Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Piezoelectric sensing properties of PAN/MoS2 flexible composite nanofiber film

ZHANG Hengbo LI Yinhui LI Weidong GAO Fei YIN Rongyan LIANG Jianguo ZHAO Peng ZHOU Yunlei LI Pengwei BIAN Guibin

Citation:

Piezoelectric sensing properties of PAN/MoS2 flexible composite nanofiber film

ZHANG Hengbo, LI Yinhui, LI Weidong, GAO Fei, YIN Rongyan, LIANG Jianguo, ZHAO Peng, ZHOU Yunlei, LI Pengwei, BIAN Guibin
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Flexible piezoelectric materials can convert mechanical energy into electrical energy to power micro/nano electronic devices. In recent years, research into piezoelectric technologies has revealed that molybdenum disulfide (MoS2) can improve the piezoelectric properties of composite materials. In this research the fabrication of a PAN/MoS2 flexible composite nanofiber film piezoelectric sensor via electrospinning is presented. The influence of MoS2 nanosheet content on the piezoelectric performance of the PAN/MoS2 composite nanofiber films is systematically investigated, and the morphology and structure of the composite nanofiber films are characterized. The results show that MoS2 is uniformly distributed in the composite nanofiber films, and the zigzag conformation of the PAN molecular is enhanced by adding MoS2. As the MoS2 doping content increases, the performance of the PAN/MoS2 composite nanofiber film sensor shows a first-increasing-and-then-decreasing trend, and ultimately reaching a maximum value when the MoS2 weight content is 3.0%. When the MoS2 doping content increases from 0% to 3.0%, the open-circuit output voltage of the PAN/MoS2 composite nanofiber film sensor increases from 1.92 V to 4.64 V, and the short-circuit output current increases from 1.03 μA to 2.69 μA. At 3.0% MoS2 doping, the maximum output power of the PAN/MoS2 composite nanofiber film sensor reaches 3.46 μW, with an internal resistance of approximately 10 MΩ. The output voltage of the composite nanofiber film sensor increases with the applied external force increasing. At a frequency of 10 Hz, when external forces of 2 N, 3 N, 4 N, 5 N, and 6 N are applied, the sensor output voltages are 2 V, 3.4 V, 5.9 V, 8.7 V, and 10.3 V, respectively. Compared with pure PAN film, the PAN/MoS2 composite nanofiber film has a piezoelectric constant d33 increases by 4.86 times. The PAN/MoS2 composite nanofiber film sensor can efficiently charge commercial capacitors, and the discharging of capacitors can successfully power a green LED. Additionally, it can monitor in real-time, under passive conditions, the bending state of the knee and the forward movement of the bicycle wheel during cycling. After 10000 impact cycles, the PAN/MoS2 composite nanofiber film sensor shows stable voltage output with no obvious fluctuations, demonstrating excellent stability. All in all, the PAN/MoS2 flexible composite nanofiber film sensor exhibits outstanding flexibility, low cost, and self-powered capabilities, showing promising potential for applications in wearable/portable electronics, smart devices, and intelligent robotics.
  • 图 1  (a) MoS2的XRD图谱; (b) MoS2质量含量为0%—5.0%的PAN/MoS2复合纳米纤维膜的XRD图谱与(c) FTIR图

    Figure 1.  (a) The XRD pattern of MoS2; (b) the XRD patterns of PAN/MoS2 composite nanofiber films with MoS2 weight contents ranging from 0% to 5.0%, as well as (c) the corresponding FTIR spectra.

    图 2  (a) 块状MoS2的SEM图; (b) 图(a)红色框所示区域的放大图; (c) 分散后MoS2的SEM图; (d) 图(c)红色框所示区域的放大图; (e) 分散后MoS2的TEM图; (f) 图(e)红色框所示区域的HR-TEM图

    Figure 2.  (a) SEM image of bulk MoS2; (b) magnified view of the region indicated by the red square in panel (a); (c) SEM image of dispersed MoS2; (d) magnified view of the region indicated by the red square in panel (c); (e) TEM image of dispersed MoS2; (f) HR-TEM image of the region indicated by the red square in panel (e).

    图 3  不同MoS2含量的PAN/MoS2复合纳米纤维膜的SEM图像 (a) 纯PAN; (b) PAN/MoS2-1; (c) PAN/MoS2-2; (d) PAN/MoS2-3; (e) PAN/MoS2-4; (f) PAN/MoS2-5

    Figure 3.  SEM images of PAN/MoS2 composite nanofiber films with different contents of MoS2: (a) Pure PAN; (b) PAN/MoS2-1; (c) PAN/MoS2-2; (d) PAN/MoS2-3; (e) PAN/MoS2-4; (f) PAN/MoS2-5.

    图 4  PAN/MoS2复合纳米纤维膜的EDS扫描图

    Figure 4.  EDS scan of PAN/MoS2 composite nanofiber film.

    图 5  PAN/MoS2复合纳米纤维膜的EDS分析图

    Figure 5.  EDS analysis of PAN/MoS2 composite nanofiber film

    图 6  (a) 纯PAN的TEM图; (b), (c) PAN/MoS2复合纳米纤维的TEM图; (d) 图a红色框所示区域的HR-TEM图; (e) 图b红色框所示区域的HR-TEM图; (f) 图c红色框所示区域的HR-TEM图;

    Figure 6.  (a) TEM image of pure PAN; (b), (c) TEM images of PAN/MoS2 composite nanofibers; (d) HR-TEM image of the region indicated by the red square in panel (a); (e) HR-TEM image of the region indicated by the red square in panel (b); (f) HR-TEM image of the region indicated by the red square in panel (c).

    图 7  不同MoS2质量含量(1.0%, 2.0%, 3.0%, 4.0%, 5.0%)的PAN/MoS2复合纳米纤维膜和纯PAN纳米纤维膜的输出性能 (a) 开路电压; (c) 短路电流; (b), (d) 电压和电流最大值图

    Figure 7.  Output performance of the PAN/MoS2 composite nanofiber film with different weight content of MoS2 1.0%, 2.0%, 3.0%, 4.0%, 5.0% and pure PAN nanofiber film: (a) Open-circuit voltage; (c) short-circuit current; (b), (d) diagram of the maximum value of voltage and current.

    图 8  (a) 不同外部负载电阻的PAN/MoS2-3的开路电压和瞬时功率; (b) 正向和反向连接中PAN/MoS2-3的开路电压; (c) 不同机械力作用下PAN/MoS2-3的输出电压; (d) PAN/MoS2-3的输出电压值和施加的机械力拟合曲线图

    Figure 8.  (a) Open-circuit voltage and instantaneous power of PAN/MoS2-3 with different external load resistors; (b) open-circuit voltage of PAN/MoS2-3 in forward and reverse connections; (c) output voltage of PAN/MoS2-3 under different applied mechanical forces; (d) plot of output voltage values of PAN/MoS2-3 and applied mechanical forces fitting curve.

    图 9  PAN/MoS2复合纳米纤维膜的铁电性能 (a) 介电常数随频率的变化; (b) 极化-电场磁滞回线(P-E); (c) 室温下介电常数(103 Hz下的εr)和剩余极化强度随MoS2含量增加的变化; (d) 压电系数(d33)

    Figure 9.  Ferroelectric properties of the PAN/MoS2 composite nanofiber films: (a) Variation of dielectric constant with frequency; (b) polarization–electric field hysteresis loops (P-E); (c) the variation of dielectric constant (εr at 103Hz) and remnant polarization with increasing MoS2 content at room temperature; (d) the piezoelectric coefficient (d33).

    图 10  (a) 由PAN/MoS2-3充电的电容器的充电曲线. 插图左图: 包含电容器的桥式整流器电路的示意图. 右图: 充电电容器点亮LED的光学照片; (b) PAN/MoS2-3作为自行车传感器的示意图; (c) 膝盖弯曲时PAN/MoS2-3输出电压随时间变化; (d) 车轮运动时不同负载下PAN/MoS2-3的电压输出图; (e) 车轮移动时不同速度下PAN/MoS2-3的电压输出图

    Figure 10.  (a) Charging curve of a capacitor charged by the PAN/MoS2-3. Inset left: schematic illustration of a bridge rectifier circuit containing the capacitor. Inset right: Optical photograph of a LED lighted by the charged capacitor; (b) schematic diagram of PAN/MoS2-3 as a sensor applied to bicycles; (c) PAN/MoS2-3 output voltage variation over time as the knee is flexed; (d) voltage output diagram of PAN/MoS2-3 under various loads during forward wheel movement; (e) voltage output diagram of PAN/MoS2-3 at different speeds during forward wheel movement.

    图 11  PAN/MoS2复合纳米纤维膜传感器工作原理示意图

    Figure 11.  Schematic diagram of the working principle of PAN/MoS2 composite nanofiber film sensor.

    图 12  PAN/MoS2-3在10000次施压-释放循环中的输出性能

    Figure 12.  Output performance of PAN/MoS2-3 for pressing-releasing 10000 cycles.

    表 1  不同MoS2质量含量PAN/MoS2复合纳米纤维膜传感器电学性能

    Table 1.  Electrical properties of PAN/MoS2 composite nanofiber film sensor with different MoS2 weight contents.

    MoS2 weight content/%Voltage/VCurrent/μAεr(at 103 Hz)Pr/(μC·cm–2)d33/(pC·N–1)
    01.921.031.190.561.25
    12.361.611.500.972.58
    23.562.422.051.204.36
    34.642.692.461.396.08
    44.022.342.321.365.59
    52.802.071.621.143.28
    DownLoad: CSV
  • [1]

    Rjafallah A, Hajjaji A, Guyomar D, Kandoussi K, Belhora F, Boughaleb Y 2018 J. Compos. Mater. 53 613

    [2]

    Chen C, Wen Z, Shi J, Jian X, Li P, Yeow J T W, Sun X 2020 Nat. Commun. 11 4143Google Scholar

    [3]

    Hajra S, Panda S, Khanberh H, Vivekananthan V, Chamanehpour E, Mishra Y K, Kim H J 2023 Nano Energy 115 10872

    [4]

    Xu Q, Wen J, Qin Y 2021 Nano Energy 86 106080Google Scholar

    [5]

    Korkmaz S, Kariper İ A 2021 Nano Energy 84 105888Google Scholar

    [6]

    Panda S, Hajra S, Kim H G, Achary P G R, Pakawanit P, Yang Y, Mishra Y K, Kim H J 2023 ACS Appl. Mater. Interfaces 15 36096Google Scholar

    [7]

    Satyaranjan B, Shahid-ul-Islam M, Mulvihill D M, Wazed A 2023 Nano Energy 111 108414Google Scholar

    [8]

    Zhang W, Wu G, Zeng H, Li Z, Wu W, Jiang H, Zhang W, Wu R, Huang Y, Lei Z 2023 Polymers 15 2766Google Scholar

    [9]

    Ma X, Zhukov S, von Seggern H, Sessler G M, Ben Dali O, Kupnik M, Dai Y, He P, Zhang X 2023 Adv. Electron. Mater. 9 2201070Google Scholar

    [10]

    Qi F, Xu L, He Y, Yan H, Liu H 2023 Cryst. Res. Technol. 58 2300119Google Scholar

    [11]

    Guo H, Li L, Wang F, Kim S, Sun H 2022 ACS Appl. Mater. Interfaces 14 34733Google Scholar

    [12]

    Bhadwal N, Ben Mrad R, Behdinan K 2023 Nanomaterials 13 3170Google Scholar

    [13]

    Tao J, Wang Y, Zheng X, Zhao C, Jin X, Wang W, Lin T 2023 Nano Energy 118 108987Google Scholar

    [14]

    Song K, Zhao R, Wang Z L, Yang Y 2019 Adv. Mater. 31 1902831Google Scholar

    [15]

    Kim M, Fan J 2021 Adv. Fiber Mater. 3 160Google Scholar

    [16]

    Bhatt A, Singh V, Bamola P, Aswal D, Rawat S, Rana S, Dwivedi C, Singh B, Sharma H 2023 J. Alloys Compd. 960 170664Google Scholar

    [17]

    Srivastava M, Banerjee S, Bairagi S, Singh P, Kumar B, Singh P, Kale R D, Mulvihill D M, Ali S W 2024 Chem. Eng. J. 480 147963

    [18]

    Zhang M, Howe R C T, Woodward R I, Kelleher E J R, Torrisi F, Hu G, Popov S V, Taylor J R, Hasan T 2015 Nano Res. 8 1522Google Scholar

    [19]

    Aji A S, Nishi R, Ago H, Ohno Y 2020 Nano Energy 68 105242

    [20]

    Evans J M, Lee K S, Yan E X, Thompson A C, Morla M B, Meier M C, Ifkovits Z P, Carim A I, Lewis N S 2022 ACS Mater. Lett. 4 1475Google Scholar

    [21]

    Maity K, Mahanty B, Sinha T K, Garain S, Biswas A, Ghosh S K, Manna S, Ray S K, Mandal D 2017 Energy Technol. 5 234Google Scholar

    [22]

    Han S A, Kim T H, Kim S K, Lee K H, Ho H J, Lee J H, Kim S W 2018 Adv. Mater. 30 1801134

    [23]

    Zhu H, Wang Y, Xiao J, Liu M, Xiong S, Wong Z J, Ye Z, Ye Y, Yin X, Zhang X 2015 Nat. Nanotechnol. 10 151Google Scholar

    [24]

    Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T F, Hone J, Wang Z L 2014 Nature 514 470Google Scholar

    [25]

    Jiang L, Xie H, Hou Y, Wang S, Xia Y, Li Y, Hu G H, Yang Q L, Xiong C, Gao Z D 2019 Ceram. Int. 45 11347Google Scholar

    [26]

    Chen S L, Li J L, Song Y H, Yang Q L, Shi Z Q, Xiong C X 2021 Cellulose 28 6513Google Scholar

    [27]

    Cao S, Zou H, Jiang B, Li M, Yuan Q 2022 Nano Energy 102 107635Google Scholar

    [28]

    Singh A K, Kumar P, Late D, Kumar A, Patel S, Singh J 2018 Appl. Mater. Today 13 242Google Scholar

    [29]

    Yin R Y, Li Y H, Li W D, Gao F, Chen X, Li T, Liang J, Zhang H, Gao H, Li P, Zhou Y 2024 Nano Energy 124 109488Google Scholar

    [30]

    Han Y, Huang D, Ma Y, He G, Hu J, Zhang J, Hu N, Su Y, Zhou Z, Zhang Y, Yang Z 2018 ACS Appl. Mater. Interfaces 10 22640Google Scholar

    [31]

    Zhang J, Han D, Wang Y, Wang L, Chen X, Qiao X, Yu X 2020 Microchim. Acta 187 321Google Scholar

    [32]

    Li X, Li Y, Li Y, Tan J, Zhang J, Zhang H, Liang J, Li T, Liu Y, Jiang H, Li P 2022 ACS Appl. Mater. Interfaces 14 46789Google Scholar

    [33]

    Wang W, Zheng Y, Jin X, Sun Y, Lu B, Wang H, Fang J, Shao H, Lin T 2019 Nano Energy 56 588Google Scholar

    [34]

    Ren X, Fan H, Zhao Y, Liu Z 2016 ACS Appl. Mater. Interfaces 8 26190Google Scholar

    [35]

    Li Y, Su X, Liang K, Luo C, Li P, Hu J, Li G, Jiang H, Wang K 2021 Microelectron. Eng. 244 111557

    [36]

    Ning M, Lu M, Li J, Chen Z, Dou Y, Wang C, F Rehman, Cao M, Jin H 2015 Nanoscale 7 15734Google Scholar

    [37]

    Zhang W, Zhang V, Wu H, Yan H, Qi S 2018 J. Alloys Compd. 751 34

    [38]

    Bowen C R, Kim H A, Weaver P M, Dunn S 2014 Energy Environ. Sci. 7 25Google Scholar

    [39]

    Luo C, Hu S, Xia M, Li P, Hu J, Li G, Jiang H, Zhang W 2018 Energy Technol. 6 922Google Scholar

  • [1] Li Yin-Hui, Yin Rong-Yan, Liang Jian-Guo, Li Wei-Dong, Fan Kai, Zhou Yun-Lei. A flexible piezoelectric/pyroelectric dual-function sensor with high temperature resistance. Acta Physica Sinica, doi: 10.7498/aps.73.20241006
    [2] Huang Xin-Yu, Han Xu, Chen Hui, Wu Xu, Liu Li-Wei, Ji Wei, Wang Ye-Liang, Huang Yuan. New progress and prospects of mechanical exfoliation technology of two-dimensional materials. Acta Physica Sinica, doi: 10.7498/aps.71.20220030
    [3] Wu Fan-Fan, Ji Yi-Ru, Yang Wei, Zhang Guang-Yu. Experimental research progress of electronic band structure and low temperature transport based on molybdenum disulfide. Acta Physica Sinica, doi: 10.7498/aps.71.20220015
    [4] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, doi: 10.7498/aps.71.20220738
    [5] Jiang Li-Ying, Yi Ying-Ting, Yi Zao, Yang Hua, Li Zhi-You, Su Ju, Zhou Zi-Gang, Chen Xi-Fang, Yi You-Gen. A four-band perfect absorber based on high quality factor and high figure of merit of monolayer molybdenum disulfide. Acta Physica Sinica, doi: 10.7498/aps.70.20202163
    [6] Liu Kai-Long, Peng Dong-Sheng. Effects of photoelectric properties of monolayer MoS2 under tensile strain. Acta Physica Sinica, doi: 10.7498/aps.70.20210816
    [7] Meng Fan, Hu Jin-Hua, Wang Hui, Zou Ge-Yin, Cui Jian-Gong, Zhao Yue. Fluorescence enhancement of monolayer MoS2 in plasmonic resonator. Acta Physica Sinica, doi: 10.7498/aps.68.20191121
    [8] Zhang Xin-Cheng, Liao Wen-Hu, Zuo Min. Electronic structure and spin/valley transport properties of monolayer MoS2 under the irradiation of the off-resonant circularly polarized light. Acta Physica Sinica, doi: 10.7498/aps.67.20180213
    [9] Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu. Thermal stability of MoS2 encapsulated by graphene. Acta Physica Sinica, doi: 10.7498/aps.67.20181255
    [10] Wei Yang, Ma Xin-Guo, Zhu Lin, He Hua, Huang Chu-Yun. Interfacial cohesive interaction and band modulation of two-dimensional MoS2/graphene heterostructure. Acta Physica Sinica, doi: 10.7498/aps.66.087101
    [11] Li Ming-Lin, Wan Ya-Ling, Hu Jian-Yue, Wang Wei-Dong. Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide. Acta Physica Sinica, doi: 10.7498/aps.65.176201
    [12] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. First-principles study on multiphase property and phase transition of monolayer MoS2. Acta Physica Sinica, doi: 10.7498/aps.65.127101
    [13] Tang Hai-Tong, Ao Yu-Hui, Wang Cong, Zhao Rui-Xue, Gao Zhong-Min, Meng Fan-Ling. Nanopore change law and mechanism of polyacrylonitrile based carbon fiber precursor in spinning process. Acta Physica Sinica, doi: 10.7498/aps.64.046101
    [14] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, doi: 10.7498/aps.64.187101
    [15] Fu Chong-Yuan, Xing Song, Shen Tao, Tai Bo, Dong Qian-Min, Shu Hai-Bo, Liang Pei. Synthesis and characterization of flower-like MoS2 microspheres by hydrothermal method. Acta Physica Sinica, doi: 10.7498/aps.64.016102
    [16] Wei Xiao-Xu, Cheng Ying, Huo Da, Zhang Yu-Han, Wang Jun-Zhuan, Hu Yong, Shi Yi. PL enhancement of MoS2 by Au nanoparticles. Acta Physica Sinica, doi: 10.7498/aps.63.217802
    [17] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, doi: 10.7498/aps.62.206101
    [18] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, doi: 10.7498/aps.61.227102
    [19] Sheng Yi, Tian Hong, Xu Yao, Lü Chun-Xiang, Wu Zhong-Hua, Zhang Cai-Hong. The evolution of crystalline structure in the preparationof PAN-based carbon fibers studiedby whole powder pattern fitting. Acta Physica Sinica, doi: 10.7498/aps.60.036101
    [20] Gao Peng-Ju, Zhang Wen-Gong, Chen Shu-Qing, Zhou Xiu-Hua, Xiao Li-Zu. Research on the YBCO/PAN hybridized film and its superconductivity. Acta Physica Sinica, doi: 10.7498/aps.59.583
Metrics
  • Abstract views:  414
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  02 December 2024
  • Accepted Date:  23 January 2025
  • Available Online:  09 February 2025

/

返回文章
返回