搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DNA折纸模板的铁原子阵列构建及其信息加密应用

凡洪剑 李江 王丽华 樊春海 柳华杰

引用本文:
Citation:

基于DNA折纸模板的铁原子阵列构建及其信息加密应用

凡洪剑, 李江, 王丽华, 樊春海, 柳华杰

Constructions of iron atoms arrays based on DNA origami templates for cryptography applications

Fan Hong-Jian, Li Jiang, Wang Li-Hua, Fan Chun-Hai, Liu Hua-Jie
PDF
HTML
导出引用
  • 在后摩尔时代, 突破原有技术极限, 进行原子尺度的精准构筑, 是当前的重大科学问题. DNA作为具有原子级精准度的生物大分子, 能够进行程序性的分子识别, 构筑原子数量与位置均严格确定的自组装结构, 因此是进行原子制造的理想平台. 本文提出基于DNA自组装折纸结构的精准定位能力, 构筑铁原子阵列图案, 并应用于对信息的加密. 实验结果表明, 采用类似“信息预置”的方法, 铁原子成功实现在DNA折纸不同位置的高效定位, 此方法还极大降低了实验工作量, 非常有利于多种不同阵列图案的平行制备. 利用所构建的铁原子阵列, 本文发展了原子阵列DNA折纸加密技术, 将密文编码为二进制并用类似盲文斑点的形式在DNA折纸上以特定图案表示, 通过单分子成像手段对密文信息进行了读取, 而密钥长度可高达700位以上. 作为示例, 成功地对普通文本及唐诗《登鹳雀楼》进行了加密, 证明了此策略的通用性和实用性.
    The fabrication of precise arrays of atoms is a key challenge at present. As a kind of biomacromolecule with strict base-pairing and programmable self-assembly ability, DNA is an idea material for directing atom positioning on predefined addresses. Here in this work, we propose the construction of iron atom arrays based on DNA origami templates and illustrate the potential applications in cryptography. First, ferrocene molecule is used as the carrier for iron atom since the cyclopentadienyl groups protect iron from being affected by the external environment. To characterize the iron atom arrays, streptavidins are labelled according to the ferrocene-modified DNA strand through biotin-streptavidin interactions. Based on atomic force microscopy scanning, ferrocene-modified single-stranded DNA sequences prove to be successfully immobilized on predefined positions on DNA origami templates with high yield. Importantly, the address information of iron atoms on origami is pre-embedded on the long scaffold, enabling the workload and cost to be lowered dramatically. In addition, the iron atom arrays can be used as the platform for constructing secure Braille-like patterns with encoded information. The origami assembly and pattern characterizations are defined as encryption process and readout process, respectively. The ciphertext can be finally decoded with the secure key. This method enables the theoretical key size of more than 700 bits to be realized. Encryption and decryption of plain text and a Chinese Tang poem prove the versatility and feasibility of this strategy.
      通信作者: 柳华杰, liuhuajie@tongji.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0400900, 2016YFA0201200)、国家自然科学基金(批准号: 21722310, 21834007, 21873071, 91953106)和中央高校基本科研业务费专项资金资助的课题
      Corresponding author: Liu Hua-Jie, liuhuajie@tongji.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2016YFA0400900, 2016YFA0201200), the National Natural Science Foundation of China (Grant Nos. 21722310, 21834007, 21873071, 91953106), and the Fundamental Research Fund for the Central Universities, China
    [1]

    Frank-Kamenetskii M, Mrikin S 1995 Annu. Rev. Biochem. 64 65Google Scholar

    [2]

    Wang J, Yue L, Wang S, Willner I 2018 ACS Nano 12 12324Google Scholar

    [3]

    Ge Z, Gu H, Li Q, Fan C H 2018 J. Am. Chem. Soc. 140 17808Google Scholar

    [4]

    Hu Q, Li H, Wang L, Gu H, Fan C H 2019 Chem. Rev. 119 6459Google Scholar

    [5]

    Rothemund P W 2006 Nature 440 297Google Scholar

    [6]

    Hong F, Zhang F, Liu Y, Yan H 2017 Chem. Rev. 117 12584Google Scholar

    [7]

    Qian L, Winfree E, Bruck J 2011 Nature 475 368Google Scholar

    [8]

    Chao J, Wang J, Wang F, Ouyang X, Kopperger E, Liu H J, Li Q, Shi J, Wang L, Hu J, Wang L, Huang W, Simmel F C, Fan C H 2019 Nat. Mater. 18 273Google Scholar

    [9]

    Zhang Z, Wang Y, Fan C H, Li C, Li Y, Qian L, Fu Y, Shi Y, Hu J, He L 2010 Adv. Mater. 22 2672Google Scholar

    [10]

    Wu N, Czajkowsky D M, Zhang J, Qu J, Ye M, Zeng D, Zhou X, Hu J, Shao Z, Li B, Fan C H 2013 J. Am. Chem. Soc. 135 12172Google Scholar

    [11]

    贾思思, 晁洁, 樊春海, 柳华杰 2014 化学进展 26 695Google Scholar

    Jia S, Chao J, Fan C H, Liu H J 2014 Prog. Chem. 26 695Google Scholar

    [12]

    张祎男, 王丽华, 柳华杰, 樊春海 2017 物理学报 66 147101Google Scholar

    Zhang Y N, Wang L H, Liu H J, Fan C H 2017 Acta Phys. Sin. 66 147101Google Scholar

    [13]

    Fang W, Jia S, Chao J, Wang L, Duan X, Liu H J, Li Q, Zuo X, Wang L, Liu N, Fan C H 2019 Sci. Adv. 5 eaau4506Google Scholar

    [14]

    Liu X, Zhang F, Jing X, Pan M, Liu P, Li W, Zhu B, Li J, Chen H, Wang L, Lin J, Liu Y, Zhao D, Yan H, Fan C H 2018 Nature 559 593Google Scholar

    [15]

    Yao G, Li J, Chao J, Pei H, Liu H J, Zhao Y, Shi J, Huang Q, Wang L, Huang W, Fan C H 2015 Angew. Chem. Int. Ed. Engl. 54 2966Google Scholar

    [16]

    Maune H T, Han S P, Barish R D, Bockrath M, Goddard W A, Rothemund P W, Winfree E 2010 Nat. Nanotechnol. 5 61Google Scholar

    [17]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [18]

    Zhan P, Wen T, Wang Z G, He Y, Shi J, Wang T, Liu X, Lu G, Ding B 2018 Angew. Chem. Int. Ed. 57 2846Google Scholar

    [19]

    Douglas S, Bachelet I, Church J 2012 Science 335 831Google Scholar

    [20]

    Zhao Y, Shaw A, Zeng X, Benson E, Nyström A, Högberg B 2012 ACS Nano 6 8684Google Scholar

    [21]

    Zhang Q, Jiang Q, Li N, Dai L, Liu Q, Song L, Wang J, Li Y, Tian J, Ding B, Du Y 2014 ACS Nano 8 6633Google Scholar

    [22]

    Woods D, Doty D, Myhrvold C, Hui J, Zhou F, Yin P, Winfree E 2019 Nature 567 366Google Scholar

    [23]

    Ge Z, Liu J, Guo L, Yao G, Li Q, Wang L, Li J, Fan C H 2020 J. Am. Chem. Soc. 142 8800Google Scholar

    [24]

    Zhang Y N, Wang F, Chao J, Xie M, Liu H J, Pan M, Kopperger E, Liu X, Li Q, Shi J, Wang L, Hu J, Wang L, Simmel F C, Fan C H 2019 Nat. Commun. 10 5469Google Scholar

  • 图 1  铁原子阵列的构建 (a), (b) 信息链预置于骨架链上的策略形成DNA折纸并组装铁原子阵列, 通过生物素和链霉亲和素的强结合力将位置显影; (c)—(e) 3个位点单个铁原子图案组装原子力表征图(比例尺: 100 nm)

    Fig. 1.  Fabrications of iron atoms arrays. (a), (b) The M-strand strategy forms DNA origami and assembles the iron atoms arrays. The position is visualized by the strong binding force of biotin and streptavidin. (c)–(e) The atomic force characterization diagram of the assembly of a single iron atom at three sites (scale bar: 100 nm).

    图 2  M链策略“一锅法”制备多种DNA折纸纳米图案 (a) 多种携带不同M链的骨架链混合, 一同退火, 在单个离心管中快速制备多种DNA折纸纳米图案; (b) 原子力表征图及产率统计图(比例尺: 200 nm)

    Fig. 2.  M-strand strategy to prepare a variety of DNA origami nanopatterns by “one-pot” method: (a) A variety of scaffolds carrying different M-strands are mixed and annealed together to quickly prepare a variety of DNA origami nanopatterns in a single centrifuge tube; (b) AFM diagram and yield statistics (scale bar: 200 nm).

    图 3  DNA折纸加密及编码原理示意图 (a) DNA折纸斑点编码原理; (b) 发送者(Alice)和接收者(Bob)通信流程; (c) 文本“DNA-1954”的编码演示(比例尺: 25 nm)

    Fig. 3.  Schematic illustration of DNA origami encryption and coding principle: (a) Coding principle of DNA origami spot; (b) the communication procedure between the sender (Alice) and the receiver (Bob); (c) coding demonstration of the text “DNA-1954” (scale bar: 25 nm).

    图 4  将汉字在DNA折纸上的加密方案 (a) 区位码在折纸上的编码原理; (b)汉字“流”的编码演示; (c) 28个汉字唐诗文本AFM实验图(比例尺: 40 nm); (d)唐诗随扫描次数收集完成度和错误率图, 正确收集标记为红色, 单个链霉亲和素图案未收集超过20个的标记为白色

    Fig. 4.  Scheme of encoding Chinese characters on DNA origami: (a) Encoding principle of section and position code on origami; (b) demonstration of Chinese encoding Chinese character “流” on DNA origami (scale bar: 100 nm); (c) AFM experimental graph of 28 Chinese characters Tang poetry text (scale bar: 40 nm); (d) collection completion and error rate graphs of Tang poetry with the number of scans completed and error rate graphs. The correct collection is marked as red, and the single streptavidin pattern which is not collected for more than 20 will be marked as white.

  • [1]

    Frank-Kamenetskii M, Mrikin S 1995 Annu. Rev. Biochem. 64 65Google Scholar

    [2]

    Wang J, Yue L, Wang S, Willner I 2018 ACS Nano 12 12324Google Scholar

    [3]

    Ge Z, Gu H, Li Q, Fan C H 2018 J. Am. Chem. Soc. 140 17808Google Scholar

    [4]

    Hu Q, Li H, Wang L, Gu H, Fan C H 2019 Chem. Rev. 119 6459Google Scholar

    [5]

    Rothemund P W 2006 Nature 440 297Google Scholar

    [6]

    Hong F, Zhang F, Liu Y, Yan H 2017 Chem. Rev. 117 12584Google Scholar

    [7]

    Qian L, Winfree E, Bruck J 2011 Nature 475 368Google Scholar

    [8]

    Chao J, Wang J, Wang F, Ouyang X, Kopperger E, Liu H J, Li Q, Shi J, Wang L, Hu J, Wang L, Huang W, Simmel F C, Fan C H 2019 Nat. Mater. 18 273Google Scholar

    [9]

    Zhang Z, Wang Y, Fan C H, Li C, Li Y, Qian L, Fu Y, Shi Y, Hu J, He L 2010 Adv. Mater. 22 2672Google Scholar

    [10]

    Wu N, Czajkowsky D M, Zhang J, Qu J, Ye M, Zeng D, Zhou X, Hu J, Shao Z, Li B, Fan C H 2013 J. Am. Chem. Soc. 135 12172Google Scholar

    [11]

    贾思思, 晁洁, 樊春海, 柳华杰 2014 化学进展 26 695Google Scholar

    Jia S, Chao J, Fan C H, Liu H J 2014 Prog. Chem. 26 695Google Scholar

    [12]

    张祎男, 王丽华, 柳华杰, 樊春海 2017 物理学报 66 147101Google Scholar

    Zhang Y N, Wang L H, Liu H J, Fan C H 2017 Acta Phys. Sin. 66 147101Google Scholar

    [13]

    Fang W, Jia S, Chao J, Wang L, Duan X, Liu H J, Li Q, Zuo X, Wang L, Liu N, Fan C H 2019 Sci. Adv. 5 eaau4506Google Scholar

    [14]

    Liu X, Zhang F, Jing X, Pan M, Liu P, Li W, Zhu B, Li J, Chen H, Wang L, Lin J, Liu Y, Zhao D, Yan H, Fan C H 2018 Nature 559 593Google Scholar

    [15]

    Yao G, Li J, Chao J, Pei H, Liu H J, Zhao Y, Shi J, Huang Q, Wang L, Huang W, Fan C H 2015 Angew. Chem. Int. Ed. Engl. 54 2966Google Scholar

    [16]

    Maune H T, Han S P, Barish R D, Bockrath M, Goddard W A, Rothemund P W, Winfree E 2010 Nat. Nanotechnol. 5 61Google Scholar

    [17]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [18]

    Zhan P, Wen T, Wang Z G, He Y, Shi J, Wang T, Liu X, Lu G, Ding B 2018 Angew. Chem. Int. Ed. 57 2846Google Scholar

    [19]

    Douglas S, Bachelet I, Church J 2012 Science 335 831Google Scholar

    [20]

    Zhao Y, Shaw A, Zeng X, Benson E, Nyström A, Högberg B 2012 ACS Nano 6 8684Google Scholar

    [21]

    Zhang Q, Jiang Q, Li N, Dai L, Liu Q, Song L, Wang J, Li Y, Tian J, Ding B, Du Y 2014 ACS Nano 8 6633Google Scholar

    [22]

    Woods D, Doty D, Myhrvold C, Hui J, Zhou F, Yin P, Winfree E 2019 Nature 567 366Google Scholar

    [23]

    Ge Z, Liu J, Guo L, Yao G, Li Q, Wang L, Li J, Fan C H 2020 J. Am. Chem. Soc. 142 8800Google Scholar

    [24]

    Zhang Y N, Wang F, Chao J, Xie M, Liu H J, Pan M, Kopperger E, Liu X, Li Q, Shi J, Wang L, Hu J, Wang L, Simmel F C, Fan C H 2019 Nat. Commun. 10 5469Google Scholar

  • [1] 刘岩鑫, 王志辉, 管世军, 王勤霞, 张鹏飞, 李刚, 张天才. 基于微尺度光学偶极阱的一维单原子阵列的实验制备. 物理学报, 2024, 73(10): 103701. doi: 10.7498/aps.73.20240135
    [2] 王康颖, 马才媛, 蔚慧敏, 张海涛, 岑建勇, 王英英, 潘俊星, 张进军. 振荡场作用下聚合物/纳米棒混合体系的自组装. 物理学报, 2023, 72(7): 079401. doi: 10.7498/aps.72.20222207
    [3] 杨蓓, 李茜, 柳华杰, 樊春海. 面向原子制造的框架核酸研究进展. 物理学报, 2021, 70(2): 026201. doi: 10.7498/aps.70.20201437
    [4] 赵先拓, 徐林林, 田悦, 焦安欣, 马慧, 张梦雅, 崔清强. 自组装CuS多孔级次纳米花及其吸附自沉积特性研究. 物理学报, 2021, 70(22): 226101. doi: 10.7498/aps.70.20211152
    [5] 戴李知, 胡晓雪, 刘鹏, 田野. DNA折纸结构介导的多尺度纳米结构精准制造. 物理学报, 2021, 70(6): 068201. doi: 10.7498/aps.70.20201689
    [6] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [7] 石航, 王丽丹. 一种基于压缩感知和多维混沌系统的多过程图像加密方案. 物理学报, 2019, 68(20): 200501. doi: 10.7498/aps.68.20190553
    [8] 汪辰超, 吴太权, 王新燕, 江影. Rh(111)表面NO分子对多层膜的原子结构. 物理学报, 2017, 66(2): 026301. doi: 10.7498/aps.66.026301
    [9] 李白, 吴太权, 汪辰超, 江影. Au(111)表面甲基联二苯丙硫醇盐单层膜的原子结构. 物理学报, 2016, 65(21): 216301. doi: 10.7498/aps.65.216301
    [10] 肖石燕, 梁好均. DNA及基于DNA链替换反应的分子计算. 物理学报, 2016, 65(17): 178106. doi: 10.7498/aps.65.178106
    [11] 余森江. 硅油基底上受限金属薄膜自组装褶皱的原子力显微镜研究. 物理学报, 2014, 63(11): 116801. doi: 10.7498/aps.63.116801
    [12] 吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍. Cu(100)表面CO分子单层膜的原子结构. 物理学报, 2013, 62(18): 186301. doi: 10.7498/aps.62.186301
    [13] 张保花, 郭福强, 孙毅, 王俊珺, 李艳青, 智丽丽. 溶剂热再结晶合成由纳米颗粒自组装成的一维CdS纳米棒. 物理学报, 2012, 61(13): 138101. doi: 10.7498/aps.61.138101
    [14] 刘 强, 方锦清, 赵耿, 李永. 基于FPGA技术的混沌加密系统研究. 物理学报, 2012, 61(13): 130508. doi: 10.7498/aps.61.130508
    [15] 刘佳, 徐玲玲, 张海霖, 吕威, 朱琳, 高红, 张喜田. 一步水热法在Al掺杂ZnO纳米盘上可控自组装合成ZnO纳米棒阵列. 物理学报, 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [16] 黄渊, 刘红, 张青川. 利用微悬臂梁研究聚N-异丙基丙烯酰胺在金表面的自组装. 物理学报, 2009, 58(9): 6122-6127. doi: 10.7498/aps.58.6122
    [17] 王 浩, 曾谷城, 廖常俊, 蔡继业, 郑树文, 范广涵, 陈 勇, 刘颂豪. GaxIn1-xP缓冲层组分对InP自组装形貌影响的研究. 物理学报, 2005, 54(4): 1726-1730. doi: 10.7498/aps.54.1726
    [18] 夏阿根, 杨 波, 金进生, 张亦文, 汤 凡, 叶高翔. 液体基底表面金薄膜中的有序结构和自组装现象. 物理学报, 2005, 54(1): 302-306. doi: 10.7498/aps.54.302
    [19] 申承民, 苏轶坤, 杨海涛, 杨天中, 汪裕萍, 高鸿钧. 磁性钴纳米晶的二维自组装. 物理学报, 2003, 52(2): 483-486. doi: 10.7498/aps.52.483
    [20] 杨海涛, 申承民, 杜世萱, 苏轶坤, 王岩国, 汪裕萍, 高鸿钧. 钴纳米粒子自组装有序阵列与磁性. 物理学报, 2003, 52(12): 3114-3119. doi: 10.7498/aps.52.3114
计量
  • 文章访问数:  8454
  • PDF下载量:  273
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-30
  • 修回日期:  2020-11-03
  • 上网日期:  2021-03-03
  • 刊出日期:  2021-03-20

/

返回文章
返回