke J, Ying P H, Du Y, Zou B, Sun H R, Zhang J 2022 Phys. Chem. Chem. Phys. 24 15991Google Scholar

    [17]

    Brennan C J, Nguyen J, Yu E T, Lu N S 2015 Adv. Mater. Interfaces 2 1500176Google Scholar

    [18]

    Li Y, Chen P J, Liu H, Peng J, Luo N 2021 J. Appl. Phys. 129 014302Google Scholar

    [19]

    Li B W, Yin J, Liu X F, Wu H R, Li J D, Li X M, Guo W L 2019 Nat. Nanotechnol. 14 567Google Scholar

    [20]

    Koenig S P, Boddeti N G, Dunn M L, Bunch J S 2011 Nat. Nanotechnol. 6 543Google Scholar

    [21]

    Rokni H. Lu W 2020 Nat. Commun. 11 5607Google Scholar

    [22]

    Polfus J M, Muñiz M B, Ali A, Barragan-Yani D A, Vullum P E, Sunding M F, Taniguchi T, Watanabe K, Belle B D 2021 Adv. Mater. Interfaces 8 2100838Google Scholar

    [23]

    Hu X, Yasaei P, Jokisaari J, Öğüt S, Khojin A S, Klie R F 2018 Phys. Rev. Lett. 120 055902Google Scholar

    [24]

    Sun C Q 2007 Prog. Solid State Chem. 35 1Google Scholar

    [25]

    Ouyang G, Wang C X, Yang G W 2009 Chem. Rev. 109 4221Google Scholar

    [26]

    Dong J S, Zhao Y P, Ouyang G, Yang G W 2022 Appl. Phys. Lett. 120 080501Google Scholar

    [27]

    He Y, Chen W F, Yu W B, Ouyang G, Yang G W 2013 Sci. Rep. 3 2660Google Scholar

    [28]

    Freund L B, Nix W D 1996 Appl. Phys. Lett. 69 173Google Scholar

    [29]

    Zhu Z M, Zhang A, He Y, Ouyang G, Yang G W 2012 AIP Adv. 2 042185Google Scholar

    [30]

    Gu M X, Zhou Y C, Sun C Q 2008 J. Phys. Chem. B 112 7992

    [31]

    Liang T, Phillpot S R, Sinnott S B 2009 Phys. Rev. B 79 245110Google Scholar

    [32]

    Aitken Z H, Huang R 2010 J. Appl. Phys. 107 123531Google Scholar

    [33]

    Zhang L, Ouyang G 2018 J. Phys. D: Appl. Phys. 52 025302

    [34]

    Li T S 2012 Phys. Rev. B 85 235407Google Scholar

    [35]

    Feldman J L 1976 J. Phys. Chem. Solids 37 1141Google Scholar

    [36]

    Dmitriev V, Torgashev V, Toledano P, Salje E K H 1997 Europhys. Lett. 37 553Google Scholar

    [37]

    Su X Y, Cui H L, Ju W W, Yong Y L, Li X H 2017 Mod. Phys. Lett. B 31 1750229

    [38]

    El-Mahalawy S H, Evans B L 1976 J. Appl. Crystallogr. 9 403Google Scholar

    [39]

    Sevik C 2014 Phys. Rev. B 89 035422Google Scholar

    [40]

    Hu Y W, Zhang F, Titze M, Deng B W, Li H B, Cheng G J 2018 Nanoscale 10 5717Google Scholar

    [41]

    Zhang L N, Lu Z M, Song Y, Zhao L, Bhatia B, Bagnall K R, Wang E N 2019 Nano Lett. 19 4745Google Scholar

  • 图 1  (a) 附着于SiO2衬底上的MoS2薄膜晶格结构示意图; (b) MoS2热膨胀系数随尺寸和温度的变化规律; MoS2/SiO2 (c) 界面应变和 (d) 总应变与尺寸和温度间的关系

    Figure 1.  (a) Schematic illustration of a multilayer MoS2 on the SiO2 substrate; (b) thermal expansion coefficient of MoS2 as a function of size and temperature; dependence of (c) in-plane strain of MoS2/SiO2 as well as (d) the total strains in MoS2 membranes on size and temperature.

    图 2  MoS2薄膜的杨氏模量随尺寸和温度的变化规律

    Figure 2.  The Young’s modulus of MoS2 as a function of thickness and temperature.

    图 3  MoS2/SiO2 (a) vdW相互作用能和(b)应变能随温度和尺寸的变化规律

    Figure 3.  (a) The interface vdW interaction of MoS2/SiO2 and (b) elastic strain energy of MoS2 as a function of thickness and temperature.

    图 4  (a)—(f) MoS2/SiO2在不同尺寸和温度下总自由能与相对层间距的关系

    Figure 4.  (a)–(f) Relationship between the total free energy and distance of MoS2/SiO2 under various sizes and temperature.

    图 5  MoS2/SiO2界面粘附能随尺寸和温度的变化规律

    Figure 5.  Size- and temperature-dependent interface adhesion energy in MoS2/SiO2 system.

  • [1]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [2]

    李耀华, 董耀勇, 董辉, 郑学军 2022 物理学报 71 194601Google Scholar

    Li Y H, Dong Y Y, Dong H, Zheng X J 2022 Acta Phys. Sin. 71 194601Google Scholar

    [3]

    Li N, Wang Q Q, Shen C, Zheng W, Yu H, Zhao J, Lu X B, Wang G L, He C L, Xie L, Zhu J Q, Du L J, Yang R, Shi D X, Zhang G Y 2020 Nat. Electron. 3 711Google Scholar

    [4]

    Duan X D, Wang C, Pan A L, Yu R Q, Duan X F 2015 Chem. Soc. Rev. 44 8859Google Scholar

    [5]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar

    [6]

    廖俊懿, 吴娟霞, 党春鹤, 谢黎明 2021 物理学报 70 028201Google Scholar

    Liao J Y, Wu J X, Dang C H, Xie L M 2021 Acta Phys. Sin. 70 028201Google Scholar

    [7]

    Tao Q Y, Wu R X, Li Q Y, Kong L G, Chen Y, Jiang J Y, Lu Z Y, Li B L, Li W Y, Li Z W, Liu L T, Duan X D, Liao L, Liu Y 2021 Nat. Commun. 12 1825Google Scholar

    [8]

    Song S, Sim Y, Kim S Y, Kim J H, Oh I, Na W, Lee D H, Wang J, Yan S L, Liu Y N, Kwak J, Chen J H, Cheong H, Yoo J W, Lee Z, Kwon S Y 2020 Nat. Electron. 3 207Google Scholar

    [9]

    Li T T, Guo W, Ma L, Li W S, Yu Z H, Han Z, Gao S, Liu L, Fan D X, Wang Z X, Yang Y, Lin W Y, Luo Z Z, Chen X Q, Dai N X, Tu X C, Pan D F, Yao Y G, Wang P, Nie Y F, Wang J L, Shi Y, Wang X R 2021 Nat. Nanotechnol. 16 1201Google Scholar

    [10]

    Chang H Y, Yang S X, Lee J H, Tao L, Hwang W S, Jena D, Lu N S, Akinwande D 2013 ACS Nano 7 5446Google Scholar

    [11]

    Deng S K, Gao E L, Xu Z P, Berry V 2017 ACS Appl. Mater. Interfaces 9 7812Google Scholar

    [12]

    Lloyd D, Liu X H, Boddeti N, Cantley L, Long R, Dunn M L, J. Bunch S 2017 Nano Lett. 17 5329Google Scholar

    [13]

    Torres J, Zhu Y S, Liu P, Lim S C, Yun M H 2018 Phys. Status Solidi A 215 1700512Google Scholar

    [14]

    Megra Y T, Suk J W 2019 J. Phys. D: Appl. Phys. 52 364002

    [15]

    Calis M, Lloyd D, Boddeti N, Bunch J S 2023 Nano Lett. 23 2607Google Scholar

    [16]

    Ke J, Ying P H, Du Y, Zou B, Sun H R, Zhang J 2022 Phys. Chem. Chem. Phys. 24 15991Google Scholar

    [17]

    Brennan C J, Nguyen J, Yu E T, Lu N S 2015 Adv. Mater. Interfaces 2 1500176Google Scholar

    [18]

    Li Y, Chen P J, Liu H, Peng J, Luo N 2021 J. Appl. Phys. 129 014302Google Scholar

    [19]

    Li B W, Yin J, Liu X F, Wu H R, Li J D, Li X M, Guo W L 2019 Nat. Nanotechnol. 14 567Google Scholar

    [20]

    Koenig S P, Boddeti N G, Dunn M L, Bunch J S 2011 Nat. Nanotechnol. 6 543Google Scholar

    [21]

    Rokni H. Lu W 2020 Nat. Commun. 11 5607Google Scholar

    [22]

    Polfus J M, Muñiz M B, Ali A, Barragan-Yani D A, Vullum P E, Sunding M F, Taniguchi T, Watanabe K, Belle B D 2021 Adv. Mater. Interfaces 8 2100838Google Scholar

    [23]

    Hu X, Yasaei P, Jokisaari J, Öğüt S, Khojin A S, Klie R F 2018 Phys. Rev. Lett. 120 055902Google Scholar

    [24]

    Sun C Q 2007 Prog. Solid State Chem. 35 1Google Scholar

    [25]

    Ouyang G, Wang C X, Yang G W 2009 Chem. Rev. 109 4221Google Scholar

    [26]

    Dong J S, Zhao Y P, Ouyang G, Yang G W 2022 Appl. Phys. Lett. 120 080501Google Scholar

    [27]

    He Y, Chen W F, Yu W B, Ouyang G, Yang G W 2013 Sci. Rep. 3 2660Google Scholar

    [28]

    Freund L B, Nix W D 1996 Appl. Phys. Lett. 69 173Google Scholar

    [29]

    Zhu Z M, Zhang A, He Y, Ouyang G, Yang G W 2012 AIP Adv. 2 042185Google Scholar

    [30]

    Gu M X, Zhou Y C, Sun C Q 2008 J. Phys. Chem. B 112 7992

    [31]

    Liang T, Phillpot S R, Sinnott S B 2009 Phys. Rev. B 79 245110Google Scholar

    [32]

    Aitken Z H, Huang R 2010 J. Appl. Phys. 107 123531Google Scholar

    [33]

    Zhang L, Ouyang G 2018 J. Phys. D: Appl. Phys. 52 025302

    [34]

    Li T S 2012 Phys. Rev. B 85 235407Google Scholar

    [35]

    Feldman J L 1976 J. Phys. Chem. Solids 37 1141Google Scholar

    [36]

    Dmitriev V, Torgashev V, Toledano P, Salje E K H 1997 Europhys. Lett. 37 553Google Scholar

    [37]

    Su X Y, Cui H L, Ju W W, Yong Y L, Li X H 2017 Mod. Phys. Lett. B 31 1750229

    [38]

    El-Mahalawy S H, Evans B L 1976 J. Appl. Crystallogr. 9 403Google Scholar

    [39]

    Sevik C 2014 Phys. Rev. B 89 035422Google Scholar

    [40]

    Hu Y W, Zhang F, Titze M, Deng B W, Li H B, Cheng G J 2018 Nanoscale 10 5717Google Scholar

    [41]

    Zhang L N, Lu Z M, Song Y, Zhao L, Bhatia B, Bagnall K R, Wang E N 2019 Nano Lett. 19 4745Google Scholar

  • [1] Liu JunJie, Zuo HuiLing, Tan Xin, Dong JianSheng. Anisotropic energy funneling effect in wrinkled monolayer GeSe. Acta Physica Sinica, 2024, 73(23): . doi: 10.7498/aps.20241155
    [2] Liu Jun-Jie, Zuo Hui-Ling, Tan Xin, Dong Jian-Sheng. Anisotropic energy funneling effect in wrinkled monolayer GeSe. Acta Physica Sinica, 2024, 73(23): 236801. doi: 10.7498/aps.73.20241155
    [3] Wu Peng, Tan Lun, Li Wei, Cao Li-Wei, Zhao Jun-Bo, Qu Yao, Li Ang. Preparation and photoelectric property of large scale monolayer MoS2. Acta Physica Sinica, 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [4] Wang Wan-Yu, Shi Kai-Xi, Li Jin-Hua, Chu Xue-Ying, Fang Xuan, Kuang Shang-Qi, Xu Guo-Hua. Effect of MoO3-overlayer on MoS2-based photovoltaic photodetector performance. Acta Physica Sinica, 2023, 72(14): 147301. doi: 10.7498/aps.72.20230464
    [5] Wang Yue, Ma Jie. Non-adiabatic dynamic study of S vacancy formation in MoS2. Acta Physica Sinica, 2023, 72(22): 226101. doi: 10.7498/aps.72.20230787
    [6] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [7] Fei Xiang, Zhang Xiu-Mei, Fu Quan-Gui, Cai Zheng-Yang, Nan Hai-Yan, Gu Xiao-Feng, Xiao Shao-Qing. Milimeter-level MoS2 monolayers and WS2-MoS2 heterojunctions grown on molten glass by pre-chemical vapor deposition. Acta Physica Sinica, 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [8] Wang Fen-Tao, Fan Teng, Zhang Shi-Xiong, Sun Zhen-Hao, Fu Lei, Jia Wei, Shen Bo, Tang Ning. Growth of monolayer MoS2 films dual-assisted by NaCl. Acta Physica Sinica, 2022, 71(12): 128104. doi: 10.7498/aps.71.20220273
    [9] Kong Yu-Han, Wang Rong, Xu Ming-Sheng. Photoluminescence properties of CuPc/MoS2 van der Waals heterostructure. Acta Physica Sinica, 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [10] Yao Hui-Dong, Cui Bo, Ma Si-Qi, Yu Chao, Lu Rui-Feng. Enhancing high harmonic generation in bilayer MoS2 by interlayer atomic dislocation. Acta Physica Sinica, 2021, 70(13): 134207. doi: 10.7498/aps.70.20210731
    [11] Growth of large-size MoS2 monolayers and WS2-MoS2 heterojunctions by pre-deposite CVD method based on molten glass. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211735
    [12] Deng Wen, Wang Li-Sheng, Liu Jia-Ning, Yu Xue-Ling, Chen Feng-Xiang. Resistive switching behavior and mechanism of multilayer MoS2 memtransistor under control of back gate bias and light illumination. Acta Physica Sinica, 2021, 70(21): 217302. doi: 10.7498/aps.70.20210750
    [13] Chen Lu, Li Ye-Fei, Zheng Qiao-Ling, Liu Qing-Kun, Gao Yi-Min, Li Bo, Zhou Chang-Meng. Theoretical study of atomic relaxation, surface energy, electronic structure and properties of B2- and B19'-NiTi surfaces. Acta Physica Sinica, 2019, 68(5): 053101. doi: 10.7498/aps.68.20181944
    [14] Meng Fan, Hu Jin-Hua, Wang Hui, Zou Ge-Yin, Cui Jian-Gong, Zhao Yue. Fluorescence enhancement of monolayer MoS2 in plasmonic resonator. Acta Physica Sinica, 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [15] Du Jian-Bin, Feng Zhi-Fang, Zhang Qian, Han Li-Jun, Tang Yan-Lin, Li Qi-Feng. Molecular structure and electronic spectrum of MoS2under external electric field. Acta Physica Sinica, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [16] Wang Guan-Shi,  Lin Yan-Ming,  Zhao Ya-Li,  Jiang Zhen-Yi,  Zhang Xiao-Dong. Electronic and optical performances of (Cu, N) codoped TiO2/MoS2 heterostructure photocatalyst: Hybrid DFT (HSE06) study. Acta Physica Sinica, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [17] Tao Ze-Hua, Dong Hai-Ming. Electron screening lengths and plasma spectrum in single layer MoS2. Acta Physica Sinica, 2017, 66(24): 247701. doi: 10.7498/aps.66.247701
    [18] Wang Yuan-Qian, He Jun, Xiao Si, Yang Neng-An, Chen Huo-Zhang. Wavelength selective optical limiting effect on MoS2 solution. Acta Physica Sinica, 2014, 63(14): 144204. doi: 10.7498/aps.63.144204
    [19] Liu Jun, Liang Pei, Shu Hai-Bo, Shen Tao, Xing Song, Wu Qiong. First principles study on molecule doping in MoS2 monolayer. Acta Physica Sinica, 2014, 63(11): 117101. doi: 10.7498/aps.63.117101
    [20] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
Metrics
  • Abstract views:  2614
  • PDF Downloads:  140
  • Cited By: 0
Publishing process
  • Received Date:  14 October 2023
  • Accepted Date:  25 November 2023
  • Available Online:  13 December 2023
  • Published Online:  05 March 2024

/

返回文章
返回