搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

六方氮化硼单层中一种(CN)3VB缺陷的第一性原理计算

孙志海 黄强 张颖 黄鹏儒 植慧茵 邹勇进 徐芬 孙立贤

引用本文:
Citation:

六方氮化硼单层中一种(CN)3VB缺陷的第一性原理计算

孙志海, 黄强, 张颖, 黄鹏儒, 植慧茵, 邹勇进, 徐芬, 孙立贤

First-principle calculation study of (CN)3VB defect in hexagonal boron nitride monolayer

Sun Zhi-Hai, Huang Qiang, Zhang Ying, Huang Peng-Ru, Zhi Hui-Yin, Zou Yong-Jin, Xu Fen, Sun Li-Xian
PDF
HTML
导出引用
  • 二维六方氮化硼(hBN)的点缺陷最近被发现可以实现室温下的单光子发射, 而成为近年的研究热点. 尽管其具有重要的基础和应用研究意义, hBN中发光缺陷的原子结构起源仍然存在争议. 本文采用基于密度泛函理论的第一性原理计算, 研究hBN单层中一种B空位附近3个N原子被C替代的缺陷(CN)3VB. 在hBN的B空位处, 3个N原子各自带一个在平面内的悬挂键及相应的未配对电子, 而通过C替换可以消除未配对的电子. 系统研究了(CN)3VB缺陷的几何结构、电子结构以及光学性质, 结果表明, 缺陷可以由一个对称的亚稳态经过原子结构弛豫变成1个非对称的、3个C原子连在一起的基态结构. 缺陷的形成在hBN中引入了一些由缺陷悬挂σ键及重构的π键贡献的局域缺陷态. 这些缺陷态可以导致能量阈值在2.58 eV附近的可见光内部跃迁. 本文的工作有助于进一步理解hBN中点缺陷的构成及光学性质, 为实验上探讨发光点缺陷的原子结构起源及其性质提供理论依据.
    The point defect of two-dimensional hexagonal boron nitride (hBN) has recently been discovered to achieve single photon emission at room temperature, and it has become a research hotspot. Despite its important fundamental and applied research significance, the origin of the atomic structure of luminescence defects in hBN is still controversial. In this paper, first-principle calculations based on density functional theory are used to study a defect (CN)3VB in the hexagonal boron nitride monolayer (hBN) where three N atoms near the B vacancy are replaced by C atoms. At the B vacancy of hBN, the three N atoms each carry an in-plane dangling bond and the corresponding unpaired electron, and the unpaired electron can be eliminated by C substitution. We systematically study the geometric structure, electronic structure and optical properties of (CN)3VB defects, analyze the thermodynamic stability of defects through the calculation of the atomic structure, formation energy, and charge state of the defect, and analyze the position in the band gap and its atomic orbital contribution of defect state through energy band structure and wave function. We also analyze its optical properties through dielectric function and absorption coefficient, and predict its luminous photon energy. The results show that the defect can change from a symmetric metastable state to an asymmetric ground state structure with three C atoms connected together through atomic structure relaxation. The formation energy of asymmetric (CN)3VB is 7.94 eV, which is 3.72 eV lower than that of symmetric one. The formation of defects introduces some local defect states contributed by defect dangling σ bonds and reconstructed π bonds in hBN. The defects have valence states between –2 and +2, and the thermodynamic transition energy level of asymmetric (CN)3VB is higher than that of symmetric (CN)3VB. In the transition from the metastable state to the ground state, these defect states can redshift the light absorption boundary of hBN, enhance the absorption intensity of visible light by hBN, and cause internal optical transitions. Among them, there is a visible light transition with an energy threshold around 2.58 eV in the asymmetry (CN)3VB defect. Single boron atom vacancy defect and (CN)3VB have optical transitions near infrared and ultraviolet energy, respectively. The present work will help to further understand the composition and optical properties of point defects in hBN, and provide a theoretical basis for experimentally exploring the origin and properties of the atomic structure of light-emitting point defects.
      通信作者: 黄鹏儒, pengruhuang@guet.edu.cn ; 孙立贤, sunlx@guet.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB1502103, 2018YFB1502105)、国家自然科学基金(批准号: 51801041, 551671062, 5187011196, 51971068)、广西自然科学基金(批准号: 2017JJB150085)和广西科技计划(批准号: 2018AD19052, AA19182014, AD17195073, AA17202030-1)资助的课题
      Corresponding author: Huang Peng-Ru, pengruhuang@guet.edu.cn ; Sun Li-Xian, sunlx@guet.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2018YFB1502103, 2018YFB1502105), the National Natural Science Foundation of China (Grant Nos. 51801041, 551671062, 5187011196, 51971068), the Natural Science Foundation of Guangxi, China (Grant No. 2017JJB150085), and the Science and Technology Project of Guangxi, China (Grant Nos. 2018AD19052, AA19182014, AD17195073, AA17202030-1)
    [1]

    Lee S, Yeo J S, Ji Y, Cho C, Kim D Y, Na S I, Lee B H, Lee T 2012 Nanotechnology 23 344013Google Scholar

    [2]

    Abderrahmane A, Ko P J, Thu T V, Ishizawa S, Takamura T, Sandhu A 2014 Nanotechnology 25 365202Google Scholar

    [3]

    Li X, Yin J, Zhou J, Wang Q, Guo W 2014 Nanotechnology 25 105701Google Scholar

    [4]

    Abdi M, Degenfeld-Schonburg P, Sameti M, Navarrete-Benlloch C, Hartmann M J 2016 Phys. Rev. Lett. 116 233604Google Scholar

    [5]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [6]

    Clark G, Schaibley J R, Ross J, Taniguchi T, Watanabe K, Hendrickson J R, Mou S, Yao W, Xu X 2016 Nano Lett. 16 3944Google Scholar

    [7]

    Shiue R J, Efetov D K, Grosso G, Peng C, Fong K C, Englund D 2017 Nanophotonics 6 1329Google Scholar

    [8]

    Koenderink A F, Alu A, Polman A 2015 Science 348 516Google Scholar

    [9]

    Caldwell J D, Aharonovich I, Cassabois G, Edgar J H, Gil B, Basov D 2019 Nat. Rev. Mater. 4 552Google Scholar

    [10]

    Cai J, Retzker A, Jelezko F, Plenio M B 2013 Nat. Phys. 9 168Google Scholar

    [11]

    Pla J J, Tan K Y, Dehollain J P, Lim W H, Morton J J, Jamieson D N, Dzurak A S, Morello A 2012 Nature 489 541Google Scholar

    [12]

    Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [13]

    O’brien J L, Furusawa A, Vučković J 2009 Nat. Photonics 3 687Google Scholar

    [14]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photonics 8 595Google Scholar

    [15]

    Cheung J, Chunnilall C, Woolliams E, Fox N, Mountford J, Wang J, Thomas P 2007 J. Mod. Opt. 54 373Google Scholar

    [16]

    Rose B C, Huang D, Zhang Z H, Stevenson P, Tyryshkin A M, Sangtawesin S, Srinivasan S, Loudin L, Markham M L, Edmonds A M, Twitchen D J, Lyon S A, de Leon N P 2018 Science 361 60Google Scholar

    [17]

    Chen D, Zheludev N, Gao W B 2020 Adv. Quantum Technol. 3 1900069Google Scholar

    [18]

    Bradac C, Gao W, Forneris J, Trusheim M E, Aharonovich I 2019 Nat. Commun. 10 5625Google Scholar

    [19]

    Tran T T, Bray K, Ford M J, Toth M, Aharonovich I 2015 Nat. Nanotechnol. 11 37Google Scholar

    [20]

    Chakraborty C, Kinnischtzke L, Goodfellow K M, Beams R, Vamivakas A N 2015 Nat. Nanotechnol. 10 507Google Scholar

    [21]

    He Y M, Clark G, Schaibley J R, He Y, Chen M C, Wei Y J, Ding X, Zhang Q, Yao W, Xu X 2015 Nat. Nanotechnol. 10 497Google Scholar

    [22]

    Koperski M, Nogajewski K, Arora A, Cherkez V, Mallet P, Veuillen J Y, Marcus J, Kossacki P, Potemski M 2015 Nat. Nanotechnol. 10 503Google Scholar

    [23]

    Kumar S, Kaczmarczyk A, Gerardot B D 2015 Nano Lett. 15 7567Google Scholar

    [24]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoglu A 2015 Nat. Nanotechnol. 10 491Google Scholar

    [25]

    Tonndorf P, Schmidt R, Schneider R, Kern J, Buscema M, Steele G A, Castellanos-Gomez A, van der Zant H S, Vasconcellos S M, Bratschitsch R 2015 Optica 2 347Google Scholar

    [26]

    Kern J, Niehues I, Tonndorf P, Schmidt R, Wigger D, Schneider R, Stiehm T, de Vasconcellos M S, Reiter D E, Kuhn T, Bratschitsch R 2016 Adv. Mater. 28 7101Google Scholar

    [27]

    Liu X, Hersam M C 2019 Nat. Rev. Mater. 4 669Google Scholar

    [28]

    Chen X, Lu X, Dubey S, Yao Q, Liu S, Wang X, Xiong Q, Zhang L, Srivastava A 2019 Nat. Phys. 15 221Google Scholar

    [29]

    Ziegler J, Klaiss R, Blaikie A, Miller D, Horowitz V R, Alemán B J 2019 Nano Lett. 19 2121Google Scholar

    [30]

    Chejanovsky N, Kim Y, Zappe A, Stuhlhofer B, Taniguchi T, Watanabe K, Dasari D, Finkler A, Smet J H, Wrachtrup J 2017 Sci. Rep. 7 14758Google Scholar

    [31]

    Jungwirth N R, Calderon B, Ji Y, Spencer M G, Flatte M E, Fuchs G D 2016 Nano Lett. 16 6052Google Scholar

    [32]

    Tran T T, Elbadawi C, Totonjian D, Lobo C J, Grosso G, Moon H, Englund D R, Ford M J, Aharonovich I, Toth M 2016 ACS Nano 10 7331Google Scholar

    [33]

    Dietrich A, Burk M, Steiger E S, Antoniuk L, Tran T T, Nguyen M, Aharonovich I, Jelezko F, Kubanek A 2018 Phys. Rev. B 98 081414Google Scholar

    [34]

    Meyer J C, Chuvilin A, Algara-Siller G, Biskupek J, Kaiser U 2009 Nano Lett. 9 2683Google Scholar

    [35]

    Alem N, Erni R, Kisielowski C, Rossell M D, Gannett W, Zettl A 2009 Phys. Rev. B 80 155425Google Scholar

    [36]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [37]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932Google Scholar

    [38]

    Silly M, Jaffrennou P, Barjon J, Lauret J S, Ducastelle F, Loiseau A, Obraztsova E, Attal-Tretout B, Rosencher E 2007 Phys. Rev. B 75 085205Google Scholar

    [39]

    Museur L, Feldbach E, Kanaev A 2008 Phys. Rev. B 78 155204Google Scholar

    [40]

    Park H, Wadehra A, Wilkins J W, Castro Neto A H 2012 Appl. Phys. Lett. 100 253115Google Scholar

    [41]

    Weston L, Wickramaratne D, Mackoit M, Alkauskas A, van de Walle C G 2018 Phys. Rev. B 97 214104Google Scholar

    [42]

    Wang Y, Meng J, Tian Y, Chen Y, Wang G, Yin Z, Jin P, You J, Wu J, Zhang X 2020 ACS Appl. Mater. Interfaces 12 27361Google Scholar

    [43]

    Mendelson N, Chugh D, Reimers J R, Cheng T S, Gottscholl A, Long H, Mellor C J, Zettl A, Dyakonov V, Beton P H, Novikov S V, Jagadish C, Tan H H, Ford M J, Toth M, Bradac C, Aharonovich I 2020 Nat. Mater. DOI: 10.1038/s41563-020-00850-y

    [44]

    Koperski M, Vaclavkova D, Watanabe K, Taniguchi T, Novoselov K S, Potemski M 2020 PNAS 117 13214Google Scholar

    [45]

    Kresse G, Kurthmuler J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [46]

    Kresse G, Hafner J 1994 Phy. Rev. B 49 14251Google Scholar

    [47]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [48]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [49]

    Wei S H 2004 Comput. Mater. Sci. 30 337Google Scholar

    [50]

    Huang B, Lee H 2012 Phys. Rev. B 86 245406Google Scholar

    [51]

    Wickramaratne D, Shen J X, Dreyer C E, Alkauskas A, van de Walle C G 2019 Phys. Rev. B 99 205202Google Scholar

    [52]

    Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H, Juang Z Y, Dresselhaus M S, Li L J, Kong J 2010 Nano Lett. 10 4134Google Scholar

    [53]

    Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, Ajayan P M 2010 Nano Lett. 10 3209Google Scholar

  • 图 1  本征hBN单层 (a) hBN的俯视图和侧视图; (b) 模拟的hBN单层表面STM形貌, 加载电压为–2 V, 探针与原子表面的距离为0.479564 nm; (c) hBN的能带投影图

    Fig. 1.  Intrinsic hBN monolayer: (a) Top view and side view of hBN; (b) the simulated hBN single-layer surface STM morphology, loading voltage is –2 V, the distance between probe and atomic surface is 0.479564 nm; (c) energy band projection view of hBN.

    图 2  VB和as-VB的电子结构 (a), (c)分别为VB和as-VB优化后的局部结构俯视图; (b), (d)分别为VB和as-VB的能带投影图; (e), (f)分别为VB和as-VB的缺陷能级在Γ点处波函数的俯视图和自旋电荷密度图

    Fig. 2.  Electronic structure of VB and as-VB: (a), (c) The top views of the optimized partial structure of VB and as-VB, respectively; (b), (d) the energy band projection diagrams of VB and as-VB, respectively; (e), (f) the top view of the Γ-point wave functions of the defect levels and spin charge density of VB and as-VB, respectively.

    图 3  VB在不同价态的电子结构图 (a)−(c)分别为$ {\rm{V}}_{\rm{B}}^{-1} $, $ {\rm{V}}_{\rm{B}}^{-2} $, $ {\rm{V}}_{\rm{B}}^{-3} $优化后的局部结构俯视图; (d)−(f)分别为$ {\rm{V}}_{\rm{B}}^{-1} $, $ {\rm{V}}_{\rm{B}}^{-2} $, ${\rm{V}}_{\rm{B}}^{-3}$的能带投影图

    Fig. 3.  Electronic structure diagrams of VB in different valence states: (a)−(c) The top views of the optimized partial structure diagrams of $ {\rm{V}}_{\rm{B}}^{-1} $, $ {\rm{V}}_{\rm{B}}^{-2} $, and $ {\rm{V}}_{\rm{B}}^{-3} $, respectively; (d)−(f) the energy band projection diagrams of $ {\rm{V}}_{\rm{B}}^{-1} $, $ {\rm{V}}_{\rm{B}}^{-2} $, and $ {\rm{V}}_{\rm{B}}^{-3} $, respectively.

    图 4  在富氮和贫氮条件下, 不同价态的VB形成能为费米能级的函数

    Fig. 4.  Formation energies of VB with different valences as a function of Fermi level under the nitrogen-rich and nitrogen-poor conditions.

    图 5  (CN)3VB和as-(CN)3VB的电子结构 (a), (c)分别为(CN)3VB, as-(CN)3VB优化后局部结构的俯视图; (b), (d)分别为(CN)3VB, as-(CN)3VB的能带投影图; (e) (CN)3VB缺陷能级在Γ点处的波函数图和自旋电荷密度图; (f) as-(CN)3VB缺陷能级在Γ点处的波函数图

    Fig. 5.  Electronic structure of (CN)3VB and as-(CN)3VB: (a), (c) The top views of the optimized partial structure of (CN)3VB and as-(CN)3VB; (b), (d) the energy band projection diagrams of (CN)3VB and as-(CN)3VB; (e) the top view of the Γ-point wave functions of the defect levels and spin charge density of (CN)3VB; (f) the top view of the Γ-point wave functions of the defect levels of as-(CN)3VB.

    图 6  (CN)3VB不同价态优化后的局部结构和能带投影图 (a)−(d)分别为(CN)3$ {\rm{V}}_{\rm{B}}^{-1} $, (CN)3$ {\rm{V}}_{\rm{B}}^{-2} $, (CN)3$ {\rm{V}}_{\rm{B}}^{+1} $, (CN)3$ {\rm{V}}_{\rm{B}}^{+2} $优化后的局部结构图; (e)−(h)分别为(CN)3$ {\rm{V}}_{\rm{B}}^{-1} $, (CN)3$ {\rm{V}}_{\rm{B}}^{-2} $, (CN)3$ {\rm{V}}_{\rm{B}}^{+1} $, (CN)3$ {\rm{V}}_{\rm{B}}^{+2} $的能带投影图

    Fig. 6.  Local structure and energy band projection diagram of (CN)3VB after optimization of different valence states: (a)−(d) The top views of the optimized partial structure diagrams of (CN)3$ {\rm{V}}_{\rm{B}}^{-1} $, (CN)3$ {\rm{V}}_{\rm{B}}^{-2} $, (CN)3$ {\rm{V}}_{\rm{B}}^{+1} $, (CN)3$ {\rm{V}}_{\rm{B}}^{+2} $; (e)−(h) the energy band projection diagrams of (CN)3$ {\rm{V}}_{\rm{B}}^{-1} $, (CN)3$ {\rm{V}}_{\rm{B}}^{-2} $, (CN)3$ {\rm{V}}_{\rm{B}}^{+1} $, (CN)3$ {\rm{V}}_{\rm{B}}^{+2} $.

    图 7  as-(CN)3VB不同价态优化后的局部结构和能带投影图 (a)−(d)分别为as-(CN)3$ {\rm{V}}_{\rm{B}}^{-1} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{-2} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{+1} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{+2} $优化后的局部结构图; (e)−(h)分别为as-(CN)3$ {\rm{V}}_{\rm{B}}^{-1} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{-2} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{+1} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{+2} $的能带投影图

    Fig. 7.  Electronic structure diagrams of as-(CN)3VB in different valence states: (a)−(d) The top views of the optimized partial structure diagrams of as-(CN)3$ {\rm{V}}_{\rm{B}}^{-1} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{-2} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{+1} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{+2} $; (e)−(h) the energy band projection diagrams of as-(CN)3$ {\rm{V}}_{\rm{B}}^{-1} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{-2} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{+1} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{+2} $.

    图 8  在富氮和贫氮条件下, 不同价态的(CN)3VB形成能为费米能级的函数

    Fig. 8.  Formation energies of (CN)3VB with different valences as a function of Fermi level under the nitrogen-rich and nitrogen-poor conditions.

    图 9  在富氮和贫氮条件下, 不同价态的as-(CN)3VB形成能为费米能级的函数

    Fig. 9.  Formation energies of as-(CN)3VB with different valences as a function of Fermi level under the nitrogen-rich and nitrogen-poor conditions.

    图 10  0 K和0 GPa时hBN, VB, as-VB, (CN)3VB, as-(CN)3VB的复介电函数

    Fig. 10.  Complex dielectric functions of hBN, VB, as-VB, (CN)3VB, as-(CN)3VB at 0 K and 0 GPa.

    图 11  0 K和0 GPa时hBN, VB, as-VB, (CN)3VB, as-(CN)3VB的吸收系数

    Fig. 11.  Absorption coefficients of hBN, VB, as-VB, (CN)3VB, as-(CN)3VB at 0 K and 0 GPa.

    图 12  0 K和0 GPa时hBN, VB, as-VB, (CN)3VB, as-(CN)3VB的损失函数

    Fig. 12.  Loss function of hBN, VB, as-VB, (CN)3VB, as-(CN)3VB at 0 K and 0 GPa.

    图 13  hBN单层硼原子空位的模型图 (a), (d)分别为VB和as-VB优化后的局部结构图; (b), (e)分别为VB和as-VB的电子结构模拟图, 黑色箭头和灰色箭头分别代表占据态和未占据态; (c), (f)分别为VB和as-VB的介电虚部在XY方向张量

    Fig. 13.  Model diagram of boron vacancies in hBN monolayer: (a), (d) The optimized local structure diagrams of VB and as-VB; (b), (e) simulated electronic structures diagrams of VB and as-VB, where black and grey arrows indicate occupied and unoccupied states; (c), (f) the tensors of the dielectric imaginary part of VB and as-VB in the X and Y directions.

    图 14  hBN单层碳掺杂的模型图 (a), (d) (CN)3VB和as-(CN)3VB优化后的局部结构图; (b), (e) (CN)3VB和as-(CN)3VB的电子结构模拟图, 黑色箭头和灰色箭头分别代表占据态和未占据态; (c), (f) (CN)3VB和as-(CN)3VB的介电虚部在XY方向张量

    Fig. 14.  Model diagram of carbon doping in hBN monolayer: (a), (d) The optimized local structure diagrams of (CN)3VB and as-(CN)3VB; (b), (e) simulated electronic structures diagrams of (CN)3VB and as-(CN)3VB, where black and grey arrows indicate occupied and unoccupied states; (c), (f) the tensors of the dielectric imaginary part of (CN)3VB and as-(CN)3VB in the X and Y directions.

  • [1]

    Lee S, Yeo J S, Ji Y, Cho C, Kim D Y, Na S I, Lee B H, Lee T 2012 Nanotechnology 23 344013Google Scholar

    [2]

    Abderrahmane A, Ko P J, Thu T V, Ishizawa S, Takamura T, Sandhu A 2014 Nanotechnology 25 365202Google Scholar

    [3]

    Li X, Yin J, Zhou J, Wang Q, Guo W 2014 Nanotechnology 25 105701Google Scholar

    [4]

    Abdi M, Degenfeld-Schonburg P, Sameti M, Navarrete-Benlloch C, Hartmann M J 2016 Phys. Rev. Lett. 116 233604Google Scholar

    [5]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [6]

    Clark G, Schaibley J R, Ross J, Taniguchi T, Watanabe K, Hendrickson J R, Mou S, Yao W, Xu X 2016 Nano Lett. 16 3944Google Scholar

    [7]

    Shiue R J, Efetov D K, Grosso G, Peng C, Fong K C, Englund D 2017 Nanophotonics 6 1329Google Scholar

    [8]

    Koenderink A F, Alu A, Polman A 2015 Science 348 516Google Scholar

    [9]

    Caldwell J D, Aharonovich I, Cassabois G, Edgar J H, Gil B, Basov D 2019 Nat. Rev. Mater. 4 552Google Scholar

    [10]

    Cai J, Retzker A, Jelezko F, Plenio M B 2013 Nat. Phys. 9 168Google Scholar

    [11]

    Pla J J, Tan K Y, Dehollain J P, Lim W H, Morton J J, Jamieson D N, Dzurak A S, Morello A 2012 Nature 489 541Google Scholar

    [12]

    Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [13]

    O’brien J L, Furusawa A, Vučković J 2009 Nat. Photonics 3 687Google Scholar

    [14]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photonics 8 595Google Scholar

    [15]

    Cheung J, Chunnilall C, Woolliams E, Fox N, Mountford J, Wang J, Thomas P 2007 J. Mod. Opt. 54 373Google Scholar

    [16]

    Rose B C, Huang D, Zhang Z H, Stevenson P, Tyryshkin A M, Sangtawesin S, Srinivasan S, Loudin L, Markham M L, Edmonds A M, Twitchen D J, Lyon S A, de Leon N P 2018 Science 361 60Google Scholar

    [17]

    Chen D, Zheludev N, Gao W B 2020 Adv. Quantum Technol. 3 1900069Google Scholar

    [18]

    Bradac C, Gao W, Forneris J, Trusheim M E, Aharonovich I 2019 Nat. Commun. 10 5625Google Scholar

    [19]

    Tran T T, Bray K, Ford M J, Toth M, Aharonovich I 2015 Nat. Nanotechnol. 11 37Google Scholar

    [20]

    Chakraborty C, Kinnischtzke L, Goodfellow K M, Beams R, Vamivakas A N 2015 Nat. Nanotechnol. 10 507Google Scholar

    [21]

    He Y M, Clark G, Schaibley J R, He Y, Chen M C, Wei Y J, Ding X, Zhang Q, Yao W, Xu X 2015 Nat. Nanotechnol. 10 497Google Scholar

    [22]

    Koperski M, Nogajewski K, Arora A, Cherkez V, Mallet P, Veuillen J Y, Marcus J, Kossacki P, Potemski M 2015 Nat. Nanotechnol. 10 503Google Scholar

    [23]

    Kumar S, Kaczmarczyk A, Gerardot B D 2015 Nano Lett. 15 7567Google Scholar

    [24]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoglu A 2015 Nat. Nanotechnol. 10 491Google Scholar

    [25]

    Tonndorf P, Schmidt R, Schneider R, Kern J, Buscema M, Steele G A, Castellanos-Gomez A, van der Zant H S, Vasconcellos S M, Bratschitsch R 2015 Optica 2 347Google Scholar

    [26]

    Kern J, Niehues I, Tonndorf P, Schmidt R, Wigger D, Schneider R, Stiehm T, de Vasconcellos M S, Reiter D E, Kuhn T, Bratschitsch R 2016 Adv. Mater. 28 7101Google Scholar

    [27]

    Liu X, Hersam M C 2019 Nat. Rev. Mater. 4 669Google Scholar

    [28]

    Chen X, Lu X, Dubey S, Yao Q, Liu S, Wang X, Xiong Q, Zhang L, Srivastava A 2019 Nat. Phys. 15 221Google Scholar

    [29]

    Ziegler J, Klaiss R, Blaikie A, Miller D, Horowitz V R, Alemán B J 2019 Nano Lett. 19 2121Google Scholar

    [30]

    Chejanovsky N, Kim Y, Zappe A, Stuhlhofer B, Taniguchi T, Watanabe K, Dasari D, Finkler A, Smet J H, Wrachtrup J 2017 Sci. Rep. 7 14758Google Scholar

    [31]

    Jungwirth N R, Calderon B, Ji Y, Spencer M G, Flatte M E, Fuchs G D 2016 Nano Lett. 16 6052Google Scholar

    [32]

    Tran T T, Elbadawi C, Totonjian D, Lobo C J, Grosso G, Moon H, Englund D R, Ford M J, Aharonovich I, Toth M 2016 ACS Nano 10 7331Google Scholar

    [33]

    Dietrich A, Burk M, Steiger E S, Antoniuk L, Tran T T, Nguyen M, Aharonovich I, Jelezko F, Kubanek A 2018 Phys. Rev. B 98 081414Google Scholar

    [34]

    Meyer J C, Chuvilin A, Algara-Siller G, Biskupek J, Kaiser U 2009 Nano Lett. 9 2683Google Scholar

    [35]

    Alem N, Erni R, Kisielowski C, Rossell M D, Gannett W, Zettl A 2009 Phys. Rev. B 80 155425Google Scholar

    [36]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [37]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932Google Scholar

    [38]

    Silly M, Jaffrennou P, Barjon J, Lauret J S, Ducastelle F, Loiseau A, Obraztsova E, Attal-Tretout B, Rosencher E 2007 Phys. Rev. B 75 085205Google Scholar

    [39]

    Museur L, Feldbach E, Kanaev A 2008 Phys. Rev. B 78 155204Google Scholar

    [40]

    Park H, Wadehra A, Wilkins J W, Castro Neto A H 2012 Appl. Phys. Lett. 100 253115Google Scholar

    [41]

    Weston L, Wickramaratne D, Mackoit M, Alkauskas A, van de Walle C G 2018 Phys. Rev. B 97 214104Google Scholar

    [42]

    Wang Y, Meng J, Tian Y, Chen Y, Wang G, Yin Z, Jin P, You J, Wu J, Zhang X 2020 ACS Appl. Mater. Interfaces 12 27361Google Scholar

    [43]

    Mendelson N, Chugh D, Reimers J R, Cheng T S, Gottscholl A, Long H, Mellor C J, Zettl A, Dyakonov V, Beton P H, Novikov S V, Jagadish C, Tan H H, Ford M J, Toth M, Bradac C, Aharonovich I 2020 Nat. Mater. DOI: 10.1038/s41563-020-00850-y

    [44]

    Koperski M, Vaclavkova D, Watanabe K, Taniguchi T, Novoselov K S, Potemski M 2020 PNAS 117 13214Google Scholar

    [45]

    Kresse G, Kurthmuler J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [46]

    Kresse G, Hafner J 1994 Phy. Rev. B 49 14251Google Scholar

    [47]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [48]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [49]

    Wei S H 2004 Comput. Mater. Sci. 30 337Google Scholar

    [50]

    Huang B, Lee H 2012 Phys. Rev. B 86 245406Google Scholar

    [51]

    Wickramaratne D, Shen J X, Dreyer C E, Alkauskas A, van de Walle C G 2019 Phys. Rev. B 99 205202Google Scholar

    [52]

    Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H, Juang Z Y, Dresselhaus M S, Li L J, Kong J 2010 Nano Lett. 10 4134Google Scholar

    [53]

    Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, Ajayan P M 2010 Nano Lett. 10 3209Google Scholar

  • [1] 姜程鑫, 陈令修, 王慧山, 王秀君, 陈晨, 王浩敏, 谢晓明. 六方氮化硼层间气泡制备与压强研究. 物理学报, 2021, 70(6): 069801. doi: 10.7498/aps.70.20201482
    [2] 吕常伟, 王臣菊, 顾建兵. 高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究. 物理学报, 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [3] 陈令修, 王慧山, 姜程鑫, 陈晨, 王浩敏. 六方氮化硼表面石墨烯纳米带生长与物性研究. 物理学报, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [4] 李天信, 翁钱春, 鹿建, 夏辉, 安正华, 陈张海, 陈平平, 陆卫. 量子点操控的光子探测和圆偏振光子发射. 物理学报, 2018, 67(22): 227301. doi: 10.7498/aps.67.20182049
    [5] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [6] 张志伟, 赵翠兰, 孙宝权. InAs/GaAs量子点1.3 μm单光子发射特性. 物理学报, 2018, 67(23): 237802. doi: 10.7498/aps.67.20181592
    [7] 姜艳, 刘贵立. 剪切形变对硼氮掺杂碳纳米管超晶格电子结构和光学性能的影响. 物理学报, 2015, 64(14): 147304. doi: 10.7498/aps.64.147304
    [8] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [9] 高潭华, 吴顺情, 张鹏, 朱梓忠. 表面氢化的双层氮化硼的结构和电子性质. 物理学报, 2014, 63(1): 016801. doi: 10.7498/aps.63.016801
    [10] 魏哲, 袁健美, 李顺辉, 廖建, 毛宇亮. 含空位二维六角氮化硼电子和磁性质的密度泛函研究. 物理学报, 2013, 62(20): 203101. doi: 10.7498/aps.62.203101
    [11] 谭兴毅, 陈长乐, 金克新, 高雁军. 碳掺杂BaTiO3的电子结构和磁性研究. 物理学报, 2012, 61(24): 247102. doi: 10.7498/aps.61.247102
    [12] 李金, 桂贵, 孙立忠, 钟建新. 单轴大应变下二维六角氮化硼的结构变化. 物理学报, 2010, 59(12): 8820-8828. doi: 10.7498/aps.59.8820
    [13] 杨敏, 王六定, 陈国栋, 安博, 王益军, 刘光清. 碳掺杂闭口硼氮纳米管场发射第一性原理研究. 物理学报, 2009, 58(10): 7151-7155. doi: 10.7498/aps.58.7151
    [14] 陈国栋, 王六定, 安博, 杨敏. 碳掺杂硼氮纳米管电子场发射的第一性原理研究. 物理学报, 2009, 58(13): 254-S258. doi: 10.7498/aps.58.254
    [15] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究. 物理学报, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [16] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质. 物理学报, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [17] 徐 剑, 黄水平, 王占山, 鲁大学, 苑同锁. F掺杂SnO2电子结构的模拟计算. 物理学报, 2007, 56(12): 7195-7200. doi: 10.7498/aps.56.7195
    [18] 何开华, 郑 广, 吕 涛, 陈 刚, 姬广富. 高压对氮化硼纳米管的几何结构、电子结构和光学性质的影响. 物理学报, 2006, 55(6): 2908-2913. doi: 10.7498/aps.55.2908
    [19] 李耀义, 程木田, 周慧君, 刘绍鼎, 王取泉, 薛其坤. 脉冲激发三能级体系半导体量子点的单光子发射效率. 物理学报, 2006, 55(4): 1781-1786. doi: 10.7498/aps.55.1781
    [20] 周慧君, 程木田, 刘绍鼎, 王取泉, 詹明生, 薛其坤. 各向异性量子点单光子发射的高偏振度特性. 物理学报, 2005, 54(9): 4141-4145. doi: 10.7498/aps.54.4141
计量
  • 文章访问数:  6833
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-19
  • 修回日期:  2020-09-10
  • 上网日期:  2021-01-25
  • 刊出日期:  2021-02-05

/

返回文章
返回