Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principles study of photoelectric properties of (S, Se) co-doped Si

CHEN Fusong DU Lingyan TAN Xingyi LI Qiang

Citation:

First principles study of photoelectric properties of (S, Se) co-doped Si

CHEN Fusong, DU Lingyan, TAN Xingyi, LI Qiang
cstr: 32037.14.aps.74.20241434
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In order to provide more accurate theoretical guidance for improving photoelectric properties of chalcogens doped silicon, the lattice structure, stability, band structure, density of state and optical properties of (S, Se) co-doped silicon are systematically investigated based on the first principles, and the related properties are compared with those of S-doped and Se-doped silicon. The calculated results show that the photoelectric characteristics of S-doped Si and Se-doped Si are extremely similar to each other, with a new impurity band appearing in their bandgap. This new impurity band primarily results from the contributions of the 3s state electrons of S and the 4s state electrons of Se, promoting the absorption of low-energy photons and increasing the optical absorptivity of doped Si in the near infrared region. Compared with monocrystalline silicon, the S-doped Si and Se-doped Si have the optical absorption spectra, each with a new peak at 0.6 eV, which is caused by the transition of electrons from the impurity band to the conduction band. The (S, Se) co-doped Si exhibits good stability at operating temperature, and two impurity bands appear between the valence band and conduction band, which are formed by electrons from the 3s state of S and the 4s state of Se, respectively. The optical absorptivity of (S, Se) co-doped Si is greatly improved in the low energy region compared with that of single doped Si, with a new absorption peak appearing at 0.65 eV, similar to the formation observed in singly doped Si. However, due to the indirect transition process between two impurity energy bands, the absorption peak of (S, Se) co-doped Si is larger in the low energy region. Compared with S-doped silicon and Se-doped silicon with the same concentration, the (S, Se) co-doped Si has optical absorptivity that is significantly improved in the range from 0.81 eV to 1.06 eV. This study provides theoretical guidance for applying the (S, Se) co-doped Si to the field of photoelectron such as infrared photodetectors and solar cells.
      Corresponding author: DU Lingyan, dulingyan@suse.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12304469).
    [1]

    周治平 2014 武汉光电论坛论文集 (武汉: 华中科技大学出版社) 第249页

    Zhou Z P 2014 Proceedings of Wuhan Opto-Electronic Forum (Wuhan: Huazhong University of Science & Technology Press) p249

    [2]

    Michael O, Mathias K, Steffen E, Maurice W, Zili Y, Daniel S, Köllner A C, Joachim N B, Jörg S 2021 IEEE Sens. J. 20 18696Google Scholar

    [3]

    Yang J J, Jurczak P, Cui F, Li K S, Tang M C, Billiald L, Beanland R 2019 J. Cryst. Growth 514 109Google Scholar

    [4]

    Her T H, Finlay R J, Mazur E, Wu C, Deliwala S 1998 Appl. Phys. Lett. 73 1673Google Scholar

    [5]

    Wu C, Crouch C H, Zhao L, Carey J E, Younkin R, Levinson J A, Mazur E, Farrell R M, Gothoskar P, Karger A 2001 Appl. Phys. Lett. 78 1850Google Scholar

    [6]

    Tansel T, Aydin O 2024 J. Phys. D 57 295103Google Scholar

    [7]

    Zhao X N, Lin K, Zhao B, Du W H, Nivas J J, Amoruso S, Wang X 2023 Appl. Surf. Sci. 619 156624Google Scholar

    [8]

    钟豪 2019 硕士学位论文 (成都: 电子科技大学)

    Zhong H 2019 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [9]

    Du L Y, Yin J, Zeng W, Pang S Z, Yi H 2023 Mater. Lett. 331 133463Google Scholar

    [10]

    高宇辰 2022 硕士学位论文 (吉林: 吉林大学)

    Gao Y C 2022 M. S. Thesis (Jilin: Jilin University

    [11]

    Yang Y, Yi Z R, Chao L, Zhao J H 2023 Opt. Quantum Electron. 55 259Google Scholar

    [12]

    任哲毅 2024 硕士学位论文 (吉林: 吉林大学)

    Ren Z Y 2024 M. S. Thesis (Jilin: Jilin University

    [13]

    Zhu J, Gandi N A, Schwingenschlögl U 2018 Adv. Theor. Simul. 1 1800017Google Scholar

    [14]

    Wang X Y, Wang T, Ren Q, Xu J T, Cui Y A 2023 Micro Nanostruct. 184 207695Google Scholar

    [15]

    薛晓晚 2018 硕士学位论文 (大连: 大连理工大学)

    Xue X W 2018 M. S. Thesis (Dalian: Dalian University of Technology

    [16]

    梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙 2010 物理学报 59 8071Google Scholar

    Liang W H, Ding X C, Chu L Z, Deng Z C, Guo J X, Wu Z H, Wang Y L 2010 Acta Phys. Sin. 59 8071Google Scholar

    [17]

    Tang X, Li W, Xu W, Ren Q Y, Chen Q Y 2024 Mater. Sci. Semicond. Process. 184 108797Google Scholar

    [18]

    Wu M, Cai G K, Li Z, Ye L, Wang C 2024 Vacuum 225 113222Google Scholar

    [19]

    Li J Y, Zhao C L, Li W, Ren Q Y, Xu J, Xu W 2023 Phys. Scr. 98 115408Google Scholar

    [20]

    Sharif M N, Yang J S, Zhang X K, Tang Y H, Yang G, Wang K F 2024 Vacuum 219 112714Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [23]

    Shuichi N 1984 J. Chem. Phys. 81 511Google Scholar

    [24]

    关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭 2009 物理学报 58 5624Google Scholar

    Guan L, Li Q, Zhao Q X, Guo J X, Zhou Y, Jin L T, Geng B, Liu B T 2009 Acta Phys. Sin. 58 5624Google Scholar

    [25]

    Kumaravelu G, Alkaisi M M, Bittar A 2002 29th IEEE Photovoltaic Specialists Conference New Orleans, LA, USA, May 19–24, 2002 p258

    [26]

    杜玲艳 2018 博士学位论文 (成都: 电子科技大学)

    Du L Y 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China

    [27]

    宣曜宇 2017 硕士学位论文 (成都: 电子科技大学)

    Xuan Y Y 2017 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [28]

    Khan M, Xu J N, Chen N, Cao W B 2012 J. Alloys Compd. 513 539Google Scholar

    [29]

    Feng J, Xiao B, Chen C J, Zhou C T, Du Y P, Zhou R 2009 Solid State Commun. 149 1569Google Scholar

  • 图 1  S, Se单掺杂模型示意图

    Figure 1.  Schematic diagram of S and Se single doping model.

    图 2  S, Se共掺杂模型示意图(数字代表Si原子序号)

    Figure 2.  Schematic diagram of the co-doping model of S and Se (Numbers represent Si atomic number).

    图 3  S (a), Se (b)原子与周围Si原子成键键长随时间变化图

    Figure 3.  Plot of the bond length of S (a) and Se (b) atoms with the surrounding Si atoms as a function of time.

    图 4  S (a), Se (b)原子位置偏移的RMSD随时间的变化图

    Figure 4.  Plot of the RMSD of the position offset of S (a) and Se (b) atoms as a function of time.

    图 5  纯Si与掺杂Si的能带结构 (a) Si; (b) Si63S; (c) Si63Se; (d) Si62(Se, S)

    Figure 5.  Band structure of pure Si and doped Si: (a) Si; (b) Si63S; (c) Si63Se; (d) Si62(Se, S).

    图 6  纯Si与掺杂Si的总态密度

    Figure 6.  Total density of states of pure Si and doped Si.

    图 7  相同浓度单掺杂与共掺杂Si的总态密度

    Figure 7.  Total density of states of single and co-doped Si at the same concentration.

    图 8  纯Si与掺杂Si的分态密度 (a)纯Si中的Si; (b) Si63S中的S; (c) Si63S中的Si; (d) Si63Se中的Se; (e) Si63Se中的Si; (f) Si62(Se, S)中的S; (g) Si62(Se, S)中的Se; (h) Si62(Se, S)中的Si

    Figure 8.  Partial density of state of pure Si and doped Si: (a) Si in pure Si; (b) S in Si63S; (c) Si in Si63S; (d) Se in Si63Se; (e) Si in Si63Se; (f) S in Si62(Se, S); (g) Se in Si62(Se, S); (h) Si in Si62(Se, S).

    图 9  纯Si与掺杂Si介电函数的虚部 (a) Si; (b) Si63S; (c) Si63Se; (d) Si62(Se, S)

    Figure 9.  Imaginary part of the pure Si and doped Si dielectric function: (a) Si; (b) Si63S; (c) Si63Se; (d) Si62(Se, S).

    图 10  纯Si与掺杂Si的光吸收谱(a)、反射谱(b)、消光系数谱(c)和能量损失谱(d), 其中图(a)中插图为纯Si与掺杂Si的光吸收谱在0—3 eV部分的放大

    Figure 10.  Optical absorption spectrum (a), reflection spectrum (b), extinction coefficient spectrum (c) and energy loss spectrum (d) of pure Si and doped Si, the inset in panel (a) shows the amplification of the optical absorption spectrum of pure Si and doped Si at 0–3 eV.

    图 11  S, Se单掺杂Si在近红外区域的光激发示意图

    Figure 11.  Schematic of the photoexcitation of S and Se single-doped Si in the NIR region.

    图 12  相同浓度单掺杂与共掺杂Si在近红外区域的光吸收谱

    Figure 12.  Optical absorption spectra of single and co-doped Si at the same concentration in the near infrared region.

    图 13  S, Se共掺杂Si在近红外区域的光激发示意图

    Figure 13.  Schematic of the photoexcitation of S and Se co-doped Si in the NIR region.

    表 1  结构优化后单晶硅、Si超晶胞、S, Se单掺杂及共掺杂硅的晶格常数及键长

    Table 1.  Lattice constants and bond lengths of single crystal silicon, Si supercell, S, Se single doping and co-doping silicon after structure optimization.

    Compound Lattice
    constant/Å
    Bond length/Å ${E^{\text{f}}}$/eV
    Si—X Si—Si
    Si单晶胞5.4672.367
    Si(2×2×2)10.9342.367
    ${\text{S}}{{\text{i}}_{{63}}}{{\text{S}}_{}}$10.9282.4632.3651.24
    ${\text{S}}{{\text{i}}_{{63}}}{\text{Se}}$10.9462.5582.3681.27
    $ {\text{S}}{{\text{i}}_{{62}}}{\text{(Se, S)}} $10.9442.457
    (Si—S)
    2.3642.54
    2.552
    (Si—Se)
    2.367
    DownLoad: CSV
  • [1]

    周治平 2014 武汉光电论坛论文集 (武汉: 华中科技大学出版社) 第249页

    Zhou Z P 2014 Proceedings of Wuhan Opto-Electronic Forum (Wuhan: Huazhong University of Science & Technology Press) p249

    [2]

    Michael O, Mathias K, Steffen E, Maurice W, Zili Y, Daniel S, Köllner A C, Joachim N B, Jörg S 2021 IEEE Sens. J. 20 18696Google Scholar

    [3]

    Yang J J, Jurczak P, Cui F, Li K S, Tang M C, Billiald L, Beanland R 2019 J. Cryst. Growth 514 109Google Scholar

    [4]

    Her T H, Finlay R J, Mazur E, Wu C, Deliwala S 1998 Appl. Phys. Lett. 73 1673Google Scholar

    [5]

    Wu C, Crouch C H, Zhao L, Carey J E, Younkin R, Levinson J A, Mazur E, Farrell R M, Gothoskar P, Karger A 2001 Appl. Phys. Lett. 78 1850Google Scholar

    [6]

    Tansel T, Aydin O 2024 J. Phys. D 57 295103Google Scholar

    [7]

    Zhao X N, Lin K, Zhao B, Du W H, Nivas J J, Amoruso S, Wang X 2023 Appl. Surf. Sci. 619 156624Google Scholar

    [8]

    钟豪 2019 硕士学位论文 (成都: 电子科技大学)

    Zhong H 2019 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [9]

    Du L Y, Yin J, Zeng W, Pang S Z, Yi H 2023 Mater. Lett. 331 133463Google Scholar

    [10]

    高宇辰 2022 硕士学位论文 (吉林: 吉林大学)

    Gao Y C 2022 M. S. Thesis (Jilin: Jilin University

    [11]

    Yang Y, Yi Z R, Chao L, Zhao J H 2023 Opt. Quantum Electron. 55 259Google Scholar

    [12]

    任哲毅 2024 硕士学位论文 (吉林: 吉林大学)

    Ren Z Y 2024 M. S. Thesis (Jilin: Jilin University

    [13]

    Zhu J, Gandi N A, Schwingenschlögl U 2018 Adv. Theor. Simul. 1 1800017Google Scholar

    [14]

    Wang X Y, Wang T, Ren Q, Xu J T, Cui Y A 2023 Micro Nanostruct. 184 207695Google Scholar

    [15]

    薛晓晚 2018 硕士学位论文 (大连: 大连理工大学)

    Xue X W 2018 M. S. Thesis (Dalian: Dalian University of Technology

    [16]

    梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙 2010 物理学报 59 8071Google Scholar

    Liang W H, Ding X C, Chu L Z, Deng Z C, Guo J X, Wu Z H, Wang Y L 2010 Acta Phys. Sin. 59 8071Google Scholar

    [17]

    Tang X, Li W, Xu W, Ren Q Y, Chen Q Y 2024 Mater. Sci. Semicond. Process. 184 108797Google Scholar

    [18]

    Wu M, Cai G K, Li Z, Ye L, Wang C 2024 Vacuum 225 113222Google Scholar

    [19]

    Li J Y, Zhao C L, Li W, Ren Q Y, Xu J, Xu W 2023 Phys. Scr. 98 115408Google Scholar

    [20]

    Sharif M N, Yang J S, Zhang X K, Tang Y H, Yang G, Wang K F 2024 Vacuum 219 112714Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [23]

    Shuichi N 1984 J. Chem. Phys. 81 511Google Scholar

    [24]

    关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭 2009 物理学报 58 5624Google Scholar

    Guan L, Li Q, Zhao Q X, Guo J X, Zhou Y, Jin L T, Geng B, Liu B T 2009 Acta Phys. Sin. 58 5624Google Scholar

    [25]

    Kumaravelu G, Alkaisi M M, Bittar A 2002 29th IEEE Photovoltaic Specialists Conference New Orleans, LA, USA, May 19–24, 2002 p258

    [26]

    杜玲艳 2018 博士学位论文 (成都: 电子科技大学)

    Du L Y 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China

    [27]

    宣曜宇 2017 硕士学位论文 (成都: 电子科技大学)

    Xuan Y Y 2017 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [28]

    Khan M, Xu J N, Chen N, Cao W B 2012 J. Alloys Compd. 513 539Google Scholar

    [29]

    Feng J, Xiao B, Chen C J, Zhou C T, Du Y P, Zhou R 2009 Solid State Commun. 149 1569Google Scholar

  • [1] Wang Xiu-Yu, Wang Tao, Cui Yu-Ang, Wu Xi-Guang-Run, Wang Yang. First-principles study of effect of impurity compensation on optical properties of Si. Acta Physica Sinica, 2024, 73(11): 116301. doi: 10.7498/aps.73.20231814
    [2] Wang Fan-Fan, Chen Dong, Yuan Jun, Zhang Zhu-Feng, Jiang Tao, Zhou Jun. Interlayer angle dependence of photoelectric properties of Sb/SnC van der Waals heterojunction and its application. Acta Physica Sinica, 2024, 73(22): 227101. doi: 10.7498/aps.73.20241138
    [3] Liu Zhi-Cheng, Zhou Jie, Chen Fan, Peng Biao, Peng Wen-Yi, Zhang Ai-Sheng, Deng Xiao-Hua, Luo Xian-Zhi, Liu Ri-Xin, Liu De-Wu, Huang Yu, Yan Jun. First-principles study of influence of Si on γ phase in Inconel 718 alloy. Acta Physica Sinica, 2023, 72(18): 186301. doi: 10.7498/aps.72.20230583
    [4] Sun Ting-Yu, Wu Liang, He Xian-Juan, Jiang Nan, Zhou Wen-Zhe, Ouyang Fang-Ping. Effect of strain and electric field on electronic structure and optical properties of Ga2SeTe/In2Se3 heterojunction. Acta Physica Sinica, 2023, 72(7): 076301. doi: 10.7498/aps.72.20222250
    [5] Fu Zheng-Hong, Li Ting, Shan Mei-Le, Guo Kang, Gou Guo-Qing. Effect of H on elastic properties of Mg2Si by the first principles calculation. Acta Physica Sinica, 2019, 68(17): 177102. doi: 10.7498/aps.68.20190368
    [6] Chen Guo-Xiang, Fan Xiao-Bo, Li Si-Qi, Zhang Jian-Min. First-principles study of magnetic properties of alkali metals and alkaline earth metals doped two-dimensional GaN materials. Acta Physica Sinica, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [7] Wang Xue-Ting, Fu Yu-Hao, Na Guang-Ren, Li Hong-Dong, Zhang Li-Jun. Barium as doping element tuning both toxicity and optoelectric properties of lead-based halide perovskites. Acta Physica Sinica, 2019, 68(15): 157101. doi: 10.7498/aps.68.20190596
    [8] Jia Wan-Li, Zhou Miao, Wang Xin-Mei, Ji Wei-Li. First-principles study on the optical properties of Fe-doped GaN. Acta Physica Sinica, 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [9] Chen Qing-Ling, Dai Zhen-Hong, Liu Zhao-Qing, An Yu-Feng, Liu Yue-Lin. First-principles study on the structure stability and doping performance of double layer h-BN/Graphene. Acta Physica Sinica, 2016, 65(13): 136101. doi: 10.7498/aps.65.136101
    [10] Qu Ling-Feng, Hou Qing-Yu, Xu Zhen-Chao, Zhao Chun-Wang. Photoelectric properties of Ti doped ZnO: First principles calculation. Acta Physica Sinica, 2016, 65(15): 157201. doi: 10.7498/aps.65.157201
    [11] Shi Yan-Li, Han Wei, Lu Tie-Cheng, Chen Jun. First principles study of the electronic and optical properties of silica glass with hydroxyl group. Acta Physica Sinica, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [12] He Jing-Fang, Zheng Shu-Kai, Zhou Peng-Li, Shi Ru-Qian, Yan Xiao-Bing. First-principles calculations on the electronic and optical properties of ZnO codoped with Cu-Co. Acta Physica Sinica, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [13] Linghu Jia-Jun, Liang Gong-Ying. First-principles study on the luminescence property of In-doped ZnTe. Acta Physica Sinica, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [14] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [15] Yu Zhi-Qiang. Electronic structure and photoelectric properties of OsSi2 epitaxially grown on a Si(111) substrate. Acta Physica Sinica, 2012, 61(21): 217102. doi: 10.7498/aps.61.217102
    [16] Hu Yu-Ping, Ping Kai-Bin, Yan Zhi-Jie, Yang Wen, Gong Chang-Wei. First-principles calculations of structure and magnetic properties of -Fe(Si)phase precipitated in the Finemet alloy. Acta Physica Sinica, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [17] Zhang Yi-Jun, Yan Jin-Liang, Zhao Gang, Xie Wan-Feng. First-principles calculation and experimental study of Si-doped β-Ga2O3. Acta Physica Sinica, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [18] Zhu Guo-Liang, Shu Da, Dai Yong-Bing, Wang Jun, Sun Bao-De. First principles study on substitution behaviour of Si in TiAl3. Acta Physica Sinica, 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
    [19] Zhang Ji-Hua, Ding Jian-Wen, Lu Zhang-Hui. First-principles study of electrical structures and optical properties of Co:MgF2 crystal. Acta Physica Sinica, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [20] Chen Kun, Fan Guang-Han, Zhang Yong. First principles study of optical properties of wurtzite ZnO with Mn-doping. Acta Physica Sinica, 2008, 57(2): 1054-1060. doi: 10.7498/aps.57.1054
Metrics
  • Abstract views:  712
  • PDF Downloads:  27
  • Cited By: 0
Publishing process
  • Received Date:  13 October 2024
  • Accepted Date:  17 January 2025
  • Available Online:  14 February 2025
  • Published Online:  05 April 2025

/

返回文章
返回