搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

六方氮化硼层间气泡制备与压强研究

姜程鑫 陈令修 王慧山 王秀君 陈晨 王浩敏 谢晓明

引用本文:
Citation:

六方氮化硼层间气泡制备与压强研究

姜程鑫, 陈令修, 王慧山, 王秀君, 陈晨, 王浩敏, 谢晓明

Synthesis and pressure study of bubbles in hexagonal boron nitride interlayer

Jiang Cheng-Xin, Chen Ling-Xiu, Wang Hui-Shan, Wang Xiu-Jun, Chen Chen, Wang Hao-Min, Xie Xiao-Ming
PDF
HTML
导出引用
  • 六方氮化硼(h-BN)具有六角网状晶格结构和高化学机械稳定性, 可以用来封装气体并长期保持稳定, 适合用作新型信息器件及微纳机电器件的衬底材料, 具有巨大的应用前景. 近期, 科研人员发现氢原子可以无损穿透多层h-BN, 在层间形成气泡, 可用作微纳机电器件. 本文研究了氢等离子体处理时间对h-BN气泡尺寸的影响. 发现随着处理时间的延长, 气泡尺寸整体变大且分布密集程度会降低. 原子力显微镜的测量发现所制备的h-BN气泡具有相似的形貌特征, 该特征与h-BN的杨氏模量和层间范德瓦耳斯作用相关. 此外, 发现微米尺寸气泡的内部压强约为1—2 MPa, 纳米尺寸气泡的内部压强可达到GPa量级.
    Hexagonal boron nitride (h-BN) is considered as an ideal substrate material for new electronic devices and nano-electromechanical (NEMS) devices, owing to its hexagonal network lattice structure and high chemical and mechanical stability. It can be used to seal gas with a long-term stability, and then has a big potential in further applications in electronics and NEMS. Recently, researchers have discovered that hydrogen atoms can penetrate multiple layers of h-BN non-destructively, forming the bubbles between layers, which can be used as NEMS devices. In this article, we investigate the effect of hydrogen plasma treatment duration on the size of h-BN bubbles. It is found that the size of bubbles becomes larger with the increase of treatment time while their distribution density decreases. It is also observed that the prepared h-BN bubbles have similar morphological characteristics, which are related to Young’s modulus of h-BN and interlayer van der Waals interaction. With the help of force-displacement curve measurement, it is obtained that the internal pressure is about 1—2 MPa for micro-sized bubbles, while the internal pressure of nano-sized bubbles can reach a value of GPa.
      通信作者: 王浩敏, hmwang@mail.sim.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFF0206106)、国家自然科学基金(批准号: 51772317, 91964102)、中国科学院战略性先导科技专项(B类)(批准号: XDB30000000)、上海市“超级博士后”和中国博士后科学基金(批准号: 2019T120366, 2019M651620)资助的课题
      Corresponding author: Wang Hao-Min, hmwang@mail.sim.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFF0206106), the National Natural Science Foundation of China (Grant Nos. 51772317, 91964102), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB30000000), the Shanghai “Super Postdoctor” Program, and the China Postdoctoral Science Foundation (Grant Nos. 2019T120366, 2019M651620)
    [1]

    Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J 2004 Science 303 217Google Scholar

    [2]

    Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A, Crommie M F 2011 Nano Lett. 11 2291Google Scholar

    [3]

    Dean C R, Young A F, Meric I, et al. 2010 Nat. Nanotechnol. 5 722Google Scholar

    [4]

    Liu L, Ryu S, Tomasik M R, et al. 2008 Nano Lett. 8 1965Google Scholar

    [5]

    Liu Z, Gong Y, Zhou W, et al. 2013 Nat. Commun. 4 2541Google Scholar

    [6]

    Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766Google Scholar

    [7]

    Li L H, Cervenka J, Watanabe K, Taniguchi T, Chen Y 2014 ACS Nano 8 1457Google Scholar

    [8]

    Falin A, Cai Q, Santos E J G, et al. 2017 Nat. Commun. 8 1Google Scholar

    [9]

    Bunch J S, Verbridge S S, Alden J S, et al. 2008 Nano Lett. 8 2458Google Scholar

    [10]

    Liu L, Feng Y P, Shen Z X 2003 Phys. Rev. B 68 104102Google Scholar

    [11]

    Ko H, Lee J S, Kim S M 2018 Appl. Sci. Convergence Technol. 27 144Google Scholar

    [12]

    Dai Z, Hou Y, Sanchez D A, Wang G, Brennan C J, Zhang Z, Liu L, Lu N 2018 Phys. Rev. Lett. 121 266101Google Scholar

    [13]

    Khestanova E, Guinea F, Fumagalli L, Geim A K, Grigorieva I V 2016 Nat. Commun. 7 12587Google Scholar

    [14]

    Wang G, Dai Z, Wang Y, Tan P, Liu L, Xu Z, Wei Y, Huang R, Zhang Z 2017 Phys. Rev. Lett. 119 036101Google Scholar

    [15]

    Zhang B, Jiang L, Zheng Y 2019 Phys. Rev. B 99 245410Google Scholar

    [16]

    Hu X, Gong X, Zhang M, Lu H, Xue Z, Mei Y, Chu P K, An Z, Di Z 2020 Small 16 1907170Google Scholar

    [17]

    Georgiou T, Britnell L, Blake P, Gorbachev R V, Gholinia A, Geim A K, Casiraghi C, Novoselov K S 2011 Appl. Phys. Lett. 99 093103Google Scholar

    [18]

    Huang P, Guo D, Xie G, Li J 2018 Phys. Chem. Chem. Phys. 20 18374Google Scholar

    [19]

    Chirolli L, Prada E, Guinea F, Roldan R, San-Jose P 2019 2D Mater. 6 025010Google Scholar

    [20]

    Tyurnina A V, Bandurin D A, Khestanova E, Kravets V G, Koperski M, Guinea F, Grigorenko A N, Geim A K, Grigorieva I V 2019 ACS Photonics 6 516Google Scholar

    [21]

    He L, Wang H, Chen L, et al. 2019 Nat. Commun. 10 2815Google Scholar

    [22]

    Cooper R C, Lee C, Marianetti C A, Wei X, Hone J, Kysar J W 2013 Phys. Rev. B 87 035423Google Scholar

    [23]

    Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S J, Agraït N, Rubio-Bollinger G 2012 Adv. Mater. 24 772Google Scholar

    [24]

    Liu K, Yan Q, Chen M, Fan W, Sun Y, Suh J, Fu D, Lee S, Zhou J, Tongay S, Ji J, Neaton J B, Wu J 2014 Nano Lett. 14 5097Google Scholar

    [25]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [26]

    López-Polín G, Gómez-Navarro C, Parente V, Guinea F, Katsnelson M I, Pérez-Murano F, Gómez-Herrero J 2015 Nat. Phys. 11 26Google Scholar

    [27]

    Wei X, Meng Z, Ruiz L, Xia W, Lee C, Kysar J W, Hone J C, Keten S, Espinosa H D 2016 ACS Nano 10 1820Google Scholar

    [28]

    Wang G, Dai Z, Xiao J, Feng S, Weng C, Liu L, Xu Z, Huang R, Zhang Z 2019 Phys. Rev. Lett. 123 116101Google Scholar

    [29]

    Wood J D, Harvey C M, Wang S 2017 Nat. Commun. 8 1952Google Scholar

    [30]

    Landau L D, Lifshitz E M, Sykes J B, Reid W H, Dill E H 1960 Phys. Today 13 44Google Scholar

    [31]

    Wang P, Gao W, Cao Z, Liechti K M, Huang R 2013 J. Appl. Mech. 80 040905Google Scholar

  • 图 1  h-BN气泡的典型AFM形貌图像 (a) 具有不同尺寸以及不同分布密集程度的h-BN纳米气泡形貌图像(标尺: 1 μm); (b), (c) 分别是图(a)中红色和橙色线框区域的放大AFM测量形貌图; 所有形貌图像共享右侧的标尺

    Fig. 1.  Typical AFM images of h-BN bubbles: (a) Topography of h-BN bubbles in different size and distribution density. Scale bar, 1 μm; (b), (c) AFM images taken from the red and orange box in panel (a) respectively. The scale of height sits on the right.

    图 2  氢等离子体处理不同时间后h-BN气泡分布情况 (a)−(c) 氢等离子体处理60, 90和120 min时, h-BN表面的气泡情况(标尺: 2 μm), 图(a)和图(b)中的插图分别是对应处理时间的单个气泡的AFM形貌图像, 图(a)插图的标尺为50 nm, 图(b)插图的标尺为400 nm; (d) 图(a)和图(b)的插图以及图(c)的气泡截面轮廓, 柱状图部分是在不同处理时间下气泡平均高度的统计

    Fig. 2.  Distribution of h-BN bubbles after hydrogen plasma treatment for different treatment duration. (a)−(c) AFM images of the h-BN bubbles after treated for 60, 90 and 120 min. Scale bar: 2 μm. The inserts in (a) and (b) are the AFM topography images of a single bubble corresponding to the processing time. The scale bar is 50 nm for insert in (a) and 400 nm for the insert in (b). (d) Cross-sectional profiles of bubbles in inserts of panels (a) and (b) and panel (c). The histogram part is the average bubble height under different processing times according to statistics.

    图 3  气泡特征尺寸的统计分析 (a) 对不同半径气泡的尺寸比统计结果, 插图是h-BN气泡的结构示意图; (b) 具有不同尺寸比的气泡数量统计, 可以发现h-BN气泡的尺寸比集中在0.092附近, 橙色点代表气泡的尺寸比与0.092的偏差, 整体偏差值在10%范围以内(绿色区域)

    Fig. 3.  Characteristic analysis of bubbles. (a) Statistical results of size ratios hmax/R of bubbles with different radius. The inset is a schematic diagram of the h-BN bubble structure. (b) Statistics of bubble numbers with different size ratios. It can be found that the size ratio of h-BN bubbles is concentrated around 0.092. The orange point represents the deviation of the bubble size ratio from 0.092, and the overall deviation value is within 10% (green area).

    图 4  h-BN气泡内压强的分析 (a) 通过AFM测得的不同尺寸的h-BN气泡的力-位移曲线, 随着探针下压深度的增加, 所需的力也随之增大, 不同尺寸气泡的力-位移曲线表现出不同的斜率; (b) 从实际测得的力-位移数据中提取的vdW压强随探针下压深度的关系, 虚线为对应数据组的线性拟合结果; (c) vdW压强与气泡最大高度hmax的关系图, 实线部分是针对1/hmax的非线性拟合结果

    Fig. 4.  Pressure analysis inside h-BN bubbles. (a) Force-displacement curves of the bubbles with different sizes are measured by AFM, which shows the force increases while the tip goes deeper. The FDCs of different-sized bubbles have diverse slopes. (b) vdW pressure inside bubbles extracted from the experimental data in panel (a) as a function of the indentation depth. Dashed lines are linear fits. (c) vdW pressure as a function of ${h}_{\max}$, the solid line is fitted to ${1/h}_{\max}$.

    图 5  在短时间氢等离子体处理下得到的小尺寸气泡  (a) 小尺寸气泡的分布情况(标尺: 150 nm); (b) 图(a)中标有数字记号的小气泡截面轮廓图

    Fig. 5.  Small size bubbles obtained under short-time hydrogen plasma treatment: (a) The distribution of small size bubbles, the size scale is 150 nm; (b) the cross-sectional profile view of the small bubbles marked with numbers in panel (a).

  • [1]

    Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J 2004 Science 303 217Google Scholar

    [2]

    Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A, Crommie M F 2011 Nano Lett. 11 2291Google Scholar

    [3]

    Dean C R, Young A F, Meric I, et al. 2010 Nat. Nanotechnol. 5 722Google Scholar

    [4]

    Liu L, Ryu S, Tomasik M R, et al. 2008 Nano Lett. 8 1965Google Scholar

    [5]

    Liu Z, Gong Y, Zhou W, et al. 2013 Nat. Commun. 4 2541Google Scholar

    [6]

    Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766Google Scholar

    [7]

    Li L H, Cervenka J, Watanabe K, Taniguchi T, Chen Y 2014 ACS Nano 8 1457Google Scholar

    [8]

    Falin A, Cai Q, Santos E J G, et al. 2017 Nat. Commun. 8 1Google Scholar

    [9]

    Bunch J S, Verbridge S S, Alden J S, et al. 2008 Nano Lett. 8 2458Google Scholar

    [10]

    Liu L, Feng Y P, Shen Z X 2003 Phys. Rev. B 68 104102Google Scholar

    [11]

    Ko H, Lee J S, Kim S M 2018 Appl. Sci. Convergence Technol. 27 144Google Scholar

    [12]

    Dai Z, Hou Y, Sanchez D A, Wang G, Brennan C J, Zhang Z, Liu L, Lu N 2018 Phys. Rev. Lett. 121 266101Google Scholar

    [13]

    Khestanova E, Guinea F, Fumagalli L, Geim A K, Grigorieva I V 2016 Nat. Commun. 7 12587Google Scholar

    [14]

    Wang G, Dai Z, Wang Y, Tan P, Liu L, Xu Z, Wei Y, Huang R, Zhang Z 2017 Phys. Rev. Lett. 119 036101Google Scholar

    [15]

    Zhang B, Jiang L, Zheng Y 2019 Phys. Rev. B 99 245410Google Scholar

    [16]

    Hu X, Gong X, Zhang M, Lu H, Xue Z, Mei Y, Chu P K, An Z, Di Z 2020 Small 16 1907170Google Scholar

    [17]

    Georgiou T, Britnell L, Blake P, Gorbachev R V, Gholinia A, Geim A K, Casiraghi C, Novoselov K S 2011 Appl. Phys. Lett. 99 093103Google Scholar

    [18]

    Huang P, Guo D, Xie G, Li J 2018 Phys. Chem. Chem. Phys. 20 18374Google Scholar

    [19]

    Chirolli L, Prada E, Guinea F, Roldan R, San-Jose P 2019 2D Mater. 6 025010Google Scholar

    [20]

    Tyurnina A V, Bandurin D A, Khestanova E, Kravets V G, Koperski M, Guinea F, Grigorenko A N, Geim A K, Grigorieva I V 2019 ACS Photonics 6 516Google Scholar

    [21]

    He L, Wang H, Chen L, et al. 2019 Nat. Commun. 10 2815Google Scholar

    [22]

    Cooper R C, Lee C, Marianetti C A, Wei X, Hone J, Kysar J W 2013 Phys. Rev. B 87 035423Google Scholar

    [23]

    Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S J, Agraït N, Rubio-Bollinger G 2012 Adv. Mater. 24 772Google Scholar

    [24]

    Liu K, Yan Q, Chen M, Fan W, Sun Y, Suh J, Fu D, Lee S, Zhou J, Tongay S, Ji J, Neaton J B, Wu J 2014 Nano Lett. 14 5097Google Scholar

    [25]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [26]

    López-Polín G, Gómez-Navarro C, Parente V, Guinea F, Katsnelson M I, Pérez-Murano F, Gómez-Herrero J 2015 Nat. Phys. 11 26Google Scholar

    [27]

    Wei X, Meng Z, Ruiz L, Xia W, Lee C, Kysar J W, Hone J C, Keten S, Espinosa H D 2016 ACS Nano 10 1820Google Scholar

    [28]

    Wang G, Dai Z, Xiao J, Feng S, Weng C, Liu L, Xu Z, Huang R, Zhang Z 2019 Phys. Rev. Lett. 123 116101Google Scholar

    [29]

    Wood J D, Harvey C M, Wang S 2017 Nat. Commun. 8 1952Google Scholar

    [30]

    Landau L D, Lifshitz E M, Sykes J B, Reid W H, Dill E H 1960 Phys. Today 13 44Google Scholar

    [31]

    Wang P, Gao W, Cao Z, Liechti K M, Huang R 2013 J. Appl. Mech. 80 040905Google Scholar

  • [1] 孙婷钰, 吴量, 何贤娟, 姜楠, 周文哲, 欧阳方平. 应变和电场对Ga2SeTe/In2Se3异质结电子结构和光学性质的影响. 物理学报, 2023, 72(7): 076301. doi: 10.7498/aps.72.20222250
    [2] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应. 物理学报, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [3] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [4] 贾燕伟, 何健, 何萌, 朱肖华, 赵上熳, 刘金龙, 陈良贤, 魏俊俊, 李成明. h-BN/diamond异质结的制备与沟道载流子输运性质. 物理学报, 2022, 71(22): 228101. doi: 10.7498/aps.71.20220995
    [5] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [6] 张仑, 陈红丽, 义钰, 张振华. As/HfS2范德瓦耳斯异质结电子光学特性及量子调控效应. 物理学报, 2022, 71(17): 177304. doi: 10.7498/aps.71.20220371
    [7] 孔宇晗, 王蓉, 徐明生. CuPc/MoS2范德瓦耳斯异质结荧光特性. 物理学报, 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [8] 姚文乾, 孙健哲, 陈建毅, 郭云龙, 武斌, 刘云圻. 二维平面和范德瓦耳斯异质结的可控制备与光电应用. 物理学报, 2021, 70(2): 027901. doi: 10.7498/aps.70.20201419
    [9] 武敏, 费宏明, 林瀚, 赵晓丹, 杨毅彪, 陈智辉. 基于二维六方氮化硼材料的光子晶体非对称传输异质结构设计. 物理学报, 2021, 70(2): 028501. doi: 10.7498/aps.70.20200741
    [10] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法. 物理学报, 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [11] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性. 物理学报, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [12] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析. 物理学报, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [13] 吴甜, 姚梦丽, 龙孟秋. 钙钛矿CsPbX3(X=Cl, Br, I)与五环石墨烯范德瓦耳斯异质结的界面相互作用和光电性能的第一性原理研究. 物理学报, 2021, 70(5): 056301. doi: 10.7498/aps.70.20201246
    [14] 孙志海, 黄强, 张颖, 黄鹏儒, 植慧茵, 邹勇进, 徐芬, 孙立贤. 六方氮化硼单层中一种(CN)3VB缺陷的第一性原理计算. 物理学报, 2021, 70(3): 033102. doi: 10.7498/aps.70.20201364
    [15] 张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟. 电场对graphene/InSe范德瓦耳斯异质结肖特基势垒的调控. 物理学报, 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [16] 陈令修, 王慧山, 姜程鑫, 陈晨, 王浩敏. 六方氮化硼表面石墨烯纳米带生长与物性研究. 物理学报, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [17] 王波, 房玉龙, 尹甲运, 刘庆彬, 张志荣, 郭艳敏, 李佳, 芦伟立, 冯志红. 表面预处理对石墨烯上范德瓦耳斯外延生长GaN材料的影响. 物理学报, 2017, 66(24): 248101. doi: 10.7498/aps.66.248101
    [18] 张增星, 李东. 基于双极性二维晶体的新型p-n结. 物理学报, 2017, 66(21): 217302. doi: 10.7498/aps.66.217302
    [19] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [20] 曹宁通, 张雷, 吕路, 谢海鹏, 黄寒, 牛冬梅, 高永立. 酞菁铜与MoS2(0001)范德瓦耳斯异质结研究. 物理学报, 2014, 63(16): 167903. doi: 10.7498/aps.63.167903
计量
  • 文章访问数:  5247
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-06
  • 修回日期:  2020-11-08
  • 上网日期:  2021-03-02
  • 刊出日期:  2021-03-20

/

返回文章
返回