-
Methylamine lead iodide (CH3NH3PbI3 MAPbI3) and formamidine lead iodide (CH(NH2)2PbI3 FAPbI3) are the most commonly used organic lead iodine perovskite materials for solar cell research. For the perovskite solar cell with a layered structure, the optical properties and thickness of each layer affect the photoelectric conversion efficiency of the cell. In this paper, the optical admittance method and rigorous coupled wave analysis method are used to calculate the absorptivities and transmittances of metal oxide transparent conductive films for tin-doped indium oxide (In2O3:Sn), fluorine-doped tin oxide (SnO2:F), TiO2, MAPbI3 and FAPbI3. The influence of each layer thickness and device structure on the short-circuit current density of the cell are analyzed. It is shown that for the FTO(ITO)/TiO2/MAPbI3 structure, when the thickness of the FTO film is 50–450 nm and the thickness of the ITO film is 10–150 nm, the average transmittance for the 360–800 nm wavelength light is 85%. For the FTO(ITO)/TiO2/FAPbI3 structure, when the thickness of the FTO film and ITO film are 50–250 nm and 10–150 nm, respectively, the average values of the transmittance for the 360-840 nm wavelength light are 81.6% and 78%, respectively. Under the optimal thickness of FTO and TiO2, and the thickness of MAPbI3 and FAPbI3 are 300–1000 nm, the corresponding short-circuit current densities are in a range of 21.9–23.7 and 23.0–24.4 mA·cm–2, respectively. The band gap of MAPbI3 and FAPbI3 are 1.56 and 1.48 eV, for which the corresponding absorption cut-off wavelengths are 796 and 840 nm, respectively, indicating that FAPbI3 has a wider absorption spectrum than MAPbI3. In order to maximize the Jsc value of the organic lead iodine perovskite solar cell, the thickness range of each layer for MAPbI3 perovskite solar cell (FTO thickness is (80 ± 50) nm, ITO thickness is less than 120 nm, MAPbI3 thicknessis 300–600 nm) and for FAPbI3 perovskite solar cell (FTO thickness is (120 ± 50) nm, ITO thickness is less than 180 nm, FAPbI3 thickness is 300–600 nm) are given. The research results of this article have guiding significance in designing and preparing the perovskite solar cells with high conversion efficiency.
-
Keywords:
- perovskite solar cell /
- photoelectric properties /
- optical-admittance method /
- rigorous coupled-wave analysis method
[1] Liu W, Liu N J, Ji S L, Hua H F, Ma Y H, Hu R Y, Zhang J, Chu L, Li X A, Huang W 2020 Nano-Micro Lett. 12 119Google Scholar
[2] Chen H Y, Zhan Y, Xu C Y, Chen W J, Wang S H, Zhang M Y, Li Y W, Li Y F 2020 Adv. Funct. Mater. 30 2001788Google Scholar
[3] Li N X, Luo Y Q, Chen Z H, Niu X X, Zhang X, Lu J Z, Kumar R S, Jiang J K, Liu H F, Guo X, Lai B, Brocks G, Chen Q, Tao S X, Fenning D P, Zhou H P 2020 Joule 4 1Google Scholar
[4] Yi C Y, Luo J S, Meloni S, Boziki A, Astani N A, Gratzel C, Zakeeruddin S M, Rothlisberger U, Gratzel M 2016 Energy Environ. Sci. 9 656Google Scholar
[5] Huang Y, Li L, Liu Z H, Jiao H Y, He Y Q, Wang X G, Zhu R, Wang D, Sun J L, Chen Q, Zhou H P 2017 J. Mater. Chem. A 5 8537Google Scholar
[6] Li N X, Tao S X, Chen Y H, Niu X X, Onwudinanti C K, Hu C, Qiu Z W, Xu Z Q, Zheng G H J, Wang L G, Zhang Y, Li L, Liu H F, Lun Y Z, Hong J W, Wang X Y, Liu Y Q, Xie H P, Gao Y L, Bai Y, Yang S H, Brocks G, Chen Q, Zhou H P 2019 Nat. Energy 4 408Google Scholar
[7] Lu H Z, Liu Y H, Ahlawat P, Mishra A, Tress W R, Eickemeyer F T, Yang Y G, Fu F, Wang Z W, Avalos C E, Carlsen B I, Agarwalla A, Zhang X, Li X G, Zhan Y Q, Zakeeruddin S M, Emsley L, Rothlisberger U, Zheng L R, Hagfeldt A, Gratzel M 2020 Science 370 1
[8] Yee K S 1966 IEEE Trans. Antennas Propag. 17 585
[9] Sarkar S, Gupta V, Kumar M, Schubert J, Probst P T, Joseph J, Konig T A F 2019 ACS Appl. Mater. Interfaces 11 13752Google Scholar
[10] Berning J A, Berning P H 1960 J. Opt. Soc. Am. 50 813Google Scholar
[11] Darkwi A Y, Loke W K, Ibrahim K S 2000 Energy Mater. Sol. Cells 60 1Google Scholar
[12] Nakane A, Tampo H, Tamakoshi M, Fujimoto S, Kim K M, Kim S, Shibata H, Niki S, Fujiwara H 2016 J. Appl. Phys. 120 064505Google Scholar
[13] Young M, Traverse C J, Pandey R, Barr M C, Lunt R R 2013 Appl. Phys. Lett. 103 133304Google Scholar
[14] Ball J M, Stranks S D, Horantner M T, SHuttner S, Zhang W, Crossland E J W, Ramirez I, Riede M, Johnston M B, Friend R H, Snaith J H 2015 Energy Environ. Sci. 8 602Google Scholar
[15] Bush K A, Palmstrom A F, Yu Z S J, Boccard M, Cheacharoen R, Mailoa J P, McMeekin D P, Hoye R L Z, Bailie C D, Leijtens T, Peters I M, Minichetti M C, Rollston N, Prasanna R, Sofia S, Harwood D, Ma W, Moghadam F, Snaith H J, Buonassisi T, Holman Z C, Bent S F, McGehee M D 2017 Nat. Energy 2 17009Google Scholar
[16] Hsue Y C, Freeman A, Gu B Y 2005 Phys. Rev. B 72 195118Google Scholar
[17] Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068Google Scholar
[18] Li L F 1996 J. Opt. Soc. Am. A 13 1870Google Scholar
[19] Lyndin N M, Parriaux O, Tishchenko A V 2007 J. Opt. Soc. Am. A 24 3781Google Scholar
[20] Dewan R, Vasilev I, Jovanov V, Knipp D 2011 J. Appl. Phys. 110 013101Google Scholar
[21] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234Google Scholar
[22] Pham N D, Zhang C M, Tiong V T, Zhang S L, Will G, Bou A, Bisquert J, Shaw P E, Du A J, Wilson G J, Wang H X 2019 Adv. Funct. Mater. 29 1806479Google Scholar
[23] 张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔 2020 物理学报 69 178101Google Scholar
Zhang C, Zhang H Y, Hao H Y, Dong J J, Xing J, Liu H, Shi L, Zhong T T, Tang K P, Xu X 2020 Acta Phys. Sin. 69 178101Google Scholar
[24] Tavakoli M M, Yadav P, Tavakoli R, Kong J 2018 Adv. Energy Mater. 8 1800794Google Scholar
[25] Lin R X, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J, Sargent E H, Tan H R 2019 Nat. Energy 4 864Google Scholar
[26] Jeong M Y, Choi I W, Go E M, Cho Y J, Kim M J, Lee B K, Jeong S H, Jo Y Y, Choi H W, Lee J Y, Bae J H, Kwak S K, Kim D S, Yang C D 2020 Science 369 1615Google Scholar
[27] 毕富珍, 郑晓, 任志勇 2019 物理化学学报 35 69Google Scholar
Bi F Z, Zheng X, Reng Z Y 2019 Acta Phys.-Chim. Sin. 35 69Google Scholar
[28] Barraud L, Holman Z C, Badel N, Reiss P, Descoeudres A, Battaglia C, Wolf S D, Ballif C 2013 Sol. Energy Mater. Sol. Cells 115 151Google Scholar
[29] Shirayama M, Kadowaki H, Miyadera M, Sugita T, Tamakoshi M, Kato M, Fujiseki T, Murata D, Hara S, Murakami T N, Fujimoto S, Chikamatsu M, Fujiwara H 2016 Phys. Rev. Appl. 5 014012Google Scholar
[30] Rodríguez-de Marcos L V, Larruquert J I, Méndez J A, Aznárez J A 2017 Opt. Mater. Express 7 989Google Scholar
[31] Sarkar S, Gupta V, Kumar M, Schubert J, Probst P T, Joseph J, König T A F 2019 ACS Applied Material Interfaces 11 13752
[32] Ball J M, Stranks S D, Horantner M T, SHuttner S, Zhang W, Crossland E J W, Ramirez I, Riede M, Johnston M B, Friend R H, Snaith J H 2015 Energy and Environ. Sci. 8 602
[33] 卢辉东, 韩红静, 刘杰 2021 物理学报 70 036301Google Scholar
Lu H D, Han H J, Liu J 2021 Acta Phys. Sin. 70 036301Google Scholar
[34] Rosenblatt G, Simkhovich B, Bartal G, Orenstein M 2020 Phys. Rev. X 10 011071
[35] Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Gratzel M and White T J 2013 J. Mater. Chem. A 1 5628Google Scholar
[36] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ 7 982Google Scholar
-
图 4 (a) 文献[21, 29]中报道的由Gass/FTO/TiO2/MAPbI3(FAPbI3)/piro-OMeTAD/Au组成的MAPbI3和FAPbI3太阳电池的光学模型; (b) 光学导纳法和严格耦合波分析法计算MAPbI3 = 400 nm的吸收率; (c) MAPbI3太阳电池各层吸收率和外量子效率; (d) FAPbI3和MAPbI3 = 590 nm的吸收率; (e) 外量子效率和对应的积分电流密度; (f) J-V曲线
Figure 4. (a) Optical model constructed for a MAPbI3 and FAPbI3 solar cell consisting of Gass/FTO/TiO2/MAPbI3(FAPbI3)/piro-OMeTAD/Au reported in Ref.[21, 29]; (b) calculation absorption coefficient of the optical admittance method and rigorous coupled-wave analysis method; (c) calculated A spectra of the component layers and EQE spectrum for theMAPbI3 solar cell; (d) absorption coefficient of FAPbI3 and MAPbI3 = 590 nm; (e) the integrated photocurrents calculated from the overlap integral of the EQE spectra with the AM1.5 G solar emission are also shown; (f) J-V curves.
图 5 (a) FTO和(b) ITO的透射率随厚度变化图; 电池的短路电流密度随(c) FTO和MAPbI3以及(d) ITO和MAPbI3厚度变化图; (e) 钙钛矿太阳电池的吸收光谱; (f) 积分电流密度随MAPbI3厚度变化
Figure 5. Transmittance spectra of (a)FTO and (b)ITO; variations of short circuit current density with (c) FTO and MAPbI3, and (d) ITO and MAPbI3 thickness; (e) absorptance spectrum of the MAPbI3 solar cell; (f) changes in the relationship of the integrated Jsc with MAPbI3 thickness.
图 6 (a) FTO和(b) ITO的透射率随厚度变化图; 电池的短路电流密度随(c) FTO和FAPbI3以及(d) ITO和FAPbI3厚度的变化图; (e) 钙钛矿太阳电池的吸收光谱; (f) 积分电流密度随FAPbI3厚度变化
Figure 6. Transmittance spectra of (a) FTO and (b) ITO; variations of short circuit current density with (c) FTO and FAPbI3 and (d) ITO and FAPbI3 thickness; (e) absorptance spectrum of the FAPbI3 solar cell; (f) changes in the relationship of the integrated Jsc with FAPbI3 thickness
-
[1] Liu W, Liu N J, Ji S L, Hua H F, Ma Y H, Hu R Y, Zhang J, Chu L, Li X A, Huang W 2020 Nano-Micro Lett. 12 119Google Scholar
[2] Chen H Y, Zhan Y, Xu C Y, Chen W J, Wang S H, Zhang M Y, Li Y W, Li Y F 2020 Adv. Funct. Mater. 30 2001788Google Scholar
[3] Li N X, Luo Y Q, Chen Z H, Niu X X, Zhang X, Lu J Z, Kumar R S, Jiang J K, Liu H F, Guo X, Lai B, Brocks G, Chen Q, Tao S X, Fenning D P, Zhou H P 2020 Joule 4 1Google Scholar
[4] Yi C Y, Luo J S, Meloni S, Boziki A, Astani N A, Gratzel C, Zakeeruddin S M, Rothlisberger U, Gratzel M 2016 Energy Environ. Sci. 9 656Google Scholar
[5] Huang Y, Li L, Liu Z H, Jiao H Y, He Y Q, Wang X G, Zhu R, Wang D, Sun J L, Chen Q, Zhou H P 2017 J. Mater. Chem. A 5 8537Google Scholar
[6] Li N X, Tao S X, Chen Y H, Niu X X, Onwudinanti C K, Hu C, Qiu Z W, Xu Z Q, Zheng G H J, Wang L G, Zhang Y, Li L, Liu H F, Lun Y Z, Hong J W, Wang X Y, Liu Y Q, Xie H P, Gao Y L, Bai Y, Yang S H, Brocks G, Chen Q, Zhou H P 2019 Nat. Energy 4 408Google Scholar
[7] Lu H Z, Liu Y H, Ahlawat P, Mishra A, Tress W R, Eickemeyer F T, Yang Y G, Fu F, Wang Z W, Avalos C E, Carlsen B I, Agarwalla A, Zhang X, Li X G, Zhan Y Q, Zakeeruddin S M, Emsley L, Rothlisberger U, Zheng L R, Hagfeldt A, Gratzel M 2020 Science 370 1
[8] Yee K S 1966 IEEE Trans. Antennas Propag. 17 585
[9] Sarkar S, Gupta V, Kumar M, Schubert J, Probst P T, Joseph J, Konig T A F 2019 ACS Appl. Mater. Interfaces 11 13752Google Scholar
[10] Berning J A, Berning P H 1960 J. Opt. Soc. Am. 50 813Google Scholar
[11] Darkwi A Y, Loke W K, Ibrahim K S 2000 Energy Mater. Sol. Cells 60 1Google Scholar
[12] Nakane A, Tampo H, Tamakoshi M, Fujimoto S, Kim K M, Kim S, Shibata H, Niki S, Fujiwara H 2016 J. Appl. Phys. 120 064505Google Scholar
[13] Young M, Traverse C J, Pandey R, Barr M C, Lunt R R 2013 Appl. Phys. Lett. 103 133304Google Scholar
[14] Ball J M, Stranks S D, Horantner M T, SHuttner S, Zhang W, Crossland E J W, Ramirez I, Riede M, Johnston M B, Friend R H, Snaith J H 2015 Energy Environ. Sci. 8 602Google Scholar
[15] Bush K A, Palmstrom A F, Yu Z S J, Boccard M, Cheacharoen R, Mailoa J P, McMeekin D P, Hoye R L Z, Bailie C D, Leijtens T, Peters I M, Minichetti M C, Rollston N, Prasanna R, Sofia S, Harwood D, Ma W, Moghadam F, Snaith H J, Buonassisi T, Holman Z C, Bent S F, McGehee M D 2017 Nat. Energy 2 17009Google Scholar
[16] Hsue Y C, Freeman A, Gu B Y 2005 Phys. Rev. B 72 195118Google Scholar
[17] Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068Google Scholar
[18] Li L F 1996 J. Opt. Soc. Am. A 13 1870Google Scholar
[19] Lyndin N M, Parriaux O, Tishchenko A V 2007 J. Opt. Soc. Am. A 24 3781Google Scholar
[20] Dewan R, Vasilev I, Jovanov V, Knipp D 2011 J. Appl. Phys. 110 013101Google Scholar
[21] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234Google Scholar
[22] Pham N D, Zhang C M, Tiong V T, Zhang S L, Will G, Bou A, Bisquert J, Shaw P E, Du A J, Wilson G J, Wang H X 2019 Adv. Funct. Mater. 29 1806479Google Scholar
[23] 张晨, 张海玉, 郝会颖, 董敬敬, 邢杰, 刘昊, 石磊, 仲婷婷, 唐坤鹏, 徐翔 2020 物理学报 69 178101Google Scholar
Zhang C, Zhang H Y, Hao H Y, Dong J J, Xing J, Liu H, Shi L, Zhong T T, Tang K P, Xu X 2020 Acta Phys. Sin. 69 178101Google Scholar
[24] Tavakoli M M, Yadav P, Tavakoli R, Kong J 2018 Adv. Energy Mater. 8 1800794Google Scholar
[25] Lin R X, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J, Sargent E H, Tan H R 2019 Nat. Energy 4 864Google Scholar
[26] Jeong M Y, Choi I W, Go E M, Cho Y J, Kim M J, Lee B K, Jeong S H, Jo Y Y, Choi H W, Lee J Y, Bae J H, Kwak S K, Kim D S, Yang C D 2020 Science 369 1615Google Scholar
[27] 毕富珍, 郑晓, 任志勇 2019 物理化学学报 35 69Google Scholar
Bi F Z, Zheng X, Reng Z Y 2019 Acta Phys.-Chim. Sin. 35 69Google Scholar
[28] Barraud L, Holman Z C, Badel N, Reiss P, Descoeudres A, Battaglia C, Wolf S D, Ballif C 2013 Sol. Energy Mater. Sol. Cells 115 151Google Scholar
[29] Shirayama M, Kadowaki H, Miyadera M, Sugita T, Tamakoshi M, Kato M, Fujiseki T, Murata D, Hara S, Murakami T N, Fujimoto S, Chikamatsu M, Fujiwara H 2016 Phys. Rev. Appl. 5 014012Google Scholar
[30] Rodríguez-de Marcos L V, Larruquert J I, Méndez J A, Aznárez J A 2017 Opt. Mater. Express 7 989Google Scholar
[31] Sarkar S, Gupta V, Kumar M, Schubert J, Probst P T, Joseph J, König T A F 2019 ACS Applied Material Interfaces 11 13752
[32] Ball J M, Stranks S D, Horantner M T, SHuttner S, Zhang W, Crossland E J W, Ramirez I, Riede M, Johnston M B, Friend R H, Snaith J H 2015 Energy and Environ. Sci. 8 602
[33] 卢辉东, 韩红静, 刘杰 2021 物理学报 70 036301Google Scholar
Lu H D, Han H J, Liu J 2021 Acta Phys. Sin. 70 036301Google Scholar
[34] Rosenblatt G, Simkhovich B, Bartal G, Orenstein M 2020 Phys. Rev. X 10 011071
[35] Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Gratzel M and White T J 2013 J. Mater. Chem. A 1 5628Google Scholar
[36] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ 7 982Google Scholar
Catalog
Metrics
- Abstract views: 6438
- PDF Downloads: 144
- Cited By: 0