Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structure optimization and optoelectronical property calculation for organic lead iodine perovskite solar cells

Lu Hui-Dong Han Hong-Jing Liu Jie

Citation:

Structure optimization and optoelectronical property calculation for organic lead iodine perovskite solar cells

Lu Hui-Dong, Han Hong-Jing, Liu Jie
PDF
HTML
Get Citation
  • Methylamine lead iodide (CH3NH3PbI3 MAPbI3) and formamidine lead iodide (CH(NH2)2PbI3 FAPbI3) are the most commonly used organic lead iodine perovskite materials for solar cell research. For the perovskite solar cell with a layered structure, the optical properties and thickness of each layer affect the photoelectric conversion efficiency of the cell. In this paper, the optical admittance method and rigorous coupled wave analysis method are used to calculate the absorptivities and transmittances of metal oxide transparent conductive films for tin-doped indium oxide (In2O3:Sn), fluorine-doped tin oxide (SnO2:F), TiO2, MAPbI3 and FAPbI3. The influence of each layer thickness and device structure on the short-circuit current density of the cell are analyzed. It is shown that for the FTO(ITO)/TiO2/MAPbI3 structure, when the thickness of the FTO film is 50–450 nm and the thickness of the ITO film is 10–150 nm, the average transmittance for the 360–800 nm wavelength light is 85%. For the FTO(ITO)/TiO2/FAPbI3 structure, when the thickness of the FTO film and ITO film are 50–250 nm and 10–150 nm, respectively, the average values of the transmittance for the 360-840 nm wavelength light are 81.6% and 78%, respectively. Under the optimal thickness of FTO and TiO2, and the thickness of MAPbI3 and FAPbI3 are 300–1000 nm, the corresponding short-circuit current densities are in a range of 21.9–23.7 and 23.0–24.4 mA·cm–2, respectively. The band gap of MAPbI3 and FAPbI3 are 1.56 and 1.48 eV, for which the corresponding absorption cut-off wavelengths are 796 and 840 nm, respectively, indicating that FAPbI3 has a wider absorption spectrum than MAPbI3. In order to maximize the Jsc value of the organic lead iodine perovskite solar cell, the thickness range of each layer for MAPbI3 perovskite solar cell (FTO thickness is (80 ± 50) nm, ITO thickness is less than 120 nm, MAPbI3 thicknessis 300–600 nm) and for FAPbI3 perovskite solar cell (FTO thickness is (120 ± 50) nm, ITO thickness is less than 180 nm, FAPbI3 thickness is 300–600 nm) are given. The research results of this article have guiding significance in designing and preparing the perovskite solar cells with high conversion efficiency.
      Corresponding author: Lu Hui-Dong, 2015990047@qhu.edu.cn
    • Funds: Project supported by the Chinasalt Jintan Company of Limited Liability, China (Grant No. ZYJTJS201906) and the Shanghai Aerospace Science and Technology Innovation Program, China (Grant No. SAST2017-139)
    [1]

    Liu W, Liu N J, Ji S L, Hua H F, Ma Y H, Hu R Y, Zhang J, Chu L, Li X A, Huang W 2020 Nano-Micro Lett. 12 119Google Scholar

    [2]

    Chen H Y, Zhan Y, Xu C Y, Chen W J, Wang S H, Zhang M Y, Li Y W, Li Y F 2020 Adv. Funct. Mater. 30 2001788Google Scholar

    [3]

    Li N X, Luo Y Q, Chen Z H, Niu X X, Zhang X, Lu J Z, Kumar R S, Jiang J K, Liu H F, Guo X, Lai B, Brocks G, Chen Q, Tao S X, Fenning D P, Zhou H P 2020 Joule 4 1Google Scholar

    [4]

    Yi C Y, Luo J S, Meloni S, Boziki A, Astani N A, Gratzel C, Zakeeruddin S M, Rothlisberger U, Gratzel M 2016 Energy Environ. Sci. 9 656Google Scholar

    [5]

    Huang Y, Li L, Liu Z H, Jiao H Y, He Y Q, Wang X G, Zhu R, Wang D, Sun J L, Chen Q, Zhou H P 2017 J. Mater. Chem. A 5 8537Google Scholar

    [6]

    Li N X, Tao S X, Chen Y H, Niu X X, Onwudinanti C K, Hu C, Qiu Z W, Xu Z Q, Zheng G H J, Wang L G, Zhang Y, Li L, Liu H F, Lun Y Z, Hong J W, Wang X Y, Liu Y Q, Xie H P, Gao Y L, Bai Y, Yang S H, Brocks G, Chen Q, Zhou H P 2019 Nat. Energy 4 408Google Scholar

    [7]

    Lu H Z, Liu Y H, Ahlawat P, Mishra A, Tress W R, Eickemeyer F T, Yang Y G, Fu F, Wang Z W, Avalos C E, Carlsen B I, Agarwalla A, Zhang X, Li X G, Zhan Y Q, Zakeeruddin S M, Emsley L, Rothlisberger U, Zheng L R, Hagfeldt A, Gratzel M 2020 Science 370 1

    [8]

    Yee K S 1966 IEEE Trans. Antennas Propag. 17 585

    [9]

    Sarkar S, Gupta V, Kumar M, Schubert J, Probst P T, Joseph J, Konig T A F 2019 ACS Appl. Mater. Interfaces 11 13752Google Scholar

    [10]

    Berning J A, Berning P H 1960 J. Opt. Soc. Am. 50 813Google Scholar

    [11]

    Darkwi A Y, Loke W K, Ibrahim K S 2000 Energy Mater. Sol. Cells 60 1Google Scholar

    [12]

    Nakane A, Tampo H, Tamakoshi M, Fujimoto S, Kim K M, Kim S, Shibata H, Niki S, Fujiwara H 2016 J. Appl. Phys. 120 064505Google Scholar

    [13]

    Young M, Traverse C J, Pandey R, Barr M C, Lunt R R 2013 Appl. Phys. Lett. 103 133304Google Scholar

    [14]

    Ball J M, Stranks S D, Horantner M T, SHuttner S, Zhang W, Crossland E J W, Ramirez I, Riede M, Johnston M B, Friend R H, Snaith J H 2015 Energy Environ. Sci. 8 602Google Scholar

    [15]

    Bush K A, Palmstrom A F, Yu Z S J, Boccard M, Cheacharoen R, Mailoa J P, McMeekin D P, Hoye R L Z, Bailie C D, Leijtens T, Peters I M, Minichetti M C, Rollston N, Prasanna R, Sofia S, Harwood D, Ma W, Moghadam F, Snaith H J, Buonassisi T, Holman Z C, Bent S F, McGehee M D 2017 Nat. Energy 2 17009Google Scholar

    [16]

    Hsue Y C, Freeman A, Gu B Y 2005 Phys. Rev. B 72 195118Google Scholar

    [17]

    Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068Google Scholar

    [18]

    Li L F 1996 J. Opt. Soc. Am. A 13 1870Google Scholar

    [19]

    Lyndin N M, Parriaux O, Tishchenko A V 2007 J. Opt. Soc. Am. A 24 3781Google Scholar

    [20]

    Dewan R, Vasilev I, Jovanov V, Knipp D 2011 J. Appl. Phys. 110 013101Google Scholar

    [21]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234Google Scholar

    [22]

    Pham N D, Zhang C M, Tiong V T, Zhang S L, Will G, Bou A, Bisquert J, Shaw P E, Du A J, Wilson G J, Wang H X 2019 Adv. Funct. Mater. 29 1806479Google Scholar

    [23]

    张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔 2020 物理学报 69 178101Google Scholar

    Zhang C, Zhang H Y, Hao H Y, Dong J J, Xing J, Liu H, Shi L, Zhong T T, Tang K P, Xu X 2020 Acta Phys. Sin. 69 178101Google Scholar

    [24]

    Tavakoli M M, Yadav P, Tavakoli R, Kong J 2018 Adv. Energy Mater. 8 1800794Google Scholar

    [25]

    Lin R X, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J, Sargent E H, Tan H R 2019 Nat. Energy 4 864Google Scholar

    [26]

    Jeong M Y, Choi I W, Go E M, Cho Y J, Kim M J, Lee B K, Jeong S H, Jo Y Y, Choi H W, Lee J Y, Bae J H, Kwak S K, Kim D S, Yang C D 2020 Science 369 1615Google Scholar

    [27]

    毕富珍, 郑晓, 任志勇 2019 物理化学学报 35 69Google Scholar

    Bi F Z, Zheng X, Reng Z Y 2019 Acta Phys.-Chim. Sin. 35 69Google Scholar

    [28]

    Barraud L, Holman Z C, Badel N, Reiss P, Descoeudres A, Battaglia C, Wolf S D, Ballif C 2013 Sol. Energy Mater. Sol. Cells 115 151Google Scholar

    [29]

    Shirayama M, Kadowaki H, Miyadera M, Sugita T, Tamakoshi M, Kato M, Fujiseki T, Murata D, Hara S, Murakami T N, Fujimoto S, Chikamatsu M, Fujiwara H 2016 Phys. Rev. Appl. 5 014012Google Scholar

    [30]

    Rodríguez-de Marcos L V, Larruquert J I, Méndez J A, Aznárez J A 2017 Opt. Mater. Express 7 989Google Scholar

    [31]

    Sarkar S, Gupta V, Kumar M, Schubert J, Probst P T, Joseph J, König T A F 2019 ACS Applied Material Interfaces 11 13752

    [32]

    Ball J M, Stranks S D, Horantner M T, SHuttner S, Zhang W, Crossland E J W, Ramirez I, Riede M, Johnston M B, Friend R H, Snaith J H 2015 Energy and Environ. Sci. 8 602

    [33]

    卢辉东, 韩红静, 刘杰 2021 物理学报 70 036301Google Scholar

    Lu H D, Han H J, Liu J 2021 Acta Phys. Sin. 70 036301Google Scholar

    [34]

    Rosenblatt G, Simkhovich B, Bartal G, Orenstein M 2020 Phys. Rev. X 10 011071

    [35]

    Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Gratzel M and White T J 2013 J. Mater. Chem. A 1 5628Google Scholar

    [36]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ 7 982Google Scholar

  • 图 1  (a)光导纳法和(b)严格耦合波分析法的计算过程图

    Figure 1.  Calculation procedure of (a) the optical admittance method and (b) rigorous coupled-wave analysis method.

    图 2  (a)钙钛矿太阳电池结构示意图; (b) MAPbI3和FAPbI3的晶胞

    Figure 2.  (a) Schematic diagram of perovskite solar cell structure; (b) crystal structure of the cubic MAPbI3 and FAPbI3.

    图 3  (a) MgF2, SnO2:F, In2O3:Sn, TiO2的折射率和消光系数; (b) FAPbI3和MAPbI3的折射率和消光系数

    Figure 3.  (a) The optical constants of the MgF2, SnO2:F, In2O3:Sn and TiO2 used in the optical simulation; (b) FAPbI3 and MAPbI3 used in the optical simulation.

    图 4  (a) 文献[21, 29]中报道的由Gass/FTO/TiO2/MAPbI3(FAPbI3)/piro-OMeTAD/Au组成的MAPbI3和FAPbI3太阳电池的光学模型; (b) 光学导纳法和严格耦合波分析法计算MAPbI3 = 400 nm的吸收率; (c) MAPbI3太阳电池各层吸收率和外量子效率; (d) FAPbI3和MAPbI3 = 590 nm的吸收率; (e) 外量子效率和对应的积分电流密度; (f) J-V曲线

    Figure 4.  (a) Optical model constructed for a MAPbI3 and FAPbI3 solar cell consisting of Gass/FTO/TiO2/MAPbI3(FAPbI3)/piro-OMeTAD/Au reported in Ref.[21, 29]; (b) calculation absorption coefficient of the optical admittance method and rigorous coupled-wave analysis method; (c) calculated A spectra of the component layers and EQE spectrum for theMAPbI3 solar cell; (d) absorption coefficient of FAPbI3 and MAPbI3 = 590 nm; (e) the integrated photocurrents calculated from the overlap integral of the EQE spectra with the AM1.5 G solar emission are also shown; (f) J-V curves.

    图 5  (a) FTO和(b) ITO的透射率随厚度变化图; 电池的短路电流密度随(c) FTO和MAPbI3以及(d) ITO和MAPbI3厚度变化图; (e) 钙钛矿太阳电池的吸收光谱; (f) 积分电流密度随MAPbI3厚度变化

    Figure 5.  Transmittance spectra of (a)FTO and (b)ITO; variations of short circuit current density with (c) FTO and MAPbI3, and (d) ITO and MAPbI3 thickness; (e) absorptance spectrum of the MAPbI3 solar cell; (f) changes in the relationship of the integrated Jsc with MAPbI3 thickness.

    图 6  (a) FTO和(b) ITO的透射率随厚度变化图; 电池的短路电流密度随(c) FTO和FAPbI3以及(d) ITO和FAPbI3厚度的变化图; (e) 钙钛矿太阳电池的吸收光谱; (f) 积分电流密度随FAPbI3厚度变化

    Figure 6.  Transmittance spectra of (a) FTO and (b) ITO; variations of short circuit current density with (c) FTO and FAPbI3 and (d) ITO and FAPbI3 thickness; (e) absorptance spectrum of the FAPbI3 solar cell; (f) changes in the relationship of the integrated Jsc with FAPbI3 thickness

  • [1]

    Liu W, Liu N J, Ji S L, Hua H F, Ma Y H, Hu R Y, Zhang J, Chu L, Li X A, Huang W 2020 Nano-Micro Lett. 12 119Google Scholar

    [2]

    Chen H Y, Zhan Y, Xu C Y, Chen W J, Wang S H, Zhang M Y, Li Y W, Li Y F 2020 Adv. Funct. Mater. 30 2001788Google Scholar

    [3]

    Li N X, Luo Y Q, Chen Z H, Niu X X, Zhang X, Lu J Z, Kumar R S, Jiang J K, Liu H F, Guo X, Lai B, Brocks G, Chen Q, Tao S X, Fenning D P, Zhou H P 2020 Joule 4 1Google Scholar

    [4]

    Yi C Y, Luo J S, Meloni S, Boziki A, Astani N A, Gratzel C, Zakeeruddin S M, Rothlisberger U, Gratzel M 2016 Energy Environ. Sci. 9 656Google Scholar

    [5]

    Huang Y, Li L, Liu Z H, Jiao H Y, He Y Q, Wang X G, Zhu R, Wang D, Sun J L, Chen Q, Zhou H P 2017 J. Mater. Chem. A 5 8537Google Scholar

    [6]

    Li N X, Tao S X, Chen Y H, Niu X X, Onwudinanti C K, Hu C, Qiu Z W, Xu Z Q, Zheng G H J, Wang L G, Zhang Y, Li L, Liu H F, Lun Y Z, Hong J W, Wang X Y, Liu Y Q, Xie H P, Gao Y L, Bai Y, Yang S H, Brocks G, Chen Q, Zhou H P 2019 Nat. Energy 4 408Google Scholar

    [7]

    Lu H Z, Liu Y H, Ahlawat P, Mishra A, Tress W R, Eickemeyer F T, Yang Y G, Fu F, Wang Z W, Avalos C E, Carlsen B I, Agarwalla A, Zhang X, Li X G, Zhan Y Q, Zakeeruddin S M, Emsley L, Rothlisberger U, Zheng L R, Hagfeldt A, Gratzel M 2020 Science 370 1

    [8]

    Yee K S 1966 IEEE Trans. Antennas Propag. 17 585

    [9]

    Sarkar S, Gupta V, Kumar M, Schubert J, Probst P T, Joseph J, Konig T A F 2019 ACS Appl. Mater. Interfaces 11 13752Google Scholar

    [10]

    Berning J A, Berning P H 1960 J. Opt. Soc. Am. 50 813Google Scholar

    [11]

    Darkwi A Y, Loke W K, Ibrahim K S 2000 Energy Mater. Sol. Cells 60 1Google Scholar

    [12]

    Nakane A, Tampo H, Tamakoshi M, Fujimoto S, Kim K M, Kim S, Shibata H, Niki S, Fujiwara H 2016 J. Appl. Phys. 120 064505Google Scholar

    [13]

    Young M, Traverse C J, Pandey R, Barr M C, Lunt R R 2013 Appl. Phys. Lett. 103 133304Google Scholar

    [14]

    Ball J M, Stranks S D, Horantner M T, SHuttner S, Zhang W, Crossland E J W, Ramirez I, Riede M, Johnston M B, Friend R H, Snaith J H 2015 Energy Environ. Sci. 8 602Google Scholar

    [15]

    Bush K A, Palmstrom A F, Yu Z S J, Boccard M, Cheacharoen R, Mailoa J P, McMeekin D P, Hoye R L Z, Bailie C D, Leijtens T, Peters I M, Minichetti M C, Rollston N, Prasanna R, Sofia S, Harwood D, Ma W, Moghadam F, Snaith H J, Buonassisi T, Holman Z C, Bent S F, McGehee M D 2017 Nat. Energy 2 17009Google Scholar

    [16]

    Hsue Y C, Freeman A, Gu B Y 2005 Phys. Rev. B 72 195118Google Scholar

    [17]

    Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068Google Scholar

    [18]

    Li L F 1996 J. Opt. Soc. Am. A 13 1870Google Scholar

    [19]

    Lyndin N M, Parriaux O, Tishchenko A V 2007 J. Opt. Soc. Am. A 24 3781Google Scholar

    [20]

    Dewan R, Vasilev I, Jovanov V, Knipp D 2011 J. Appl. Phys. 110 013101Google Scholar

    [21]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234Google Scholar

    [22]

    Pham N D, Zhang C M, Tiong V T, Zhang S L, Will G, Bou A, Bisquert J, Shaw P E, Du A J, Wilson G J, Wang H X 2019 Adv. Funct. Mater. 29 1806479Google Scholar

    [23]

    张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔 2020 物理学报 69 178101Google Scholar

    Zhang C, Zhang H Y, Hao H Y, Dong J J, Xing J, Liu H, Shi L, Zhong T T, Tang K P, Xu X 2020 Acta Phys. Sin. 69 178101Google Scholar

    [24]

    Tavakoli M M, Yadav P, Tavakoli R, Kong J 2018 Adv. Energy Mater. 8 1800794Google Scholar

    [25]

    Lin R X, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J, Sargent E H, Tan H R 2019 Nat. Energy 4 864Google Scholar

    [26]

    Jeong M Y, Choi I W, Go E M, Cho Y J, Kim M J, Lee B K, Jeong S H, Jo Y Y, Choi H W, Lee J Y, Bae J H, Kwak S K, Kim D S, Yang C D 2020 Science 369 1615Google Scholar

    [27]

    毕富珍, 郑晓, 任志勇 2019 物理化学学报 35 69Google Scholar

    Bi F Z, Zheng X, Reng Z Y 2019 Acta Phys.-Chim. Sin. 35 69Google Scholar

    [28]

    Barraud L, Holman Z C, Badel N, Reiss P, Descoeudres A, Battaglia C, Wolf S D, Ballif C 2013 Sol. Energy Mater. Sol. Cells 115 151Google Scholar

    [29]

    Shirayama M, Kadowaki H, Miyadera M, Sugita T, Tamakoshi M, Kato M, Fujiseki T, Murata D, Hara S, Murakami T N, Fujimoto S, Chikamatsu M, Fujiwara H 2016 Phys. Rev. Appl. 5 014012Google Scholar

    [30]

    Rodríguez-de Marcos L V, Larruquert J I, Méndez J A, Aznárez J A 2017 Opt. Mater. Express 7 989Google Scholar

    [31]

    Sarkar S, Gupta V, Kumar M, Schubert J, Probst P T, Joseph J, König T A F 2019 ACS Applied Material Interfaces 11 13752

    [32]

    Ball J M, Stranks S D, Horantner M T, SHuttner S, Zhang W, Crossland E J W, Ramirez I, Riede M, Johnston M B, Friend R H, Snaith J H 2015 Energy and Environ. Sci. 8 602

    [33]

    卢辉东, 韩红静, 刘杰 2021 物理学报 70 036301Google Scholar

    Lu H D, Han H J, Liu J 2021 Acta Phys. Sin. 70 036301Google Scholar

    [34]

    Rosenblatt G, Simkhovich B, Bartal G, Orenstein M 2020 Phys. Rev. X 10 011071

    [35]

    Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Gratzel M and White T J 2013 J. Mater. Chem. A 1 5628Google Scholar

    [36]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ 7 982Google Scholar

  • [1] Zhang Ying-Nan, Zhang Min, Zhang Pai, Hu Wen-Bo. Investigation of electronic structure and optoelectronic properties of Si-doped β-Ga2O3 using GGA+U method based on first-principle. Acta Physica Sinica, 2024, 73(1): 017102. doi: 10.7498/aps.73.20231147
    [2] Qu Zi-Han, Zhao Yang, Ma Fei, You Jing-Bi. Preparation of high-performance large-area perovskite solar cells by atomic layer deposition of metal oxide buffer layer. Acta Physica Sinica, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [3] Han Xiao-Jing, Yang Jing, Zhang Jia-Li, Liu Dong-Xue, Shi Biao, Wang Peng-Yang, Zhao Ying, Zhang Xiao-Dan. Electron transport layer of tin dioxide deposited by reactive plasma and its application in perovskite solar cells. Acta Physica Sinica, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [4] Yao Yi-Zhou, Cao Dan, Yan Jie, Liu Xue-Yin, Wang Jian-Feng, Jiang Zhou-Ting, Shu Hai-Bo. A first-principles study on environmental stability and optoelectronic properties of bismuth oxychloride/ cesium lead chloride van der Waals heterojunctions. Acta Physica Sinica, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [5] Han Mei-Dou-Xue,  Wang Ya,  Wang Rong-Bo,  Zhao Jun-Tao,  Ren Hui-Zhi,  Hou Guo-Fu,  Zhao Ying,  Zhang Xiao-Dan,  Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [6] Han Mei-Dou-Xue, Wang Ya, Wang Rong-Bo, Zhao Jun-Tao, Ren Hui-Zhi, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan, Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [7] Gao Li-Ke, Zhao Xian-Hao, Diao Xin-Feng, Tang Tian-Yu, Tang Yan-Lin. First-principles study of photoelectric properties of CsSnBr3 under hydrostatic pressure. Acta Physica Sinica, 2021, 70(15): 158801. doi: 10.7498/aps.70.20210397
    [8] Li Yan, He Hong, Dang Wei-Wu, Chen Xue-Lian, Sun Can, Zheng Jia-Lu. Research progress of light irradiation stability of functional layers in perovskite solar cells. Acta Physica Sinica, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [9] Xu Ting, Wang Zi-Shuai, Li Xuan-Hua, Sha Wei E. I.. Loss mechanism analyses of perovskite solar cells with equivalent circuit model. Acta Physica Sinica, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [10] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Simulation and property calculation for FA1–xCsx PbI3–y Bry: Structures and optoelectronical properties. Acta Physica Sinica, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [11] Liang Xiao-Juan, Cao Yu, Cai Hong-Kun, Su Jian, Ni Jian, Li Juan, Zhang Jian-Jun. Simulation and architectural design for Schottky structure perovskite solar cells. Acta Physica Sinica, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [12] Chen Yong-Liang, Tang Ya-Wen, Chen Pei-Run, Zhang Li, Liu Qi, Zhao Ying, Huang Qian, Zhang Xiao-Dan. Progress in perovskite solar cells based on different buffer layer materials. Acta Physica Sinica, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [13] Li Shao-Hua, Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Wen-Biao, Pan Ling, Yang Shi-E, Chen Yong-Sheng. Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [14] Wang Jun-Xia, Bi Zhuo-Neng, Liang Zhu-Rong, Xu Xue-Qing. Progress of new carbon material research in perovskite solar cells. Acta Physica Sinica, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [15] Wang Fu-Zhi, Tan Zhan-Ao, Dai Song-Yuan, Li Yong-Fang. Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [16] Cheng Chao-Qun, Li Gang, Zhang Wen-Dong, Li Peng-Wei, Hu Jie, Sang Sheng-Bo, Deng Xiao. Electronic structures and optical properties of boron and phosphorus doped β-Si3N4. Acta Physica Sinica, 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [17] Liang Lei, Xu Qin-Fang, Hu Man-Li, Sun Hao, Xiang Guang-Hua, Zhou Li-Bin. Investigation of anti-reflection properties of crystalline silicon solar cell surface silicon nanowire arrays. Acta Physica Sinica, 2013, 62(3): 037301. doi: 10.7498/aps.62.037301
    [18] Su Rui, He Jie, Chen Jia-Sheng, Guo Ying-Jie. First principles study of the electronic structure and photoelectric properties of rutile vanadium dioxcide. Acta Physica Sinica, 2011, 60(10): 107101. doi: 10.7498/aps.60.107101
    [19] Kong Wei-Jin, Wang Shu-Hao, Wei Shi-Jie, Yun Mao-Jin, Zhang Wen-Fei, Wang Xin-Jie, Zhang Meng-Meng. Diffraction property of broadband metal multi-layer dielectric gratings based on rigorous coupled-wave analysis. Acta Physica Sinica, 2011, 60(11): 114214. doi: 10.7498/aps.60.114214
    [20] Kong Wei-Jin, Yun Mao-Jin, Sun Xin, Liu Jun-Hai, Fan Zheng-Xiu, Shao Jian-Da. Diffraction property of multi-layer dielectric gratings studied by rigorous coupled-wave analysis. Acta Physica Sinica, 2008, 57(8): 4904-4910. doi: 10.7498/aps.57.4904
Metrics
  • Abstract views:  4282
  • PDF Downloads:  115
  • Cited By: 0
Publishing process
  • Received Date:  20 January 2021
  • Accepted Date:  29 March 2021
  • Available Online:  09 August 2021
  • Published Online:  20 August 2021

/

返回文章
返回