Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of electronic structure and optoelectronic properties of Si-doped β-Ga2O3 using GGA+U method based on first-principle

Zhang Ying-Nan Zhang Min Zhang Pai Hu Wen-Bo

Citation:

Investigation of electronic structure and optoelectronic properties of Si-doped β-Ga2O3 using GGA+U method based on first-principle

Zhang Ying-Nan, Zhang Min, Zhang Pai, Hu Wen-Bo
PDF
HTML
Get Citation
  • In this work, the formation energy, band structure, state density, differential charge density and optoelectronic properties of undoped β-Ga2O3 and Si doped β-Ga2O3 are calculated by using GGA+U method based on density functional theory. The results show that the Si-substituted tetrahedron Ga(1) is more easily synthesized experimentally, and the obtained β-Ga2O3 band gap and Ga-3d state peak are in good agreement with the experimental results, and the effective doping is more likely to be obtained under oxygen-poor conditions. After Si doping, the total energy band moves toward the low-energy end, and Fermi level enters the conduction band, showing n-type conductive characteristic. The Si-3s orbital electrons occupy the bottom of the conduction band, the degree of electronic occupancy is strengthened, and the conductivity is improved. The results from dielectric function ε2(ω) show that with the increase of Si doping concentration, the ability to stimulate conductive electrons first increases and then decreases, which is in good agreement with the quantitative analysis results of conductivity. The optical band gap increases and the absorption band edge rises slowly with the increase of Si doping concentration. The results of absorption spectra show that Si-doped β-Ga2O3 has the ability to realize the strong deep ultraviolet photoelectric detection. The calculated results provide a theoretical reference for further implementing the experimental investigation and the optimization innovation of Si-doped β-Ga2O3 and relative device design.
      Corresponding author: Zhang Min, m.zhang@live.com
    • Funds: Project supported by the Liaoning Revitalization Talents Program, China (Grant No. XLYC1807170) and the University-Industry Collaborative Education Program of Ministry of Education, China (Grant No. 220900575223357).
    [1]

    刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 物理学报 71 208501Google Scholar

    Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar

    [2]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [3]

    况丹, 徐爽, 史大为, 郭建, 喻志农 2023 物理学报 72 038501Google Scholar

    Kuang D, Xu S, Shi D W, Guo J, Yu Z N 2023 Acta Phys. Sin. 72 038501Google Scholar

    [4]

    李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 物理学报 71 048501Google Scholar

    Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar

    [5]

    Mi W, Li Z, Luan C N, Xiao H D, Zhao C S, Ma J 2015 Ceram. Int. 41 2572Google Scholar

    [6]

    Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T, Yamakoshi S 2016 Semicond. Sci. and Technol. 31 034001Google Scholar

    [7]

    Higashiwaki M, Jessen G H 2018 Appl. Phys. Lett. 112 060401Google Scholar

    [8]

    Hou Y, Jayatissa A H 2014 Sens. Actuators, B 204 310Google Scholar

    [9]

    Zhang L Y, Yan J L, Zhang Y J, Li T, Ding X W 2012 Phys. B: Condens. Matter 407 1227Google Scholar

    [10]

    Leedy K D, Chabak K D, Vasilyev V, Look D C, Boeckl J J, Brown J L, Tetlak S E, Green A J, Moser N A, Crespo A, Thomson D B, Fitch R C, McCandless J P, Jessen G H 2017 Appl. Phys. Lett. 111 012103Google Scholar

    [11]

    Zhang Y J, Yan J L, Zhao G, Xie W F 2010 Phys. B: Condens. Matter 405 3899Google Scholar

    [12]

    Ahmadi E, Koksaldi O S, Kaun S W, Oshima Y, Short D B, Mishra U K, Speck J S 2017 Appl. Phys. Express 10 041102Google Scholar

    [13]

    Yan H Y, Guo Y R, Song Q G, Chen Y F 2014 Phys. B: Condens. Matter 434 181Google Scholar

    [14]

    Chen Z W, Wang X, Noda S, Saito K, Tanaka T, Nishio M, Arita M, Guo Q X 2016 Superlattices Microstruct. 90 207Google Scholar

    [15]

    Guo Q X, Nishihagi K, Chen Z W, Saito K, Tanaka T 2017 Thin Solid Films 639 123Google Scholar

    [16]

    Hu D Q, Wang Y, Zhuang S W, Dong X, Zhang Y T, Yin J Z, Zhang B L, Lv Y J, Feng Z H, Du G T 2018 Ceram. Int. 44 3122Google Scholar

    [17]

    Xu C X, Liu H, Pan X H, Ye Z Z 2020 Opt. Mater. 108 110145Google Scholar

    [18]

    Varley J B, Weber J R, Janotti A, Van de Walle C G 2010 Appl. Phys. Lett. 97 142106Google Scholar

    [19]

    Takakura K, Koga D, Ohyama H, Rafi J M, Kayamoto Y, Shibuya M, Yamamoto H, Vanhellemont J 2009 Phys. B: Condens. Matter 404 4854Google Scholar

    [20]

    Gogova D, Wagner G, Baldini M, Schmidbauer M, Irmscher K, Schewski R, Galazka Z, Albrecht M, Fornari R 2014 J. Cryst. Growth 401 665Google Scholar

    [21]

    张易军, 闫金良, 赵刚, 谢万峰 2011 物理学报 60 037103Google Scholar

    Zhang Y J, Yan J L, Zhao G, Xie W F 2011 Acta Phys. Sin. 60 037103Google Scholar

    [22]

    Orita M, Ohta H, Hirano M, Hosono H 2000 Appl. Phys. Lett. 77 4166Google Scholar

    [23]

    Li Y, Yang C H, Wu L Y, Zhang R 2017 Mod. Phys. Lett. B 31 1750172Google Scholar

    [24]

    Dang J N, Zheng S W, Chen L, Zheng T 2019 Chin. Phys. B 28 016301Google Scholar

    [25]

    马海林, 苏庆 2014 物理学报 63 116701Google Scholar

    Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701Google Scholar

    [26]

    Dong L P, Jia R X, Xin B, Peng B, Zhang Y M 2017 Sci. Rep. 7 40160Google Scholar

    [27]

    Wei W, Qin Z X, Fan S F, Li Z W, Shi K, Sheng Z Q, Yi Z G 2012 Nanoscale Res. Lett. 7 562Google Scholar

    [28]

    He H Y, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I, Rérat M 2006 Phys. Rev. B 74 195123Google Scholar

    [29]

    Zheng T, Wang Q, Dang J N, He W, Wang L Y, Zheng S W 2020 Comput. Mater. Sci. 174 109505Google Scholar

    [30]

    Shu T K, Miao R X, Guo S D, Wang S Q, Zhao C H, Zhang X L 2020 Chin. Phys. B 29 126301Google Scholar

    [31]

    Kang B K, Mang S R, Go D H, Yoon D H 2013 Mater. Lett. 111 67Google Scholar

    [32]

    Yoshioka S, Hayashi H, Kuwabara A, Oba F, Matsunaga K, Tanaka I 2007 J. Phys. Condens. Matter 19 346211Google Scholar

    [33]

    Víllora E G, Shimamura K, Yoshikawa Y, Ujiie T, Aoki K 2008 Appl. Phys. Lett. 92 202120Google Scholar

    [34]

    Janowitz C, Scherer V, Mohamed M, Krapf A, Dwelk H, Manzke R, Galazka Z, Uecker R, Irmscher K, Fornari R, Michling M, Schmeißer D, Weber J R, Varley J B, Van de Walle C G 2011 New J. Phys. 13 085014Google Scholar

    [35]

    Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan H, Wang G F, Sun C L, Li L H, Tang W H 2014 Opt. Mater. Express 4 1067Google Scholar

    [36]

    Yang X Y, Wen S M, Chen D D, Li T, Zhao C W 2022 Phys. Lett. A 433 128025Google Scholar

    [37]

    Yang K, Dai Y, Huang B 2008 Chem. Phys. Lett. 456 71Google Scholar

    [38]

    落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪 2023 物理学报 72 028502Google Scholar

    Luo J X, Gao H L, Deng J X, Ren J H, Zhang Q, Li R D, Meng X 2023 Acta Phys. Sin. 72 028502Google Scholar

    [39]

    Oshima T, Matsuyama K, Yoshimatsu K, Ohtomo A 2015 J. Cryst. Growth 421 23Google Scholar

    [40]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y 2008 Phys. Status Solidi C 5 3088Google Scholar

    [41]

    Guo S Q, Hou Q Y, Zhao C W, Zhang Y 2014 Chem. Phys. Lett. 614 15Google Scholar

    [42]

    Litimein F, Rached D, Khenata R, Baltache H 2009 J. Alloys Compd. 488 148Google Scholar

    [43]

    Shimamura K, Víllora E G, Ujiie T, Aoki K 2008 Appl. Phys. Lett. 92 201914Google Scholar

    [44]

    Mondal A K, Mohamed M A, Ping L K, Mohamad Taib M F, Samat M H, Mohammad Haniff M A S, Bahru R 2021 Materials (Basel). 14 604Google Scholar

    [45]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [46]

    Sarkar A, Ghosh S, Chaudhuri S, Pal A K 1991 Thin Solid Films 204 255Google Scholar

    [47]

    Reynolds D C, Look D C, Jogai B 2000 J. Appl. Phys. 88 5760Google Scholar

    [48]

    Zheng S W, Fan G H, He M, Zhao L Z 2014 Acta Phys. Sin. 63 057102 [郑树文, 范广涵, 何苗, 赵灵智 2014 物理学报 63 057102Google Scholar

    Zheng S W, Fan G H, He M, Zhao L Z 2014 Acta Phys. Sin. 63 057102Google Scholar

    [49]

    Hou Q Y, Lü Z Y, Zhao C W 2014 Acta Phys. Sin. 63 197102 [侯清玉, 吕致远, 赵春旺 2014 物理学报 63 197102Google Scholar

    Hou Q Y, Lü Z Y, Zhao C W 2014 Acta Phys. Sin. 63 197102Google Scholar

    [50]

    Liu J F, Gao S S, Li W X, Dai J F, Suo Z Q, Suo Z T 2021 Cryst. Res. Technol. 57 2100126Google Scholar

  • 图 1  Si掺杂β-Ga2O3的1×2×2超胞模型, Ga(1)和Ga(2)分别表示四面体和八面体位置

    Figure 1.  1×2×2 supercell model of Si-doped β-Ga2O3, where Ga(1) and Ga(2) represent tetrahedral and octahedral positions, respectively.

    图 2  原胞和超胞模型 (a) Ga8O12; (b) Ga31O48Si1 (1×2×2); (c) Ga23O36Si1 (1×3×1); (d) Ga15O24Si1 (1×2×1); (e) Ga7O12Si1

    Figure 2.  (a) Primitive cell and supercell models: (a) Ga8O12; (b) Ga31O48Si1 (1×2×2); (c) Ga23O36Si1 (1×3×1); (d) Ga15O24Si1 (1×2×1); (e) Ga7O12Si1.

    图 3  β-Ga2O3的能带结构和对应的态密度图谱 (a) GGA; (b) GGA+U

    Figure 3.  Band structure and corresponding density of states plots of β-Ga2O3: (a) GGA; (b) GGA+U.

    图 4  不同Si掺杂浓度的能带结构图谱 (a) 1.25% (Ga31O48Si1); (b) 1.67% (Ga23O36Si1); (c) 2.50% (Ga15O24Si1); (d) 5.00% (Ga7O12Si1)

    Figure 4.  Band structure plots of β-Ga2O3 with different Si doping concentrations: (a) 1.25% (Ga31O48Si1); (b) 1.67% (Ga23O36Si1); (c) 2.50% (Ga15O24Si1); (d) 5.00% (Ga7O12Si1).

    图 5  不同Si掺杂浓度的DOS图谱 (a) 0% (Ga8O12); (b) 1.67% (Ga23O36Si1); (c) 5.00% (Ga7O12Si1). (d) 不同Si掺杂浓度的PDOS图谱

    Figure 5.  DOS for different Si doping concentrations: (a) 0% (Ga8O12); (b) 1.67% (Ga23O36Si1); (c) 5.00% (Ga7O12Si1). (d) PDOS for different Si doping concentrations.

    图 6  未掺杂(a)和Si掺杂浓度为5.00% (b)的β-Ga2O3 010面差分电荷密度分布图

    Figure 6.  Differential charge density distribution of undoped (a) and Si-doped β-Ga2O3 (010) surface with a doping atomic concentration of 5.00% (b).

    图 7  未掺杂和不同浓度Si掺杂β-Ga2O3的介电函数虚部

    Figure 7.  Imaginary part of dielectric function of undoped and Si-doped β-Ga2O3 with different Si concentrations.

    图 8  未掺杂和不同浓度Si掺杂β-Ga2O3的吸收光谱, 插图为局部区域(300—790 nm)吸收光谱放大图

    Figure 8.  Absorption spectra of undoped and Si-doped β-Ga2O3 with different Si concentrations, illustrated as enlarged absorption spectra of a local region (300–790 nm).

    表 1  GGA+U方法优化后未掺杂和Si掺杂β-Ga2O3的晶格参数

    Table 1.  Lattice parameters of undoped and Si-doped β-Ga2O3 optimized using GGA+U method.

    Models a b c β V3 Ef/eV
    O-Rich O-Poor
    β-Ga2O3 Exp.[32] 12.220 3.038 5.786
    0% 12.276 3.065 5.845 104.050 213.329
    1.25% 12.359 3.061 5.844 104.025 214.469 5.479 –3.301
    1.67% 12.347 3.063 5.847 104.117 214.511 6.121 –2.659
    2.50% 12.391 3.061 5.843 104.058 214.961 6.471 –2.309
    5.00% 12.719 3.031 5.817 103.047 218.442 6.638 –2.142
    DownLoad: CSV
  • [1]

    刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 物理学报 71 208501Google Scholar

    Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar

    [2]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [3]

    况丹, 徐爽, 史大为, 郭建, 喻志农 2023 物理学报 72 038501Google Scholar

    Kuang D, Xu S, Shi D W, Guo J, Yu Z N 2023 Acta Phys. Sin. 72 038501Google Scholar

    [4]

    李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 物理学报 71 048501Google Scholar

    Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar

    [5]

    Mi W, Li Z, Luan C N, Xiao H D, Zhao C S, Ma J 2015 Ceram. Int. 41 2572Google Scholar

    [6]

    Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T, Yamakoshi S 2016 Semicond. Sci. and Technol. 31 034001Google Scholar

    [7]

    Higashiwaki M, Jessen G H 2018 Appl. Phys. Lett. 112 060401Google Scholar

    [8]

    Hou Y, Jayatissa A H 2014 Sens. Actuators, B 204 310Google Scholar

    [9]

    Zhang L Y, Yan J L, Zhang Y J, Li T, Ding X W 2012 Phys. B: Condens. Matter 407 1227Google Scholar

    [10]

    Leedy K D, Chabak K D, Vasilyev V, Look D C, Boeckl J J, Brown J L, Tetlak S E, Green A J, Moser N A, Crespo A, Thomson D B, Fitch R C, McCandless J P, Jessen G H 2017 Appl. Phys. Lett. 111 012103Google Scholar

    [11]

    Zhang Y J, Yan J L, Zhao G, Xie W F 2010 Phys. B: Condens. Matter 405 3899Google Scholar

    [12]

    Ahmadi E, Koksaldi O S, Kaun S W, Oshima Y, Short D B, Mishra U K, Speck J S 2017 Appl. Phys. Express 10 041102Google Scholar

    [13]

    Yan H Y, Guo Y R, Song Q G, Chen Y F 2014 Phys. B: Condens. Matter 434 181Google Scholar

    [14]

    Chen Z W, Wang X, Noda S, Saito K, Tanaka T, Nishio M, Arita M, Guo Q X 2016 Superlattices Microstruct. 90 207Google Scholar

    [15]

    Guo Q X, Nishihagi K, Chen Z W, Saito K, Tanaka T 2017 Thin Solid Films 639 123Google Scholar

    [16]

    Hu D Q, Wang Y, Zhuang S W, Dong X, Zhang Y T, Yin J Z, Zhang B L, Lv Y J, Feng Z H, Du G T 2018 Ceram. Int. 44 3122Google Scholar

    [17]

    Xu C X, Liu H, Pan X H, Ye Z Z 2020 Opt. Mater. 108 110145Google Scholar

    [18]

    Varley J B, Weber J R, Janotti A, Van de Walle C G 2010 Appl. Phys. Lett. 97 142106Google Scholar

    [19]

    Takakura K, Koga D, Ohyama H, Rafi J M, Kayamoto Y, Shibuya M, Yamamoto H, Vanhellemont J 2009 Phys. B: Condens. Matter 404 4854Google Scholar

    [20]

    Gogova D, Wagner G, Baldini M, Schmidbauer M, Irmscher K, Schewski R, Galazka Z, Albrecht M, Fornari R 2014 J. Cryst. Growth 401 665Google Scholar

    [21]

    张易军, 闫金良, 赵刚, 谢万峰 2011 物理学报 60 037103Google Scholar

    Zhang Y J, Yan J L, Zhao G, Xie W F 2011 Acta Phys. Sin. 60 037103Google Scholar

    [22]

    Orita M, Ohta H, Hirano M, Hosono H 2000 Appl. Phys. Lett. 77 4166Google Scholar

    [23]

    Li Y, Yang C H, Wu L Y, Zhang R 2017 Mod. Phys. Lett. B 31 1750172Google Scholar

    [24]

    Dang J N, Zheng S W, Chen L, Zheng T 2019 Chin. Phys. B 28 016301Google Scholar

    [25]

    马海林, 苏庆 2014 物理学报 63 116701Google Scholar

    Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701Google Scholar

    [26]

    Dong L P, Jia R X, Xin B, Peng B, Zhang Y M 2017 Sci. Rep. 7 40160Google Scholar

    [27]

    Wei W, Qin Z X, Fan S F, Li Z W, Shi K, Sheng Z Q, Yi Z G 2012 Nanoscale Res. Lett. 7 562Google Scholar

    [28]

    He H Y, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I, Rérat M 2006 Phys. Rev. B 74 195123Google Scholar

    [29]

    Zheng T, Wang Q, Dang J N, He W, Wang L Y, Zheng S W 2020 Comput. Mater. Sci. 174 109505Google Scholar

    [30]

    Shu T K, Miao R X, Guo S D, Wang S Q, Zhao C H, Zhang X L 2020 Chin. Phys. B 29 126301Google Scholar

    [31]

    Kang B K, Mang S R, Go D H, Yoon D H 2013 Mater. Lett. 111 67Google Scholar

    [32]

    Yoshioka S, Hayashi H, Kuwabara A, Oba F, Matsunaga K, Tanaka I 2007 J. Phys. Condens. Matter 19 346211Google Scholar

    [33]

    Víllora E G, Shimamura K, Yoshikawa Y, Ujiie T, Aoki K 2008 Appl. Phys. Lett. 92 202120Google Scholar

    [34]

    Janowitz C, Scherer V, Mohamed M, Krapf A, Dwelk H, Manzke R, Galazka Z, Uecker R, Irmscher K, Fornari R, Michling M, Schmeißer D, Weber J R, Varley J B, Van de Walle C G 2011 New J. Phys. 13 085014Google Scholar

    [35]

    Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan H, Wang G F, Sun C L, Li L H, Tang W H 2014 Opt. Mater. Express 4 1067Google Scholar

    [36]

    Yang X Y, Wen S M, Chen D D, Li T, Zhao C W 2022 Phys. Lett. A 433 128025Google Scholar

    [37]

    Yang K, Dai Y, Huang B 2008 Chem. Phys. Lett. 456 71Google Scholar

    [38]

    落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪 2023 物理学报 72 028502Google Scholar

    Luo J X, Gao H L, Deng J X, Ren J H, Zhang Q, Li R D, Meng X 2023 Acta Phys. Sin. 72 028502Google Scholar

    [39]

    Oshima T, Matsuyama K, Yoshimatsu K, Ohtomo A 2015 J. Cryst. Growth 421 23Google Scholar

    [40]

    Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y 2008 Phys. Status Solidi C 5 3088Google Scholar

    [41]

    Guo S Q, Hou Q Y, Zhao C W, Zhang Y 2014 Chem. Phys. Lett. 614 15Google Scholar

    [42]

    Litimein F, Rached D, Khenata R, Baltache H 2009 J. Alloys Compd. 488 148Google Scholar

    [43]

    Shimamura K, Víllora E G, Ujiie T, Aoki K 2008 Appl. Phys. Lett. 92 201914Google Scholar

    [44]

    Mondal A K, Mohamed M A, Ping L K, Mohamad Taib M F, Samat M H, Mohammad Haniff M A S, Bahru R 2021 Materials (Basel). 14 604Google Scholar

    [45]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [46]

    Sarkar A, Ghosh S, Chaudhuri S, Pal A K 1991 Thin Solid Films 204 255Google Scholar

    [47]

    Reynolds D C, Look D C, Jogai B 2000 J. Appl. Phys. 88 5760Google Scholar

    [48]

    Zheng S W, Fan G H, He M, Zhao L Z 2014 Acta Phys. Sin. 63 057102 [郑树文, 范广涵, 何苗, 赵灵智 2014 物理学报 63 057102Google Scholar

    Zheng S W, Fan G H, He M, Zhao L Z 2014 Acta Phys. Sin. 63 057102Google Scholar

    [49]

    Hou Q Y, Lü Z Y, Zhao C W 2014 Acta Phys. Sin. 63 197102 [侯清玉, 吕致远, 赵春旺 2014 物理学报 63 197102Google Scholar

    Hou Q Y, Lü Z Y, Zhao C W 2014 Acta Phys. Sin. 63 197102Google Scholar

    [50]

    Liu J F, Gao S S, Li W X, Dai J F, Suo Z Q, Suo Z T 2021 Cryst. Res. Technol. 57 2100126Google Scholar

  • [1] Zhang Zhu-li, Zhang Fan, Wang Kai-lei, Li Chao, Wang Jin-tao. Effect of Fe doping on the electronic structure and optical properties of two-dimensional CuI. Acta Physica Sinica, 2025, 74(2): . doi: 10.7498/aps.74.20241325
    [2] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Structure optimization and optoelectronical property calculation for organic lead iodine perovskite solar cells. Acta Physica Sinica, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [3] Gao Li-Ke, Zhao Xian-Hao, Diao Xin-Feng, Tang Tian-Yu, Tang Yan-Lin. First-principles study of photoelectric properties of CsSnBr3 under hydrostatic pressure. Acta Physica Sinica, 2021, 70(15): 158801. doi: 10.7498/aps.70.20210397
    [4] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Simulation and property calculation for FA1–xCsx PbI3–y Bry: Structures and optoelectronical properties. Acta Physica Sinica, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [5] Zhou Shi-Wen, Peng Ping, Chen Wen-Qin, Yu Ming-Huai, Guo Hui, Yuan Zhen. Electronic structures and optical properties of Ce-doped anatase TiO2 with oxygen vacancy. Acta Physica Sinica, 2019, 68(3): 037101. doi: 10.7498/aps.68.20181946
    [6] Pan Feng-Chun, Lin Xue-Ling, Cao Zhi-Jie, Li Xiao-Fu. Electronic structures and optical properties of Fe, Co, and Ni doped GaSb. Acta Physica Sinica, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [7] Zhang Li-Li,  Xia Tong,  Liu Gui-An,  Lei Bo-Cheng,  Zhao Xu-Cai,  Wang Shao-Xia,  Huang Yi-Neng. Electronic and optical properties of n-pr co-doped anatase TiO2 from first-principles. Acta Physica Sinica, 2019, 68(1): 017401. doi: 10.7498/aps.68.20181531
    [8] Cheng Li, Wang De-Xing, Zhang Yang, Su Li-Ping, Chen Shu-Yan, Wang Xiao-Feng, Sun Peng, Yi Chong-Gui. Electronic structure and optical properties of Cu-O co-doped AlN. Acta Physica Sinica, 2018, 67(4): 047101. doi: 10.7498/aps.67.20172096
    [9] Hu Jie-Qiong, Xie Ming, Chen Jia-Lin, Liu Man-Men, Chen Yong-Tai, Wang Song, Wang Sai-Bei, Li Ai-Kun. First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases. Acta Physica Sinica, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [10] Xu Zhen-Chao, Hou Qing-Yu. GGA+U study on the effects of Ag doping on the electronic structures and absorption spectra of ZnO. Acta Physica Sinica, 2015, 64(15): 157101. doi: 10.7498/aps.64.157101
    [11] Cheng Chao-Qun, Li Gang, Zhang Wen-Dong, Li Peng-Wei, Hu Jie, Sang Sheng-Bo, Deng Xiao. Electronic structures and optical properties of boron and phosphorus doped β-Si3N4. Acta Physica Sinica, 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [12] Gao Tan-Hua, Liu Hui-Ying, Zhang Peng, Wu Shun-Qing, Yang Yong, Zhu Zi-Zhong. Structural and electronic properties of Al-doped spinel LiMn2O4. Acta Physica Sinica, 2012, 61(18): 187306. doi: 10.7498/aps.61.187306
    [13] Yu Ben-Hai, Liu Mo-Lin, Chen Dong. First principles study of structural, electronic and elastic properties of Mg2 Si polymorphs. Acta Physica Sinica, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [14] Su Rui, He Jie, Chen Jia-Sheng, Guo Ying-Jie. First principles study of the electronic structure and photoelectric properties of rutile vanadium dioxcide. Acta Physica Sinica, 2011, 60(10): 107101. doi: 10.7498/aps.60.107101
    [15] Li Xu-Zhen, Xie Quan, Chen Qian, Zhao Feng-Juan, Cui Dong-Meng. The study on the electronic structure and optical properties of OsSi2. Acta Physica Sinica, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [16] Cui Dong-Meng, Xie Quan, Chen Qian, Zhao Feng-Juan, Li Xu-Zhen. First-principles study on the band structure and optical properties of strained Ru2Si3 semiconductor. Acta Physica Sinica, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [17] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [18] Xing Hai-Ying, Fan Guang-Han, Zhao De-Gang, He Miao, Zhang Yong, Zhou Tian-Ming. Electronic structure and optical properties of GaN with Mn-doping. Acta Physica Sinica, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [19] Ding Ying-Chun, Xiang An-Ping, Xu Ming, Zhu Wen-Jun. Electrical structures and optical properties of doped earth element (Y,La) in γ-Si3N4. Acta Physica Sinica, 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [20] Pan Hong-Zhe, Xu Ming, Zhu Wen-Jun, Zhou Hai-Ping. First-principles study on the electrical structures and optical properties of β-Si3N4. Acta Physica Sinica, 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
Metrics
  • Abstract views:  3588
  • PDF Downloads:  170
  • Cited By: 0
Publishing process
  • Received Date:  16 July 2023
  • Accepted Date:  17 September 2023
  • Available Online:  08 October 2023
  • Published Online:  05 January 2024

/

返回文章
返回