Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interlayer angle dependence of photoelectric properties of Sb/SnC van der Waals heterojunction and its application

Wang Fan-Fan Chen Dong Yuan Jun Zhang Zhu-Feng Jiang Tao Zhou Jun

Citation:

Interlayer angle dependence of photoelectric properties of Sb/SnC van der Waals heterojunction and its application

Wang Fan-Fan, Chen Dong, Yuan Jun, Zhang Zhu-Feng, Jiang Tao, Zhou Jun
cstr: 32037.14.aps.73.20241138
PDF
HTML
Get Citation
  • The discovery of novel properties in twisted bilayer graphene has opened up new avenues of research in physics and materials science, making the twistronics a new research hotspot. In this paper, based on two-dimensional tin-based materials and antimonene monolayers, six types of Sb/SnC two-dimensional van der Waals heterostructures (vdWH) with different interlayer twist angles are constructed, and their optoelectronic properties and applications are studied by first-principles calculations. All modeling and calculations are performed using the density functional theory (DFT) software Quantum-ATK. The results show that the Sb/SnC vdWHs with six different interlayer twist angles have various band gaps, and when the interlayer twist angles are 10.89°, 19.11°, 23.41°, and 30°, the Sb/SnC vdWH exhibit a type-I band edge alignment, while at 8.95° and 13.59°, they present a type-II band structure. The results of the orbital-projected band structures of the Sb/SnC vdWHs reveal that the variation in interlayer twist angles changes the atomic stacking in the heterostructures, thereby modifying orbital coupling and further tuning the electronic structure of the heterostructures. Additionally, the calculated absorption spectra indicate that comparing individual Sb and SnC monolayers with Sb/SnC vdWHs, the latter’s absorption coefficient r is significantly enhanced in the visible light region, and the optical absorption characteristics of the heterostructures with different interlayer twist angles vary markedly. In terms of applications, as materials for solar cells, the Sb/SnC vdWHs with interlayer twist angles of 8.95° and 13.59° exhibit photovoltaic conversion efficiencies of 17.48% and 18.59%, respectively; as photocatalysts for the complete water splitting, the Sb/SnC vdWH with an interlayer twist angle of 8.95° can catalytically decompose water across a pH range of 0–2, while a twist angle of 13.59° confines its catalytic activity to a pH value between 0 and 1. Therefore, Sb/SnC van der Waals heterostructures have special rotation angles and have multifunctional application prospects in the fields of solar energy and photocatalysis. More importantly, our research demonstrates that in addition to traditional methods such as strain, doping, and defects, adjusting the interlayer twist angle provides a new degree of freedom for manipulating the optoelectronic properties of materials.
      Corresponding author: Zhou Jun, zhoujun@nbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62375146, 61675104, 61320106014) and the K. C. Wong Magna Fund in Ningbo University, China.
    [1]

    Cao Y, Fatemi V, Fang S A, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [2]

    Carr S, Massatt D, Fang S A, Cazeaux P, Luskin M, Kaxiras E 2017 Phys. Rev. B 95 075420Google Scholar

    [3]

    Carr S, Fang S A, Kaxiras E 2020 Nat. Rev. Mater. 5 748Google Scholar

    [4]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [5]

    Ren Y N, Zhang Y, Liu Y W, He L 2020 Chin. Phys. B 29 117303Google Scholar

    [6]

    Choi Y, Kim H, Peng Y, Thomson A, Lewandowski C, Polski R, Zhang Y, Arora H S, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2021 Nature 589 536Google Scholar

    [7]

    Koshino M 2019 Phys. Rev. B 99 235406Google Scholar

    [8]

    Ninno G De, Wätzel J, Ribič P R, Allaria E, Coreno M, Danailov M B, David C, Demidovich A, Di Fraia M, Giannessi L, Hansen K, Krušič Š, Manfredda M, Meyer M, Mihelič A, Mirian N, Plekan O, Ressel B, Rösner B, Simoncig A, Spampinati S, Stupar M, Žitnik M, Zangrando M, Callegari C, Berakdar J 2020 Nat. Photon. 14 554Google Scholar

    [9]

    Tebyetekerwa M, Truong T N, Yan W, Tang C, Wibowo A A, Bullock J, Du A, Yan C, Macdonald D, Nguyen H T 2022 Adv. Mat. Inter. 9 2201649Google Scholar

    [10]

    Liu B Y, Zhang Y T, Qiao R X, Shi R C, Li Y H, Guo Q L, Li J D, Li X M, Wang L, Qi J J, Du S X, Ren X G, Liu K H, Gao P, Zhang Y Y 2023 Phys. Rev. Lett. 131 016201Google Scholar

    [11]

    Foutty B A, Kometter C R, Devakul T, Reddy A P, Watanabe K, Taniguchi T, Fu L, Feldman B E 2024 Science 384 343Google Scholar

    [12]

    Hidalgo F, Sánchez-Ochoa F, Noguez C 2023 npj 2D Mater. Appl. 7 40Google Scholar

    [13]

    Fadaie M, Shahtahmassebi N, Roknabad M R, Gulseren O 2017 Comput. Mater. Sci. 137 208Google Scholar

    [14]

    Dai Z N, Cao Y, Yin W J, Sheng W, Xu Y 2022 J. Phys. D: Appl. Phys. 55 315503Google Scholar

    [15]

    Jiang X X, Gao Q, Xu X H, Xu G, Li D M, Cui B, Liu D S, Qu F Y 2021 Phys. Chem. Chem. Phys. 23 21641Google Scholar

    [16]

    Niu T C, Meng Q L, Zhou D C, Si N, Zhai S W, Hao X M, Zhou M, Fuchs H 2020 Adv. Mater. 32 1906873Google Scholar

    [17]

    Sun S, Yang T, Luo Y Z, Gou J, Huang Y L, Gu C D, Ma Z R, Lian X, Duan S S, Wee A T S, Lai M, Zhang J L, Feng Y P, Chen W 2020 J. Phys. Chem. Lett. 11 8976Google Scholar

    [18]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem. Int. Ed. Engl. 54 3112Google Scholar

    [19]

    Singh D, Gupta S K, Sonvane Y, Lukačević I 2016 J. Mater. Chem. C 4 6386Google Scholar

    [20]

    Shakil M, Rehman A, Nabi G, Tanveer M, Gillani S, Al-Buriahi M S, Tamam N, Alrowaili Z A 2023 Physica B: Condens. Matter 670 415389Google Scholar

    [21]

    Zheng K, Cui H P, Yu J B, Chen X P 2022 IEEE T. Electron Dev. 69 1155Google Scholar

    [22]

    Wang X, Quhe R, Cui W, Zhi Y, Huang Y, An Y, Dai X, Tang Y, Chen W, Wu Z, Tang W 2018 Carbon 129 738Google Scholar

    [23]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. Condens. Matter 32 15901Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Vydrov O A, Heyd J, Krukau A V, Scuseria G E 2006 J. Chem. Phys. 125 74106Google Scholar

    [26]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [27]

    Chen H L, Han J N, Deng X Q, Fan Z Q, Sun L, Zhang Z H 2022 Appl. Surf. Sci. 598 153756Google Scholar

    [28]

    Tan X Y, Liu L L, Ren D H 2020 Chin. Phys. B 29 76102Google Scholar

    [29]

    Jelver L, Larsen P M, Stradi D, Stokbro K, Jacobsen K W 2017 Phys. Rev. B 96 085306Google Scholar

    [30]

    Deng S, Zhang Y, Li L 2019 Appl. Surf. Sci. 476 308Google Scholar

    [31]

    Wang F F, Yuan J, Zhang Z F, Ding X L, Gu C J, Yan S B, Sun J H, Jiang T, Wu Y F, Zhou J 2023 Phys. Rev. B 108 075416Google Scholar

    [32]

    Jiang X X, Xie W L, Xu X H, Gao Q, Li D M, Cui B, Liu D S, Qu F Y 2022 Nanoscale 14 7292Google Scholar

    [33]

    Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J 2006 Adv. Mater. 18 789Google Scholar

    [34]

    Mao Y L, Qin C Q, Wang J, Yuan J M 2022 Phys. Chem. Chem. Phys. 24 16058Google Scholar

    [35]

    Ahammed R, Rawat A, Jena N, Dimple, Mohanta M K, Sarkar A D 2020 Appl. Surf. Sci. 499 143894Google Scholar

    [36]

    Lv X S, Wei W, Mu C, Huang B B, Dai Y 2018 J. Mater. Chem. A 6 5032Google Scholar

    [37]

    Lin P, Xu N S, Tan X L, Yang X H, Xiong R, Wen C L, Wu B, Lin Q L, Sa B S 2022 RSC Adv. 12 998Google Scholar

    [38]

    Shi L, Xu W P, Qiu X, Xiao X L, Wei H R, Duan Y H, Wang R, Fan J, Wu X Z 2023 Appl. Phy. Lett. 123 131102Google Scholar

    [39]

    Navarro Yerga Rufino M, Alvarez Galván M Consuelo, del Valle F, Villoria de la Mano José A, Fierro José L G 2009 Chem. Sus. Chem. 2 471Google Scholar

    [40]

    Wang Y Q, Zhang R R, Li J B, Li L L, Lin S W 2014 Nanoscale Res. Lett. 9 46Google Scholar

    [41]

    Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R, Sumanasekera G U 2007 Science 318 1424Google Scholar

    [42]

    Zhao Z, Yang C, Cao Z, Bian Y, Li B, Wei Y 2022 Spectrochim. Acta Part A. 278 121359Google Scholar

    [43]

    Zhang W X, Hou J T, Bai M, He C, Wen J R 2023 Chin. Chem. Lett. 34 108270Google Scholar

    [44]

    Luo Y, Ren K, Wang S K, Chou J P, Yu J, Sun Z M, Sun M L 2019 J. Phys. Chem. C 123 22742Google Scholar

    [45]

    Sutter P, Ibragimova R, Komsa H P, Parkinson B A, Sutter E 2019 Nat. Commun. 10 5528Google Scholar

    [46]

    Yuan L, Zheng B Y, Kunstmann J, Brumme T, Kuc A B, Ma C, Deng S B, Blach D, Pan A L, Huang L B 2020 Nat. Mater. 19 617Google Scholar

    [47]

    Molaei M J, Younas M, Rezakazemi M 2022 Mater. Sci. Eng. B 285 115936Google Scholar

  • 图 1  (a) Sb单层和(b) SnC单层的俯视图和侧视图; (c) Sb单层和(d) SnC单层的能带结构

    Figure 1.  Top view and side view of (a) Sb and (b) SnC monolayer; band structure of (c) SnC and (d) Sb monolayer.

    图 2  不同层间转角的Sb/SnC异质结的俯视图和侧视图 (a) 8.95°; (b) 10.89°; (c) 13.59°; (d) 19.11°; (e) 23.41°; (f) 30°

    Figure 2.  Top view and side view of Sb/SnC vdWHs with different interlayer rotation angle: (a) 8.95°; (b) 10.89°; (c) 13.59°; (d) 19.11°; (e) 23.41°; (f) 30°.

    图 3  不同层间转角的Sb/SnC异质结的能带结构 (a) 8.95°; (b) 10.89°; (c) 13.59°; (d) 19.11°; (e) 23.41°; (f) 30°

    Figure 3.  Band structures of Sb/SnC vdWHs with different interlayer rotation angle: (a) 8.95°; (b) 10.89°; (c) 13.59°; (d) 19.11°; (e) 23.41°; (f) 30°.

    图 4  不同层间转角的Sb/SnC异质结的轨道投影态密度 (a) 8.95°; (b) 10.89°; (c) 13.59°; (d) 19.11°; (e) 23.41°; (f) 30°

    Figure 4.  Orbital projected density of state of Sb/SnC vdWHs with different interlayer rotation angle: (a) 8.95°; (b) 10.89°; (c) 13.59°; (d) 19.11°; (e) 23.41°; (f) 30°.

    图 5  Sb单层、SnC单层和Sb/SnC异质结的(a)面内和(b)面外方向的光吸收系数

    Figure 5.  Absorption coefficients of Sb monolayer, SnC monolayer, Sb/SnC vdWHs in the (a) in-plane and (b) out-of-plane directions.

    图 6  Sb, SnC及Sb/SnC异质结的价带顶和导带底的电位. 绿色(紫色)实线和虚线分别表示pH为0(2)时, 水分解的标准氧化电位和还原电位

    Figure 6.  Potential of valence band maximum and conduction band minimum of Sb, SnC, and Sb/SnC vdWH. The green (purple) solid line and dashed line represent the standard oxidation potential and reduction potential of water decomposition at a pH of 0(2), respectively.

    表 1  六种层间转角的Sb/SnC异质结的结构信息

    Table 1.  Structure information of Sb/SnC vdWH with six interlayer rotation angles.

    旋转角 8.95° 10.89° 13.59° 19.11° 23.41° 30°
    Sb超胞 $ 5\times 5 $ $ 4\times 4 $ $ \sqrt{13}\times \sqrt{13} $ $ \sqrt{7}\times \sqrt{7} $ $ \sqrt{19}\times \sqrt{19} $ $ \sqrt{3}\times \sqrt{3} $
    SnC超胞 $ \sqrt{31}\times \sqrt{31} $ $ \sqrt{21}\times \sqrt{21} $ $ 4\times 4 $ $ 3\times 3 $ $ 5\times 5 $ $ 2\times 2 $
    原子数 112 74 58 32 88 14
    应变 0.99% 0.91% 1.2% 0.23% 0.99% 1.4%
    层间距/Å 3.2 3.26 3.46 3.41 3.31 3.38
    Eb/meV –79.4 –80.6 –76.6 –80.0 –79.3 –80.2
    DownLoad: CSV

    表 2  多种二维范德瓦耳斯异质结的光电转换效率

    Table 2.  Power conversion efficiency of some 2D van der Waals heterostructures.

    2D vdWHs PCE/% Ref.
    AsP/CdSe 13 [34]
    ZrS3/MoSeTe 16 [35]
    Sb/InSe 17.2 [21]
    g-C3N4/WTe2 17.68 [36]
    GeSe/SnS 18 [37]
    Sb/SnC (θ = 8.95°) 17.48 This work
    Sb/SnC (θ = 13.59°) 18.59 This work
    DownLoad: CSV

    表 3  多种II型范德瓦耳斯异质结的带隙以及在红外和可见光区的吸收系数最大值

    Table 3.  Band gap and the maximum absorption coefficients in infrared and visible region of some type-II van der Waals heterostructures.

    带隙/eV 吸收系数 Ref.
    ZnO/Blue P 1.83 2×104 [42]
    PG/AlAs5 2.13 2.2×104 [43]
    MoS2/BSe 1.80 1.6×105 [44]
    WS2/BSe 2.14 2×105 [44]
    Sb/SnC (θ = 8.95°) 1.44 3×105 This work
    Sb/SnC (θ = 13.59°) 1.34 3×105 This work
    DownLoad: CSV
  • [1]

    Cao Y, Fatemi V, Fang S A, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [2]

    Carr S, Massatt D, Fang S A, Cazeaux P, Luskin M, Kaxiras E 2017 Phys. Rev. B 95 075420Google Scholar

    [3]

    Carr S, Fang S A, Kaxiras E 2020 Nat. Rev. Mater. 5 748Google Scholar

    [4]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [5]

    Ren Y N, Zhang Y, Liu Y W, He L 2020 Chin. Phys. B 29 117303Google Scholar

    [6]

    Choi Y, Kim H, Peng Y, Thomson A, Lewandowski C, Polski R, Zhang Y, Arora H S, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2021 Nature 589 536Google Scholar

    [7]

    Koshino M 2019 Phys. Rev. B 99 235406Google Scholar

    [8]

    Ninno G De, Wätzel J, Ribič P R, Allaria E, Coreno M, Danailov M B, David C, Demidovich A, Di Fraia M, Giannessi L, Hansen K, Krušič Š, Manfredda M, Meyer M, Mihelič A, Mirian N, Plekan O, Ressel B, Rösner B, Simoncig A, Spampinati S, Stupar M, Žitnik M, Zangrando M, Callegari C, Berakdar J 2020 Nat. Photon. 14 554Google Scholar

    [9]

    Tebyetekerwa M, Truong T N, Yan W, Tang C, Wibowo A A, Bullock J, Du A, Yan C, Macdonald D, Nguyen H T 2022 Adv. Mat. Inter. 9 2201649Google Scholar

    [10]

    Liu B Y, Zhang Y T, Qiao R X, Shi R C, Li Y H, Guo Q L, Li J D, Li X M, Wang L, Qi J J, Du S X, Ren X G, Liu K H, Gao P, Zhang Y Y 2023 Phys. Rev. Lett. 131 016201Google Scholar

    [11]

    Foutty B A, Kometter C R, Devakul T, Reddy A P, Watanabe K, Taniguchi T, Fu L, Feldman B E 2024 Science 384 343Google Scholar

    [12]

    Hidalgo F, Sánchez-Ochoa F, Noguez C 2023 npj 2D Mater. Appl. 7 40Google Scholar

    [13]

    Fadaie M, Shahtahmassebi N, Roknabad M R, Gulseren O 2017 Comput. Mater. Sci. 137 208Google Scholar

    [14]

    Dai Z N, Cao Y, Yin W J, Sheng W, Xu Y 2022 J. Phys. D: Appl. Phys. 55 315503Google Scholar

    [15]

    Jiang X X, Gao Q, Xu X H, Xu G, Li D M, Cui B, Liu D S, Qu F Y 2021 Phys. Chem. Chem. Phys. 23 21641Google Scholar

    [16]

    Niu T C, Meng Q L, Zhou D C, Si N, Zhai S W, Hao X M, Zhou M, Fuchs H 2020 Adv. Mater. 32 1906873Google Scholar

    [17]

    Sun S, Yang T, Luo Y Z, Gou J, Huang Y L, Gu C D, Ma Z R, Lian X, Duan S S, Wee A T S, Lai M, Zhang J L, Feng Y P, Chen W 2020 J. Phys. Chem. Lett. 11 8976Google Scholar

    [18]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem. Int. Ed. Engl. 54 3112Google Scholar

    [19]

    Singh D, Gupta S K, Sonvane Y, Lukačević I 2016 J. Mater. Chem. C 4 6386Google Scholar

    [20]

    Shakil M, Rehman A, Nabi G, Tanveer M, Gillani S, Al-Buriahi M S, Tamam N, Alrowaili Z A 2023 Physica B: Condens. Matter 670 415389Google Scholar

    [21]

    Zheng K, Cui H P, Yu J B, Chen X P 2022 IEEE T. Electron Dev. 69 1155Google Scholar

    [22]

    Wang X, Quhe R, Cui W, Zhi Y, Huang Y, An Y, Dai X, Tang Y, Chen W, Wu Z, Tang W 2018 Carbon 129 738Google Scholar

    [23]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. Condens. Matter 32 15901Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [25]

    Vydrov O A, Heyd J, Krukau A V, Scuseria G E 2006 J. Chem. Phys. 125 74106Google Scholar

    [26]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [27]

    Chen H L, Han J N, Deng X Q, Fan Z Q, Sun L, Zhang Z H 2022 Appl. Surf. Sci. 598 153756Google Scholar

    [28]

    Tan X Y, Liu L L, Ren D H 2020 Chin. Phys. B 29 76102Google Scholar

    [29]

    Jelver L, Larsen P M, Stradi D, Stokbro K, Jacobsen K W 2017 Phys. Rev. B 96 085306Google Scholar

    [30]

    Deng S, Zhang Y, Li L 2019 Appl. Surf. Sci. 476 308Google Scholar

    [31]

    Wang F F, Yuan J, Zhang Z F, Ding X L, Gu C J, Yan S B, Sun J H, Jiang T, Wu Y F, Zhou J 2023 Phys. Rev. B 108 075416Google Scholar

    [32]

    Jiang X X, Xie W L, Xu X H, Gao Q, Li D M, Cui B, Liu D S, Qu F Y 2022 Nanoscale 14 7292Google Scholar

    [33]

    Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J 2006 Adv. Mater. 18 789Google Scholar

    [34]

    Mao Y L, Qin C Q, Wang J, Yuan J M 2022 Phys. Chem. Chem. Phys. 24 16058Google Scholar

    [35]

    Ahammed R, Rawat A, Jena N, Dimple, Mohanta M K, Sarkar A D 2020 Appl. Surf. Sci. 499 143894Google Scholar

    [36]

    Lv X S, Wei W, Mu C, Huang B B, Dai Y 2018 J. Mater. Chem. A 6 5032Google Scholar

    [37]

    Lin P, Xu N S, Tan X L, Yang X H, Xiong R, Wen C L, Wu B, Lin Q L, Sa B S 2022 RSC Adv. 12 998Google Scholar

    [38]

    Shi L, Xu W P, Qiu X, Xiao X L, Wei H R, Duan Y H, Wang R, Fan J, Wu X Z 2023 Appl. Phy. Lett. 123 131102Google Scholar

    [39]

    Navarro Yerga Rufino M, Alvarez Galván M Consuelo, del Valle F, Villoria de la Mano José A, Fierro José L G 2009 Chem. Sus. Chem. 2 471Google Scholar

    [40]

    Wang Y Q, Zhang R R, Li J B, Li L L, Lin S W 2014 Nanoscale Res. Lett. 9 46Google Scholar

    [41]

    Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R, Sumanasekera G U 2007 Science 318 1424Google Scholar

    [42]

    Zhao Z, Yang C, Cao Z, Bian Y, Li B, Wei Y 2022 Spectrochim. Acta Part A. 278 121359Google Scholar

    [43]

    Zhang W X, Hou J T, Bai M, He C, Wen J R 2023 Chin. Chem. Lett. 34 108270Google Scholar

    [44]

    Luo Y, Ren K, Wang S K, Chou J P, Yu J, Sun Z M, Sun M L 2019 J. Phys. Chem. C 123 22742Google Scholar

    [45]

    Sutter P, Ibragimova R, Komsa H P, Parkinson B A, Sutter E 2019 Nat. Commun. 10 5528Google Scholar

    [46]

    Yuan L, Zheng B Y, Kunstmann J, Brumme T, Kuc A B, Ma C, Deng S B, Blach D, Pan A L, Huang L B 2020 Nat. Mater. 19 617Google Scholar

    [47]

    Molaei M J, Younas M, Rezakazemi M 2022 Mater. Sci. Eng. B 285 115936Google Scholar

  • [1] Wang Xiu-Yu, Wang Tao, Cui Yu-Ang, Wu Xi-Guang-Run, Wang Yang. First-principles study of effect of impurity compensation on optical properties of Si. Acta Physica Sinica, 2024, 73(11): 116301. doi: 10.7498/aps.73.20231814
    [2] Liu Jun-Ling, Bai Yu-Jie, Xu Ning, Zhang Qin-Fang. First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure. Acta Physica Sinica, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [3] Tang Jia-Xin, Li Zhan-Hai, Deng Xiao-Qing, Zhang Zhen-Hua. Electrical contact characteristics and regulatory effects of GaN/VSe2 van der Waals heterojunction. Acta Physica Sinica, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [4] Huang Min, Li Zhan-Hai, Cheng Fang. Tunable electronic structures and interface contact in graphene/C3N van der Waals heterostructures. Acta Physica Sinica, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [5] Sun Ting-Yu, Wu Liang, He Xian-Juan, Jiang Nan, Zhou Wen-Zhe, Ouyang Fang-Ping. Effect of strain and electric field on electronic structure and optical properties of Ga2SeTe/In2Se3 heterojunction. Acta Physica Sinica, 2023, 72(7): 076301. doi: 10.7498/aps.72.20222250
    [6] Zhang Lun, Chen Hong-Li, Yi Yu, Zhang Zhen-Hua. Electronic and optical properties and quantum tuning effects of As/Hfs2 van der Waals heterostructure. Acta Physica Sinica, 2022, 71(17): 177304. doi: 10.7498/aps.71.20220371
    [7] Kong Yu-Han, Wang Rong, Xu Ming-Sheng. Photoluminescence properties of CuPc/MoS2 van der Waals heterostructure. Acta Physica Sinica, 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [8] Yao Yi-Zhou, Cao Dan, Yan Jie, Liu Xue-Yin, Wang Jian-Feng, Jiang Zhou-Ting, Shu Hai-Bo. A first-principles study on environmental stability and optoelectronic properties of bismuth oxychloride/ cesium lead chloride van der Waals heterojunctions. Acta Physica Sinica, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [9] Jiang Cheng-Xin, Chen Ling-Xiu, Wang Hui-Shan, Wang Xiu-Jun, Chen Chen, Wang Hao-Min, Xie Xiao-Ming. Synthesis and pressure study of bubbles in hexagonal boron nitride interlayer. Acta Physica Sinica, 2021, 70(6): 069801. doi: 10.7498/aps.70.20201482
    [10] Xu Xiang, Zhang Ying, Yan Qing, Liu Jing-Jing, Wang Jun, Xu Xin-Long, Hua Deng-Xin. Photochemical properties of rhenium disulfide/graphene heterojunctions with different stacking structures. Acta Physica Sinica, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [11] Wu Tian, Yao Meng-Li, Long Meng-Qiu. First principle calculations of interface interactions and photoelectric properties of perovskite CsPbX3 (X=Cl, Br, I) and penta-graphene van der Waals heterostructures. Acta Physica Sinica, 2021, 70(5): 056301. doi: 10.7498/aps.70.20201246
    [12] Jia Wan-Li, Zhou Miao, Wang Xin-Mei, Ji Wei-Li. First-principles study on the optical properties of Fe-doped GaN. Acta Physica Sinica, 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [13] Qu Ling-Feng, Hou Qing-Yu, Xu Zhen-Chao, Zhao Chun-Wang. Photoelectric properties of Ti doped ZnO: First principles calculation. Acta Physica Sinica, 2016, 65(15): 157201. doi: 10.7498/aps.65.157201
    [14] Shi Yan-Li, Han Wei, Lu Tie-Cheng, Chen Jun. First principles study of the electronic and optical properties of silica glass with hydroxyl group. Acta Physica Sinica, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [15] He Jing-Fang, Zheng Shu-Kai, Zhou Peng-Li, Shi Ru-Qian, Yan Xiao-Bing. First-principles calculations on the electronic and optical properties of ZnO codoped with Cu-Co. Acta Physica Sinica, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [16] Hu Jie-Qiong, Xie Ming, Zhang Ji-Ming, Liu Man-Men, Yang You-Cai, Chen Yong-Tai. First principles study of Au-Sn intermetallic compounds. Acta Physica Sinica, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [17] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [18] Yu Zhi-Qiang. Electronic structure and photoelectric properties of OsSi2 epitaxially grown on a Si(111) substrate. Acta Physica Sinica, 2012, 61(21): 217102. doi: 10.7498/aps.61.217102
    [19] Chen Kun, Fan Guang-Han, Zhang Yong. First principles study of optical properties of wurtzite ZnO with Mn-doping. Acta Physica Sinica, 2008, 57(2): 1054-1060. doi: 10.7498/aps.57.1054
    [20] Zhang Jin-Kui, Deng Sheng-Hua, Jin Hui, Liu Yue-Lin. First-principle study on the electronic structure and p-type conductivity of ZnO. Acta Physica Sinica, 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
Metrics
  • Abstract views:  191
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  15 August 2024
  • Accepted Date:  20 September 2024
  • Available Online:  28 October 2024
  • Published Online:  20 November 2024

/

返回文章
返回