Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A first-principles study on environmental stability and optoelectronic properties of bismuth oxychloride/ cesium lead chloride van der Waals heterojunctions

Yao Yi-Zhou Cao Dan Yan Jie Liu Xue-Yin Wang Jian-Feng Jiang Zhou-Ting Shu Hai-Bo

Citation:

A first-principles study on environmental stability and optoelectronic properties of bismuth oxychloride/ cesium lead chloride van der Waals heterojunctions

Yao Yi-Zhou, Cao Dan, Yan Jie, Liu Xue-Yin, Wang Jian-Feng, Jiang Zhou-Ting, Shu Hai-Bo
PDF
HTML
Get Citation
  • All-inorganic metal halide perovskites represented by cesium lead chloride have become important candidates for the development of high-performance photovoltaic and optoelectronic devices due to their excellent optoelectronic properties and defect tolerance. However, poor structural stability has become a bottleneck for its commercial applications. In this work, we propose to integrate thin layers of bismuth oxychloride (BiOCl) on the surface of cesium lead chloride perovskite (CsPbCl3) to form a van der Waals heterojunction. And we systematically study the environmental stability of BiOCl/CsPbCl3 van der Waals heterojunction and the influence of interfacial effects on its optoelectronic properties by combining first-principles calculations and ab initio molecular dynamics simulations. The calculated results show that the van der Waals integrated BiOCl on the surface of CsPbCl3 can greatly improve its environmental stability, which is due to the highly stable BiOCl layer isolating the reaction of water and oxygen molecules with the perovskite lattice. Moreover, the two BiOCl/CsPbCl3 van der Waals heterojunctions show a type-II band structure, which conduces to promoting the carrier separation. At the same time, the two heterojunctions have small effective carrier mass, which well preserves the excellent carrier transport properties of CsPbCl3 and BiOCl. However, CsCl-terminated heterojunctions exhibit larger band orders than PbCl2-terminated heterojunctions, which can lead to higher open-circuit voltages and lower dark currents in CsCl-terminated heterojunctions. Owing to the different band gaps of BiOCl and CsPbCl3, the heterojunctions show high optical absorption coefficients in the visible-to-ultraviolet region. This work provides a new idea and theoretical basis for improving the structural stability of CsPbCl3 perovskite materials and their applications in high-performance optoelectronic devices.
      Corresponding author: Cao Dan, caodan@cjlu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of the Zhejiang province, China (Grant Nos. LY22A040002, LY19A040006) and the National Natural Science Foundation of China (Grant Nos. 61775201, 21873087).
    [1]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [2]

    Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Gratzel M, Kim J Y 2021 Nature 592 381Google Scholar

    [3]

    Valverde-Chávez D A, Ponseca C S, Stoumpos C C, Yartsev A, Kanatzidis M G, Sundström V, Cooke D G 2015 Energy Environ. Sci. 8 3700Google Scholar

    [4]

    Wang Y P, Gong C, Rao G, Hu K, Wang X, Yan C, Dai L, Wu C, Xiong J 2018 Adv. Opt. Mater. 6 1701302Google Scholar

    [5]

    Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D’Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, Angelis F D, Boyen H G 2015 Adv. Energy Mater. 5 1500477Google Scholar

    [6]

    Bai F, Qi J, Li F, Fang Y, Han W, Wu H, Zhang Y 2018 Adv. Mater. Interfaces 5 1701275Google Scholar

    [7]

    Ouedraogo N A N, Chen Y, Xiao Y Y, Meng Q, Han C B, Yan H, Zhang Y 2020 Nano Energy 67 104249Google Scholar

    [8]

    Yang J, Zhang Q, Xu J, Liu H, Qin R, Zhai H, Chen S, Yuan M 2019 Nanomaterials 9 1666Google Scholar

    [9]

    Liu C, Li W, Li H, Wang H, Zhang C, Yang Y, Gao X, Xue Q, Yip H L, Fan J, Schropp R E I, Mai Y 2019 Adv. Energy Mater. 9 1803572Google Scholar

    [10]

    Liu X, Wang X, Zhang T, Miao Y, Qin Z, Chen Y, Zhao Y 2021 Angew Chem. Int Ed. 60 12351Google Scholar

    [11]

    Wu L, Chen K, Huang W, Lin Z, Zhao J, Jiang X, Ge Y, Zhang F, Xiao Q, Guo Z, Xiang Y, Li J, Bao Q, Zhang H 2018 Adv. Opt. Mater. 6 1800400Google Scholar

    [12]

    Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, De Marco N, Zhao H, Sun P, Huang Y, Yang Y 2018 Nat. Commun. 9 3021Google Scholar

    [13]

    刘晓敏, 李亦回, 王兴涛, 赵一新 2019 物理学报 68 158805Google Scholar

    Liu X M, Li Y H, Wang X T, Zhao Y X 2019 Acta Phys. Sin. 68 158805Google Scholar

    [14]

    Chen P, Bai Y, Wang S, Lyu M, Yun J H, Wang L 2018 Adv. Funct. Mater. 28 1706923Google Scholar

    [15]

    Schlipf J, Hu Y, Pratap S, Bießmann L, Hohn N, Porcar L, Bein T, Docampo P, Müller B P 2019 ACS Appl. Energy Mater. 2 1011Google Scholar

    [16]

    Zhang T, Long M, Qin M, Lu X, Chen S, Xie F, Gong L, Chen J, Chu M, Miao Q, Chen Z, Xu W, Liu P, Xie W, Xu J B 2018 Joule 2 2706Google Scholar

    [17]

    Lin D, Zhang T, Wang J, Long M, Xie F, Chen J, Wu B, Shi T, Yan K, Xie W, Liu P, Xu J 2019 Nano Energy 59 619Google Scholar

    [18]

    Loi H L, Cao J, Guo X, Liu C K, Wang N, Song J, Tang G, Zhu Y, Yan F 2020 Adv. Sci. 7 2000776Google Scholar

    [19]

    王其, 延玲玲, 陈兵兵, 李仁杰, 王三龙, 王鹏阳, 黄茜, 许盛之, 侯国付, 陈新亮, 李跃龙, 丁毅, 张德坤, 王广才, 赵颖, 张晓丹 2021 物理学报 70 057802Google Scholar

    Wang Q, Yan L L, Chen B B, Li R J, Wang S L, Wang P Y, Huang Q, Xu S Z, Hou G F, Chen X L, Li Y L, Ding Y, Zhang D K, Wang G C, Zhao Y, Zhang X D 2021 Acta Phys. Sin. 70 057802Google Scholar

    [20]

    He J, Su J, Lin Z, Zhang S, Qin Y, Zhang J, Chang J, Hao Y 2019 J. Phys. Chem. C 123 7158Google Scholar

    [21]

    Liu Z, Chang J, Lin Z, Zhou L, Yang Z, Chen D, Zhang C, Liu S F, Hao Y 2018 Adv. Energy Mater. 8 1703432Google Scholar

    [22]

    Zhang H, Liu L, Zhou Z 2012 RSC Adv. 2 9224Google Scholar

    [23]

    Gnayem H, Sasson Y 2013 ACS Catalysis 3 186Google Scholar

    [24]

    Zhang X, Ai Z, Jia F, Zhang L J 2008 J. Phys. Chem. C 112 747Google Scholar

    [25]

    Ye L, Zan L, Tian L, Peng T, Zhang J 2011 Chem. Commun. 47 6951Google Scholar

    [26]

    Zhang K, Liang J, Wang S, Liu J, Ren K, Zheng X, Luo H, Peng Y, Zou X, Bo X, Li J, Yu X 2012 Cryst. Growth Des. 12 793Google Scholar

    [27]

    Liu X, Su Y, Zhao Q, Du C, Liu Z 2016 Sci. Rep. 6 28689Google Scholar

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [30]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [31]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [32]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [33]

    Wang N, Cao D, Wang J, Liang P, Chen X, Shu H 2017 J. Mater. Chem. C 5 9687Google Scholar

    [34]

    Boyd C C, Cheacharoen R, Leijtens T, McGehee M D 2019 Chem. Rev. 119 3418Google Scholar

    [35]

    Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323Google Scholar

    [36]

    Lu Z H, Lockwood D J, Baribeau J M 1995 Nature 378 258Google Scholar

    [37]

    Murtaza G, Ahmad I 2011 Physica B 406 3222Google Scholar

    [38]

    Zheng B, Ma C, Li D, Lan J, Zhang Z, Sun X, Zheng W, Yang T, Zhu C, Ouyang G, Xu G, Zhu X, Wang X, Pan A 2018 J. Am. Chem. Soc. 140 11193Google Scholar

    [39]

    Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q, Pan A, Jiang J, Yu R, Huang Y, Duan X 2014 Nat. Nanotechnol. 9 1024Google Scholar

    [40]

    Zheng B, Ma C, Li D, Lan J, Zhang Z, Sun X, Zheng W, Yang T, Zhu C, Ouyang G, Xu G, Zhu X, Wang X, Pan A 2018 JACS 140 11193

    [41]

    Roy T, Tosun M, Hettick M, Ahn G H, Hu C, Javey A 2016 Appl. Phys. Lett. 108 083111Google Scholar

    [42]

    Liao C S, Yu Z L, He P B, Zhao Y Q, Liu B, Cai M Q 2020 J. Power Sources 478 229078Google Scholar

  • 图 1  BiOCl/CsPbCl3异质结构建过程 (a) CsCl终端CsPbCl3, (b) BiOCl和(c) PbCl2终端CsPbCl3结构俯视图(蓝框为初始晶胞, 黄框为构建异质结所选晶格大小, CsPbCl3材料黄蓝框相重合); (d) CsCl和(e) PbCl2终端的异质结构型

    Figure 1.  The construction process of the BiOCl/CsPbCl3 heterostructure: The top views of (a) CsCl-terminated, (b) BiOCl and (c) PbCl2-terminated of CsPbCl3 structure (the blue box is the initial unit cell, and the yellow box is the lattice selected for the construction of the heterojunction; (d) CsCl-terminated and (e)PbCl2-terminated heterojunction structures.

    图 2  (a)表面覆盖了水氧分子层的2L-CsPbCl3结构以及BiOCl/CsPbCl3异质结在AIMD模拟中的能量随模拟时间的变化曲线图(上方曲线为2L-CsPbCl3结构, 下方为HIT-CsCl异质结); (b) 2L-CsPbCl3和(c)BiOCl/CsPbCl3异质结在温度为300 K下, AIMD轨迹在时间为0, 2, 4和6 ps时的快照

    Figure 2.  The total energies of (a) 2L-CsPbCl3 and (b) BiOCl/CsPbCl3 as a function of AIMD simulation time; (b), (c) the snapshots of AIMD trajectories for PNMA-3 and DPA-3 at the simulation time of 0, 2, 4 and 6 ps.

    图 3  异质结带阶类型预测图 (a) CsCl终端CsPbCl3, (b) BiOCl与(c)PbCl2终端CsPbCl3的能带、态密度以及电荷密度等值面(CDI)分布图; (d)三种结构带边相对真空能级的位置与分子构型图; (e)五种带阶类型示意图

    Figure 3.  Heterogeneous band alignment type predictive diagram: Energy band, density of states and charge density isosurface (CDI) distributions of (a) CsCl-terminated CsPbCl3, (b) BiOCl and (c) PbCl2-terminated CsPbCl3; (d) position comparison diagram of three structural strip positions relative vacuum level, wherein the illustrations are a molecular configuration diagram of three structures; (e) tive lead types that can be formed by constructing heterojunction.

    图 4  BiOCl/CsPbCl3异质结的电子性质 (a)II型带阶类型的载流子输运示意图; (b)载流子有效质量柱状图; (c) CsCl终端与(d)PbCl2终端异质结的投影能带图、组分之间带边差异、态密度图以及CDI分布图

    Figure 4.  Electronic properties of BiOCl/CsPbCl3 heterojunctions: (a) Schematic diagram of carrier transport of type II band-order type; (b) effective carrier mass; (c) CsCl-terminated and (d) PbCl2-terminated heterojunctions Projected energy band diagrams, band edge differences between components, density of states diagrams, and CDI distribution diagrams.

    图 5  BiOCl/CsPbCl3异质结及其原料的光吸收图 (a)异质结器件沿面内 (ω//) 和面外 (ω) 方向的光照射示意图; 不同终端异质结及其原料沿(b)面内(α//)和(c)面外(α)方向的光吸收光谱(虚线范围对应于波长范围为390—780 nm的可见光区域)

    Figure 5.  Optical absorption diagram of BiOCl/CsPbCl3 heterojunction and its components: (a) Schematic illustration of light illumination in the in-plane (ω//) and out-of-plane (ω) directions of the heterojunction device; optical absorption spectra of different terminated heterojunctions and their components along (b) in-plane (α//) and (c) out-of-plane (α) directions (the dotted line range corresponds to the visible region of wavelengths from 390 to 780 nm).

    图 A1  8种异质结构型图 (a)—(d)CsCl终端CsPbCl3与BiOCl构建的4种异质结, 原子对齐位置如红线所标注; (e)—(h) PbCl2终端CsPbCl3与BiOCl构建的4种异质结, 原子对齐位置与CsCl终端相同

    Figure A1.  Figures of 8 types of heterostructures: (a)–(d) Four types of heterojunctions constructed by CsCl-terminated CsPbCl3 and BiOCl, and the atomic alignment positions are marked by red lines; (e)–(h) four types of heterojunctions constructed by PbCl2-terminated CsPbCl3 and BiOCl, with atoms aligned The position is the same as the CsCl terminal.

    Figure B1.  BiOCl/CsPbCl3 perovskite heterojunctions with type II band alignment shows excellent environmental stability and optoelectronic properties.

    表 A1  不同终端的8种BiOCl/CsPbCl3异质结构型的能量和层间距

    Table A1.  Energy comparison and layer spacing of eight BiOCl/CsPbCl3 heterojunctions types with different terminations.

    StructuresMethodEnergy/eVLayer
    Spacing/ Å
    HIT-CsClPBES1–134.473.26
    S2–134.463.68
    S3–134.433.41
    S4–134.413.44
    HIT-PbCl2S1–138.553.35
    S2–138.573.28
    S3–138.543.28
    S4–138.543.29
    DownLoad: CSV

    表 B1  1 L-BiOCl、两种终端4 L-CsPbCl3和两种终端HIT的总原子数 (Ntot)、异质结层间距、优化后的晶格参数 (a, bc)、带隙(Eg)、形成能 (Ef)和载流子有效质量(m*)

    Table B1.  1 L-BiOCl, 4 L-CsPbCl3 with two terminations, and HIT with two terminations: total atomic number (Ntot), heterojunction interlayer spacing, optimized lattice parameters (a, b and c), band gap (Eg), formation energy (Ef) and carrier effective mass (m*).

    NtotLayer spacing
    Lattice constant /ÅEg/eVEf/eVm*
    abcmemh
    1L-BiOCl125.735.7342.963.480.381.71
    4L-CsPbCl3-CsCl225.725.7242.863.000.210.22
    4L-CsPbCl3-PbCl2235.725.7242.863.020.300.22
    HIT-CsCl223.175.705.7142.771.518.6×10–30.440.22
    HIT-PbCl2233.355.715.7142.781.608.9×10–30.340.23
    DownLoad: CSV
  • [1]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [2]

    Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Gratzel M, Kim J Y 2021 Nature 592 381Google Scholar

    [3]

    Valverde-Chávez D A, Ponseca C S, Stoumpos C C, Yartsev A, Kanatzidis M G, Sundström V, Cooke D G 2015 Energy Environ. Sci. 8 3700Google Scholar

    [4]

    Wang Y P, Gong C, Rao G, Hu K, Wang X, Yan C, Dai L, Wu C, Xiong J 2018 Adv. Opt. Mater. 6 1701302Google Scholar

    [5]

    Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D'Haen J, D’Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, Angelis F D, Boyen H G 2015 Adv. Energy Mater. 5 1500477Google Scholar

    [6]

    Bai F, Qi J, Li F, Fang Y, Han W, Wu H, Zhang Y 2018 Adv. Mater. Interfaces 5 1701275Google Scholar

    [7]

    Ouedraogo N A N, Chen Y, Xiao Y Y, Meng Q, Han C B, Yan H, Zhang Y 2020 Nano Energy 67 104249Google Scholar

    [8]

    Yang J, Zhang Q, Xu J, Liu H, Qin R, Zhai H, Chen S, Yuan M 2019 Nanomaterials 9 1666Google Scholar

    [9]

    Liu C, Li W, Li H, Wang H, Zhang C, Yang Y, Gao X, Xue Q, Yip H L, Fan J, Schropp R E I, Mai Y 2019 Adv. Energy Mater. 9 1803572Google Scholar

    [10]

    Liu X, Wang X, Zhang T, Miao Y, Qin Z, Chen Y, Zhao Y 2021 Angew Chem. Int Ed. 60 12351Google Scholar

    [11]

    Wu L, Chen K, Huang W, Lin Z, Zhao J, Jiang X, Ge Y, Zhang F, Xiao Q, Guo Z, Xiang Y, Li J, Bao Q, Zhang H 2018 Adv. Opt. Mater. 6 1800400Google Scholar

    [12]

    Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, De Marco N, Zhao H, Sun P, Huang Y, Yang Y 2018 Nat. Commun. 9 3021Google Scholar

    [13]

    刘晓敏, 李亦回, 王兴涛, 赵一新 2019 物理学报 68 158805Google Scholar

    Liu X M, Li Y H, Wang X T, Zhao Y X 2019 Acta Phys. Sin. 68 158805Google Scholar

    [14]

    Chen P, Bai Y, Wang S, Lyu M, Yun J H, Wang L 2018 Adv. Funct. Mater. 28 1706923Google Scholar

    [15]

    Schlipf J, Hu Y, Pratap S, Bießmann L, Hohn N, Porcar L, Bein T, Docampo P, Müller B P 2019 ACS Appl. Energy Mater. 2 1011Google Scholar

    [16]

    Zhang T, Long M, Qin M, Lu X, Chen S, Xie F, Gong L, Chen J, Chu M, Miao Q, Chen Z, Xu W, Liu P, Xie W, Xu J B 2018 Joule 2 2706Google Scholar

    [17]

    Lin D, Zhang T, Wang J, Long M, Xie F, Chen J, Wu B, Shi T, Yan K, Xie W, Liu P, Xu J 2019 Nano Energy 59 619Google Scholar

    [18]

    Loi H L, Cao J, Guo X, Liu C K, Wang N, Song J, Tang G, Zhu Y, Yan F 2020 Adv. Sci. 7 2000776Google Scholar

    [19]

    王其, 延玲玲, 陈兵兵, 李仁杰, 王三龙, 王鹏阳, 黄茜, 许盛之, 侯国付, 陈新亮, 李跃龙, 丁毅, 张德坤, 王广才, 赵颖, 张晓丹 2021 物理学报 70 057802Google Scholar

    Wang Q, Yan L L, Chen B B, Li R J, Wang S L, Wang P Y, Huang Q, Xu S Z, Hou G F, Chen X L, Li Y L, Ding Y, Zhang D K, Wang G C, Zhao Y, Zhang X D 2021 Acta Phys. Sin. 70 057802Google Scholar

    [20]

    He J, Su J, Lin Z, Zhang S, Qin Y, Zhang J, Chang J, Hao Y 2019 J. Phys. Chem. C 123 7158Google Scholar

    [21]

    Liu Z, Chang J, Lin Z, Zhou L, Yang Z, Chen D, Zhang C, Liu S F, Hao Y 2018 Adv. Energy Mater. 8 1703432Google Scholar

    [22]

    Zhang H, Liu L, Zhou Z 2012 RSC Adv. 2 9224Google Scholar

    [23]

    Gnayem H, Sasson Y 2013 ACS Catalysis 3 186Google Scholar

    [24]

    Zhang X, Ai Z, Jia F, Zhang L J 2008 J. Phys. Chem. C 112 747Google Scholar

    [25]

    Ye L, Zan L, Tian L, Peng T, Zhang J 2011 Chem. Commun. 47 6951Google Scholar

    [26]

    Zhang K, Liang J, Wang S, Liu J, Ren K, Zheng X, Luo H, Peng Y, Zou X, Bo X, Li J, Yu X 2012 Cryst. Growth Des. 12 793Google Scholar

    [27]

    Liu X, Su Y, Zhao Q, Du C, Liu Z 2016 Sci. Rep. 6 28689Google Scholar

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [30]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [31]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [32]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [33]

    Wang N, Cao D, Wang J, Liang P, Chen X, Shu H 2017 J. Mater. Chem. C 5 9687Google Scholar

    [34]

    Boyd C C, Cheacharoen R, Leijtens T, McGehee M D 2019 Chem. Rev. 119 3418Google Scholar

    [35]

    Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323Google Scholar

    [36]

    Lu Z H, Lockwood D J, Baribeau J M 1995 Nature 378 258Google Scholar

    [37]

    Murtaza G, Ahmad I 2011 Physica B 406 3222Google Scholar

    [38]

    Zheng B, Ma C, Li D, Lan J, Zhang Z, Sun X, Zheng W, Yang T, Zhu C, Ouyang G, Xu G, Zhu X, Wang X, Pan A 2018 J. Am. Chem. Soc. 140 11193Google Scholar

    [39]

    Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q, Pan A, Jiang J, Yu R, Huang Y, Duan X 2014 Nat. Nanotechnol. 9 1024Google Scholar

    [40]

    Zheng B, Ma C, Li D, Lan J, Zhang Z, Sun X, Zheng W, Yang T, Zhu C, Ouyang G, Xu G, Zhu X, Wang X, Pan A 2018 JACS 140 11193

    [41]

    Roy T, Tosun M, Hettick M, Ahn G H, Hu C, Javey A 2016 Appl. Phys. Lett. 108 083111Google Scholar

    [42]

    Liao C S, Yu Z L, He P B, Zhao Y Q, Liu B, Cai M Q 2020 J. Power Sources 478 229078Google Scholar

  • [1] Yuan Wen-Ling, Yao Bi-Xia, Li Xi, Hu Shun-Bo, Ren Wei. First principles study on structural stability, mechanical, and thermodynamic properties of γ'-Co3(V, M) (M = Ti, Ta) phase. Acta Physica Sinica, 2024, 73(8): 086104. doi: 10.7498/aps.73.20231755
    [2] Zhang Ying-Nan, Zhang Min, Zhang Pai, Hu Wen-Bo. Investigation of electronic structure and optoelectronic properties of Si-doped β-Ga2O3 using GGA+U method based on first-principle. Acta Physica Sinica, 2024, 73(1): 017102. doi: 10.7498/aps.73.20231147
    [3] Wang Fan-Fan, Chen Dong, Yuan Jun, Zhang Zhu-Feng, Jiang Tao, Zhou Jun. Interlayer angle dependence of photoelectric properties of Sb/SnC van der Waals heterojunction and its application. Acta Physica Sinica, 2024, 73(22): 227101. doi: 10.7498/aps.73.20241138
    [4] Sun Ting-Yu, Wu Liang, He Xian-Juan, Jiang Nan, Zhou Wen-Zhe, Ouyang Fang-Ping. Effect of strain and electric field on electronic structure and optical properties of Ga2SeTe/In2Se3 heterojunction. Acta Physica Sinica, 2023, 72(7): 076301. doi: 10.7498/aps.72.20222250
    [5] Kong Yu-Han, Wang Rong, Xu Ming-Sheng. Photoluminescence properties of CuPc/MoS2 van der Waals heterostructure. Acta Physica Sinica, 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [6] Wang Lan, Cheng Si-Yuan, Zeng Hang-Hang, Xie Cong-Wei, Gong Yuan-Hao, Zheng Zhi, Fan Xiao-Li. Structure prediction of CuBiI ternary compound and first-principles study of photoelectric properties. Acta Physica Sinica, 2021, 70(20): 207305. doi: 10.7498/aps.70.20210145
    [7] Zhang Shuo-Xin, Liu Shi-Yu, Yan Da-Li, Yu Qian, Ren Hai-Tao, Yu Bin, Li De-Jun. First-principles study of structural stability and mechanical properties of Ta1–xHfxC and Ta1–xZrxC solid solutions. Acta Physica Sinica, 2021, 70(11): 117102. doi: 10.7498/aps.70.20210191
    [8] Xu Xiang, Zhang Ying, Yan Qing, Liu Jing-Jing, Wang Jun, Xu Xin-Long, Hua Deng-Xin. Photochemical properties of rhenium disulfide/graphene heterojunctions with different stacking structures. Acta Physica Sinica, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [9] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Structure optimization and optoelectronical property calculation for organic lead iodine perovskite solar cells. Acta Physica Sinica, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [10] Gao Li-Ke, Zhao Xian-Hao, Diao Xin-Feng, Tang Tian-Yu, Tang Yan-Lin. First-principles study of photoelectric properties of CsSnBr3 under hydrostatic pressure. Acta Physica Sinica, 2021, 70(15): 158801. doi: 10.7498/aps.70.20210397
    [11] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Simulation and property calculation for FA1–xCsx PbI3–y Bry: Structures and optoelectronical properties. Acta Physica Sinica, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [12] Wu Tian, Yao Meng-Li, Long Meng-Qiu. First principle calculations of interface interactions and photoelectric properties of perovskite CsPbX3 (X=Cl, Br, I) and penta-graphene van der Waals heterostructures. Acta Physica Sinica, 2021, 70(5): 056301. doi: 10.7498/aps.70.20201246
    [13] Hu Qian-Ku, Qin Shuang-Hong, Wu Qing-Hua, Li Dan-Dan, Zhang Bin, Yuan Wen-Feng, Wang Li-Bo, Zhou Ai-Guo. First-principles calculations of stabilities and physical properties of ternary niobium borocarbides and tantalum borocarbides. Acta Physica Sinica, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [14] Luo Xiong, Meng Wei-Wei, Chen Guo-Xu-Jia, Guan Xiao-Xi, Jia Shuang-Feng, Zheng He, Wang Jian-Bo. First-principles study of stability, electronic and optical properties of two-dimensional Nb2SiTe4-based materials. Acta Physica Sinica, 2020, 69(19): 197102. doi: 10.7498/aps.69.20200848
    [15] Wang Dan, Zou Juan, Tang Li-Ming. Stability and electronic structure of hydrogenated two-dimensional transition metal dichalcogenides: First-principles study. Acta Physica Sinica, 2019, 68(3): 037102. doi: 10.7498/aps.68.20181597
    [16] Ma Zhen-Ning, Jiang Min, Wang Lei. First-principles study of electronic structures and phase stabilities of ternary intermetallic compounds in the Mg-Y-Zn alloys. Acta Physica Sinica, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [17] Cheng Chao-Qun, Li Gang, Zhang Wen-Dong, Li Peng-Wei, Hu Jie, Sang Sheng-Bo, Deng Xiao. Electronic structures and optical properties of boron and phosphorus doped β-Si3N4. Acta Physica Sinica, 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [18] Zhao Li-Kai, Zhao Er-Jun, Wu Zhi-Jian. First-principles calculations of structural thermodynamic and mechanical properties of 5d transitional metal diborides. Acta Physica Sinica, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [19] Liu Chun-Hua, Ouyang Chu-Ying, Ji Ying-Hua. First principles investigation of electronic structuresand stabilities of Mg2Ni and its complex hydrides. Acta Physica Sinica, 2011, 60(7): 077103. doi: 10.7498/aps.60.077103
    [20] Su Rui, He Jie, Chen Jia-Sheng, Guo Ying-Jie. First principles study of the electronic structure and photoelectric properties of rutile vanadium dioxcide. Acta Physica Sinica, 2011, 60(10): 107101. doi: 10.7498/aps.60.107101
Metrics
  • Abstract views:  4607
  • PDF Downloads:  88
  • Cited By: 0
Publishing process
  • Received Date:  25 March 2022
  • Accepted Date:  04 May 2022
  • Available Online:  19 September 2022
  • Published Online:  05 October 2022

/

返回文章
返回