Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of anisotropic physical properties of layered nitride BaMN2 (M = Ti, Zr, Hf)

YU Jianxiang LIANG Hualin YANG YiJun MING Xing

Citation:

First-principles study of anisotropic physical properties of layered nitride BaMN2 (M = Ti, Zr, Hf)

YU Jianxiang, LIANG Hualin, YANG YiJun, MING Xing
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Ternary layered nitrides have received widespread attention due to their unique electrical, optical and optoelectronic properties, which are promising for the fabrication of low-cost and high-efficiency optoelectronic materials, solar cell materials and photocatalysts. Although there is a lack of experimental reports on BaTiN2 so far, BaZrN2 and BaHfN2 have been synthesized experimentally by solid state methods. However, their optical and electrical transport properties have not been investigated systematically. This work is to systematically investigates the mechanical, electronic, optical absorption, carrier transport, and dielectric response properties of BaMN2 (M = Ti, Zr, Hf) nitrides through first-principles calculations based on density functional theory. Due to the quasi-two-dimensional layered arrangement of [MN2]2– slabs, the ionic bonds between Ba2+ and N3–, and the weak interactions between the slabs, the deformation along this direction is most likely to occur under the action of external stress. BaMN2 nitrides exhibit significant anisotropic physical properties. Firstly, the mechanical properties of BaMN2, such as bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio, show prominent anisotropy. The lower modulus, higher Poisson’s ratios and Pugh’s modulus ratios indicate good flexibility of the BaMN2 nitrides. In addition, BaMN2 has indirect bandgap values (1.75–2.25 eV) within the visible-light energy range, which meets the basic requirement for the band gap of a photocatalyst for water splitting (greater than 1.23 eV). Moreover, BaMN2 has suitable band-edge positions. The appropriate bandgap values and band-edge positions indicate their broad application prospects in the absorber layer of solar cells and photocatalytic water decomposition. Due to the significant difference in the effective mass of its charge carriers between different directions, BaMN2 exhibits ultrahigh anisotropic carrier mobility (on the order of 103 cm2⋅s–1⋅v–1) and lower exciton binding energy. At the same time, there are significant differences in atomic arrangement and bonding interactions between the in-plane direction and out of plane direction, resulting in high anisotropic visible-light absorption coefficient (on the order of 105 cm–1) in the low energy region. In contrast, the increase of the opportunity for electrons to transition from occupied to unoccupied states leads to more complex light absorption and relatively reduced anisotropy in higher energy region. Furthermore, the special layered structure has lower polarizability and higher vibration frequency along the vertical direction perpendicular to the [MN2]2– layers, rendering BaMN2 nitrides show high dielectric constants. These excellent anisotropic mechanical, optoelectronic, and transport properties allow BaMN2 layered nitrides to be used as promising semiconductor materials in the fields of optoelectronics, photovoltaics, and photocatalysis.
  • 图 1  BaMN2的晶体结构模型, 蓝色、粉色和青色的球分别表示Ba, M和N原子

    Figure 1.  Crystal structures of BaMN2, the blue, pink and azure balls denote Ba, M and N atoms.

    图 2  (a) BaTiN2, (b) BaZrN2和(c) BaHfN2的ELF切片图, 上图和下图分别是(001)平面和(100)平面

    Figure 2.  Slices of the electron localization function (ELF) for (a) BaTiN2, (b) BaZrN2 and (c) BaHfN2, top and bottom planes are the (001) and (100) planes, respectively.

    图 3  BaMN2的体模量、剪切模量、杨氏模量和泊松比ν (a) BaTiN2; (b) BaZrN2; (c) BaHfN2

    Figure 3.  Bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio ν of BaMN2: (a) BaTiN2; (b) BaZrN2; (c) BaHfN2.

    图 4  (a) BaTiN2, (b) BaZrN2和(c) BaHfN2的电子能带结构和态密度以及(d)带边位置

    Figure 4.  Electronic band structures and density of states (DOS) of (a) BaTiN2, (b) BaZrN2, and (c) BaHfN2 as well as (d) band edge positions.

    图 5  CBM和VBM在实空间中的波函数 (a) BaTiN2; (b) BaZrN2; (c) BaHfN2

    Figure 5.  Wave function of CBM and VBM in real space: (a) BaTiN2; (b) BaZrN2; (c) BaHfN2.

    图 6  BaMN2的可见光吸收系数 (a) BaTiN2; (b) BaZrN2; (c) BaHfN2

    Figure 6.  Optical absorption coefficient of BaMN2: (a) BaTiN2; (b) BaZrN2; (c) BaHfN2.

    表 1  BaMN2的晶格常数, 晶格体积和M—N键长的理论计算值与实验(括号中数据)对比

    Table 1.  Comparison of theoretically calculated and experimental measured (in parenthesis) lattice constants, lattice volumes and the M—N bond lengths of BaMN2.

    abcV/Å3lM-N1lM-N2
    BaTiN24.0114.0118.107130.4541.8062.105
    BaZrN24.188
    (4.161[26])
    4.188
    (4.161[26])
    8.478
    (8.392[26])
    148.7252.022
    (2.06[28])
    2.213
    (2.208[28])
    BaHfN24.149
    (4.128[27])
    4.149
    (4.128[27])
    8.481
    (8.382[27])
    145.9711.991
    (2.05[28])
    2.196
    (2.186[28])
    DownLoad: CSV

    表 2  BaMN2的弹性常数Cij、体模量B、剪切模量G、杨氏模量Y、泊松比ν、Pugh模量比(B/G). 模量下标V和R分别表示Voigt-Reuss-Hill模型近似中Voigt和Reuss模型的结果, 没有下标的BG定义为Voigt和Reuss值的平均值

    Table 2.  Elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus Y, Poisson’s ratio ν, Pugh’s ratio (B/G) of BaMN2. The subscripts V and R of the moduli denote results from the Voigt and Reuss models, while B and G moduli without subscripts are defined as the average of the Reuss and Voight values from the Voigt-Reuss-Hill approximations.

    MaterialsC11/GPaC12/GPaC13/GPaC22/GPaC23/GPaC33/GPaC44/GPaC55/GPaC66/GPa
    BaTiN2180.639126.13656.702180.63956.702121.44838.49338.493118.834
    BaZrN2151.829110.79766.919151.82966.919129.39637.72337.72395.162
    BaHfN2163.876118.40769.072163.87669.072130.41937.81137.811103.077
    MaterialsBV/GPaBR/GPaBGVGRG/GPaY/GPaνB/G
    BaTiN2106.87095.480101.17555.38042.42048.900126.2530.2942.070
    BaZrN2102.48098.630100.55546.68036.53941.610109.5800.3182.420
    BaHfN2107.920102.211105.06649.18038.36643.773115.1940.3172.400
    DownLoad: CSV

    表 3  BaMN2的有效质量m*、形变势常数Ei和载流子迁移率μ

    Table 3.  Effective mass m*, deformation potential constants Ei, and carrier mobility μ of BaMN2.

    MaterialCarrierm*/m0Ei/eVμ/(cm2·s–1·v–1)
    x/yzx/yzx/yz
    BaTiN2Electron0.23729.929–7.366–4.1597439.4060.088
    Hole0.5362.560–8.141–5.514791.78123.277
    BaZrN2Electron0.22932.657–7.652–2.3996313.6010.225
    Hole0.4005.435–8.017–4.6691426.4025.267
    BaHfN2Electron0.22330.268–7.650–0.6797286.0373.429
    Hole0.4153.608–7.870–3.7311457.15823.152
    DownLoad: CSV

    表 4  介电张量的对角线分量的电子和离子贡献和介电常数

    Table 4.  Diagonal components of the dielectric tensor from the electronic and ionic contributions and dielectric permittivity.

    Material $ {\varepsilon }_{{\mathrm{e}}{\mathrm{l}}{\mathrm{e}}} $ $ {\varepsilon }_{{\mathrm{i}}{\mathrm{o}}{\mathrm{n}}} $ $ {\varepsilon }_{{\mathrm{r}}} $
    x/y z x/y z
    BaTiN2 10.59 7.48 35.70 18.40 39.48
    BaZrN2 8.30 7.88 39.08 18.61 40.42
    BaHfN2 7.71 7.46 34.37 16.32 35.98
    DownLoad: CSV

    表 5  BaMN2的波恩有效电荷张量及平均值($ {Z}^{*} $)

    Table 5.  Born effective charges tensors along three directions (x, y and z) and the average value ($ {Z}^{*} $) of BaMN2.

    BaTiN2 BaZrN2 BaHfN2
    x/y z $ {Z}^{*} $ x/y z $ {Z}^{*} $ x/y z $ {Z}^{*} $
    Ba 2.884 3.094 2.954 2.687 3.233 2.869 2.751 3.130 2.877
    M 5.355 2.689 4.466 4.811 3.362 4.328 4.617 3.098 4.111
    N1 –2.611 –4.357 –3.193 –2.582 –4.839 –3.334 –2.613 –4.552 –3.259
    N2 –5.650 –1.433 –4.244 –4.926 –1.764 –3.872 –4.763 –1.672 –3.733
    DownLoad: CSV

    表 6  声子模及其频率$ {\omega }_{\lambda } $(以cm–1为单位)和有效电荷$ \widetilde{{Z}_{\lambda }^{*}} $(以|e|表示)

    Table 6.  The mode, mode frequencies $ {\omega }_{\lambda } $ (in cm–1) and effective charges $ \widetilde{{Z}_{\lambda }^{*}} $ (in |e|).

    ModeSymmetryActivePolarizationBaTiN2BaZrN2BaHfN2
    $ {\omega }_{\lambda } $$ \widetilde{{Z}_{\lambda }^{*}} $$ {\omega }_{\lambda } $$ \widetilde{{Z}_{\lambda }^{*}} $$ {\omega }_{\lambda } $$ \widetilde{{Z}_{\lambda }^{*}} $
    1-2EuIRx-y1190.52670.34620.24
    3-4EgRamanx-y800730760
    5A2uIRz1100.52990.43890.30
    6A1gRamanz115010901090
    7-8EgRamanx-y225015701390
    9A1gRamanz285022201660
    10-11EuIRx-y2860.232040.312130.48
    12-13EgRamanx-y336026202340
    14B1gRamanz300031103250
    15-16EuIRx-y3326.103594.383633.84
    17A2uIRz4960.044620.694520.78
    18-19EgRamanx-y560054105720
    20A2uIRz6822.905883.076052.53
    21A1gRamanz769067906830
    DownLoad: CSV
  • [1]

    Ahmed S, Yi J B 2017 Nano-Micro Lett. 9 106313

    [2]

    Liao L, Lin Y C, Bao M Q, Cheng R, Bai J W, Liu Y, Qu Y Q, Wang K L, Huang Y, Duan X F 2010 Nature 467 305Google Scholar

    [3]

    Mitta S B, Choi M S, Nipane A, Ali F, Kim C, Teherani J T, Hone J, Yoo W J 2021 2D Mater. 8 012002Google Scholar

    [4]

    Lu C C, Lin Y C, Yeh C H, Huang J C, Chiu P W J A N 2012 Nanscale 6 4469

    [5]

    Allain A, Kang J, Banerjee K, Kis A J N M 2015 Nat. Mater. 14 1195Google Scholar

    [6]

    张冷, 张鹏展, 刘飞, 李方政, 罗毅, 侯纪伟, 吴孔平 2024 物理学报 73 047101Google Scholar

    Zhang L, Zhang P Z, Liu F, Li F Z, Luo Y, Hou J W, Wu K P 2024 Acta Phys. Sin. 73 047101Google Scholar

    [7]

    Ling X, Wang H, Huang S X, Xia F N, Dresselhaus M S 2015 PNAS 112 4523Google Scholar

    [8]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [9]

    程秋振, 黄引, 李玉辉, 张凯, 冼国裕, 刘鹤元, 车冰玉, 潘禄禄, 韩烨超, 祝轲, 齐琦, 谢耀锋, 潘金波, 陈海龙, 李永峰, 郭辉, 杨海涛, 高鸿钧 2023 物理学报 72 218102Google Scholar

    Cheng Q Z, Huang Y, Li Y H, Zhang K, Xian G Y, Liu H Y, Che B Y, Pan L L, Han Y C, Zhu K, Qi Q, Xie Y F, Pan J B, Chen H L, Li Y F, Guo H, Yang H T, Gao H J 2023 Acta Phys. Sin. 72 218102Google Scholar

    [10]

    Xue P Y, Chu D D, Xie C W, Tikhonov E, Butler K T 2022 J. Phys. Chem. C 126 17398Google Scholar

    [11]

    Greenaway A L, Ke S, Culman T, Talley K R, Mangum J S, Heinselman K N, Kingsbury R S, Smaha R W, Gish M K, Miller E M, Persson K A, Gregoire J M, Bauers S R, Neaton J B, Tamboli A C, Zakutayev A 2022 J. Am. Chem. Soc. 144 13673Google Scholar

    [12]

    Szymanski N J, Walters L N, Hellman O, Gall D, Khare S V 2018 J. Mater. Chem. A 6 20852Google Scholar

    [13]

    Arca E, Perkins J D, Lany S, Mis A, Chen B R, Dippo P, Partridge J L, Sun W, Holder A, Tamboli A C, Toney M F, Schelhas L T, Ceder G, Tumas W, Teeter G, Zakutayev A 2019 Mater. Horiz. 6 1669Google Scholar

    [14]

    Bauers S R, Holder A, Sun W, Melamed C L, Woods-Robinson R, Mangum J, Perkins J, Tumas W, Gorman B, Tamboli A, Ceder G, Lany S, Zakutayev A 2019 PNAS 116 14829Google Scholar

    [15]

    Hinuma Y, Hatakeyama T, Kumagai Y, Burton L A, Sato H, Muraba Y, Iimura S, Hiramatsu H, Tanaka I, Hosono H J N C 2016 Nat. Commun. 7 11962Google Scholar

    [16]

    Kangsabanik J, Alam A 2019 Phys. Rev. Mater. 3 105405Google Scholar

    [17]

    Shiraishi A, Kimura S, He X, Watanabe N, Katase T, Ide K, Minohara M, Matsuzaki K, Hiramatsu H, Kumigashira H, Hosono H, Kamiya T 2022 Inorg. Chem. 61 6650Google Scholar

    [18]

    Zakutayev A, Jankousky M, Wolf L, Feng Y, Rom C L, Bauers S R, Borkiewicz O, LaVan D A, Smaha R W, Stevanovic V 2024 Nat. Synth 3 1471Google Scholar

    [19]

    Ming X, Kuang X J 2024 Nat. Synth. 3 1444Google Scholar

    [20]

    Liu J W, Lu S L, Wang Y H, Li C, Ming X, Kuang X J 2022 Chem. Mater. 34 4505

    [21]

    Gregory D H, Barker M G, Edwards P P, Siddons D J 1996 Inorg. Chem. 35 7608Google Scholar

    [22]

    Seeger O, Strähle J 1994 Z. Naturforsch. B 49 1169Google Scholar

    [23]

    Li X H, Wang X M, Han Y F, Jing X P, Huang Q Z, Kuang X J, Gao Q L, Chen J, Xing X R 2017 Chem. Mater. 29 1989Google Scholar

    [24]

    Farault G, Gautier R, Baker C F, Bowman A, Gregory D H 2003 Chem. Mater. 15 3922Google Scholar

    [25]

    Gregory D H, Barker M G, Edwards P P, Siddons D J 1998 Inorg. Chem. 37 3775Google Scholar

    [26]

    Seeger O, Hofmann M, Strähle J, Laval J P, Frit B 2004 Z Anorg. Allg. Chem. 620 2008

    [27]

    Gregory D H, Barker M G, Edwards P P, Slaski M, Siddons D J 1998 J. Solid. State. Chem. 137 62Google Scholar

    [28]

    Gregory D H, O’Meara P M, Gordon A G, Siddons D J, Blake A J, Barker M G, Hamor T A, 2001 J. Alloys Compd 317-318 237Google Scholar

    [29]

    Yao M, Zhang Y Y, Ban J M, Hou J J, Zhang B W, Liu J W, Ming X, Kuang X J 2023 PCCP 25 19158Google Scholar

    [30]

    Ohkubo I, Mori T 2015 Chem. Mater. 27 7265Google Scholar

    [31]

    Ohkubo I, Mori T 2016 APL Mater. 4 104808Google Scholar

    [32]

    Liang H L, Lu J, Zhang W Y, Ming X 2025 Mater. Sci. Semicond. Process. 185 108955Google Scholar

    [33]

    Luo H M, Wang H Y, Bi Z X, Zou G F, McCleskey T M, Burrell A K, Bauer E, Hawley M E, Wang Y Q, Jia Q X 2009 Angew. Chem. Int. Ed. 48 1490Google Scholar

    [34]

    Kaur A, Ylvisaker E R, Li Y, Galli G, Pickett W E 2010 Phys. Rev. B 82 155125Google Scholar

    [35]

    Yao M L, Li M, Zhang L, Wang H 2024 Phys. Rev. B 110 115202Google Scholar

    [36]

    Yang X F, Wang Z Q, Fu H H 2024 Phys. Rev. B 109 155414Google Scholar

    [37]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [38]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [39]

    Kresse G, Furthmüller J 1996 P Phys. Rev. B 54 11169Google Scholar

    [40]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [41]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [42]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [43]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [44]

    Yim K, Yong Y, Lee J, Lee K, Nahm H H, Yoo J, Lee C, Seong Hwang C, Han S 2015 NPG Asia Mater. 7 e190Google Scholar

    [45]

    Gonze X, Lee C 1997 Phys. Rev. B 55 10355Google Scholar

    [46]

    Giannozzi P, de Gironcoli S, Pavone P, Baroni S 1991 Phys. Rev. B 43 7231Google Scholar

    [47]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566Google Scholar

    [48]

    Bokdam M, Sander T, Stroppa A, Picozzi S, Sarma D D, Franchini C, Kresse G 2016 Sci. Rep. 6 28618Google Scholar

    [49]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [50]

    Zhao X, Vanderbilt D 2002 Phys. Rev. B 65 075105Google Scholar

    [51]

    Cockayne E, Burton B P 2000 Phys. Rev. B 62 3735Google Scholar

    [52]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [53]

    Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [54]

    Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115Google Scholar

    [55]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033Google Scholar

    [56]

    Yu R, Xiao F, Lei W, Wang W, Ma Y P, Gong X J, Ming X 2023 PCCP 25 30066Google Scholar

    [57]

    Pugh S F 2009 Lond. Edinb. Phil. Mag. 45 823

    [58]

    Liao M Q, Liu Y, Min L J, Lai Z H, Han T Y, Yang D N, Zhu J C 2018 Intermetallics 101 152Google Scholar

    [59]

    Xu Y, Schoonen M A A 2000 Am. Mineral. 85 543Google Scholar

    [60]

    Zhang H, Guégan F, Wang J, Frapper G 2024 PCCP 26 14675Google Scholar

    [61]

    Heying B, Smorchkova I, Poblenz C, Elsass C, Fini P, Den Baars S, Mishra U, Speck J S 2000 Appl. Phys. Lett. 77 2885Google Scholar

    [62]

    Lang H F, Zhang S Q, Liu Z R 2016 Phys. Rev. B 94 235306Google Scholar

    [63]

    Kosarev I, Kistanov A 2024 Nanoscale 16 10030Google Scholar

    [64]

    Zhang H, Wang J J, Guégan F, Frapper G 2023 Nanoscale 15 7472Google Scholar

    [65]

    Dvorak M, Wei S H, Wu Z 2013 Phys. Rev. Lett. 110 016402Google Scholar

    [66]

    Muth J F, Lee J H, Shmagin I K, Kolbas R M, Casey H C, Keller B P, Mishra U K, DenBaars S P 1997 Appl. Phys. Lett. 71 2572Google Scholar

  • [1] Lu Kang-Jun, Wang Yi-Fan, Xia Qian, Zhang Gui-Tao, Chen Qian. Structural phase transition induced enhancement of carrier mobility of monolayer RuSe2. Acta Physica Sinica, doi: 10.7498/aps.73.20240557
    [2] Pan Jia-Ping, Zhang Ye-Wen, Li Jun, Lü Tian-Hua, Zheng Fei-Hu. Migration behavior of space charge packet researched by using electron beam irradiation and real-time space charge distribution measurement in piezo-pressure wave propagation (PWP) method. Acta Physica Sinica, doi: 10.7498/aps.73.20231353
    [3] Wang Na, Xu Hui-Fang, Yang Qiu-Yun, Zhang Mao-Lian, Lin Zi-Jing. First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer. Acta Physica Sinica, doi: 10.7498/aps.71.20221019
    [4] Li Huan, Ye Xiao-Qiu, Tang Jun, Ao Bing-Yun, Gao Tao. Structure and stability of possible new L i-Y-H ternary hydrides. Acta Physica Sinica, doi: 10.7498/aps.71.20210824
    [5] Zhang Gao-Jian, Wang Yi-Pu. Observation of the anisotropic exceptional point in cavity magnonics system. Acta Physica Sinica, doi: 10.7498/aps.69.20191632
    [6] Kang Jian-Bin, Li Qian, Li Mo. Effects of material structure on device efficiency of III-nitride intersubband photodetectors. Acta Physica Sinica, doi: 10.7498/aps.68.20190722
    [7] Yu Ben-Hai, Chen Dong. Phase transition, electronic and optical properties of Si3N4 new phases at high pressure with density functional theory. Acta Physica Sinica, doi: 10.7498/aps.63.047101
    [8] Ming Xing, Wang Xiao-Lan, Du Fei, Chen Gang, Wang Chun-Zhong, Yin Jian-Wu. Phase transition and properties of siderite FeCO3 under high pressure: an ab initio study. Acta Physica Sinica, doi: 10.7498/aps.61.097102
    [9] Zhang Yong-Wei, Yin Chun-Hao, Zhao Qiang, Li Fu-Qiang, Zhu Shan-Shan, Liu Hai-Shun. Theoretical research of correlation of electronic structure with birefringence and anisotropy of TiO2. Acta Physica Sinica, doi: 10.7498/aps.61.027801
    [10] Yu Ben-Hai, Chen Dong. First-principles study on the electronic structure and phase transition of α-, β- and γ-Si3N4. Acta Physica Sinica, doi: 10.7498/aps.61.197102
    [11] Wan Jin, Tian Yu, Zhou Ming, Zhang Xiang-Jun, Meng Yong-Gang. Experimental research of load effect on the anisotropic friction behaviors of gecko seta array. Acta Physica Sinica, doi: 10.7498/aps.61.016202
    [12] Wang Hao, Liu Guo-Quan, Luan Jun-Hua. Study on 3D von Neumann equation with anisotropy for convex grains. Acta Physica Sinica, doi: 10.7498/aps.61.048102
    [13] Xing Yan-Hui, Deng Jun, Han Jun, Li Jian-Jun, Shen Guang-Di. Investigation of n-type GaN deposited on sapphire substrate with different small misorientations. Acta Physica Sinica, doi: 10.7498/aps.58.2644
    [14] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Yang Guo-Hui. Transmission characteristics of a rectangular waveguide filled with anisotropic metamaterial. Acta Physica Sinica, doi: 10.7498/aps.57.5476
    [15] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Gu Xue-Mai, Li Le-Wei. Resonance characteristics of a three-dimensional anisotropic metamaterial bilayer. Acta Physica Sinica, doi: 10.7498/aps.57.6213
    [16] Zhou Jian-Hua, Liu Hong-Yao, Luo Hai-Lu, Wen Shuang-Chun. Backward wave propagation in anisotropic metamaterials. Acta Physica Sinica, doi: 10.7498/aps.57.7729
    [17] Shi Li-Bin, Ren Jun-Yuan, Zhang Feng-Yun, Zhang Guo-Hua, Yu Zeng-Qiang. A study on resistive transition and anisotropy of MgB2/Al2O3 superconducting thin films. Acta Physica Sinica, doi: 10.7498/aps.56.5353
    [18] Weng Zi-Mei, Chen Hao. Solitons in a one-dimensional ferromagnetic chain under the influence of single-ion anisotropy. Acta Physica Sinica, doi: 10.7498/aps.56.1911
    [19] Zhuang Fei, Shen Jian-Qi. Investigation of photon geometric phases inside a curved fiber made of biaxially anisotropic left-handed media. Acta Physica Sinica, doi: 10.7498/aps.54.955
    [20] Du Qi-Zhen, Yang Hui-Zhu. . Acta Physica Sinica, doi: 10.7498/aps.51.2101
Metrics
  • Abstract views:  301
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  29 November 2024
  • Accepted Date:  03 January 2025
  • Available Online:  17 February 2025

/

返回文章
返回