-
Perovskite solar cells have attracted extensive attention because of their photoelectric characteristics. Since 2009, the photoelectric conversion rate of the solar cells has soared from 3.8% to 25.7%. Perovskite material has become a focus of extensive academic research due to its advantages of high carrier mobility, low exciton binding energy, wide absorption spectrum and high optical absorption coefficient. However, organic P-type semiconductor material is usually used as a hole transport layer in high efficiency perovskite solar cells, for example, Spiro-OMeTAD, PEDOT:PSS, and PTAA. Because Spiro-OMeTAD is difficult to purify, many hole transport materials containing triphenylamine like Spiro-OMeTAD have been synthesized, such as triphenylamine polymer PTAA. As the conjugate parts of these triphenylamine transport materials are not coplanar and the space is distorted, they cannot form ordered stacks by spin-coating method, so their charge properties are weak, and li-TFSI and tBP are often added to improve the hole transport, so as to achieve better device effects. Moreover, the PTAA has the problem of infiltration, and it is difficult to form a completely covered perovskite film on it, which seriously affects the quality and surface morphology of perovskite film. The PEDOT:PSS itself has an acidic and corrosive electrode, and is easy to absorb moisture, which will affect the stability of the solar cell. The performance of organic material will deteriorate seriously under environmental factors such as humidity, temperature and UV irradiation, which will accelerate the aging of perovskite solar cells and become one of the main obstacles to their practical applications. In this work, the inorganic cuprous thiocyanate (CuSCN) is used as a hole transport material, the CuSCN is a rich and stable P-type semiconductor material, which has the characteristics of abundance, low cost, high carrier mobility, appropriate energy level, low defect density, good thermal stability, and excellent light transmittance. The CuSCN is one of the few known compounds with both high optical transparency (its wide band gap is 3.7–3.9 eV) and significant P-type electrical conductivity. Most importantly, CuSCN is inexpensive and can be prepared by solution method at room temperature. And its hole transport properties are improved by lithium doping. On this basis, the surface of CuSCN is modified with PTAA to avoid the interaction between CuSCN and lead iodide (PbI2), and the large-grained and dense perovskite films are prepared. Finally, the performance of perovskite solar cells is effectively improved. This work provides a reference for the preparation of the stable and efficient perovskite solar cells.
-
Keywords:
- perovskite solar cells /
- hole transport layer /
- cuprous thiocyanate /
- Li-doping
1. 引 言
钙钛矿太阳电池光电转换率自2009年3.8%[1]的初始效率已迅速提升至如今25.7%的认证效率, 该值与传统硅基以及化合物薄膜太阳电池效率相当, 显示出巨大的发展潜力, 引起了学术界广泛的兴趣和深入的研究. 这主要归因于钙钛矿材料具有载流子迁移率高、激子结合能低、吸收光谱宽和光吸收系数高等优点[2], 是较为理想的光伏材料.
然而当前高效钙钛矿太阳中通常采用2, 2', 7, 7'-四[N, N-二(4-甲氧基苯基)氨基]-9, 9'-螺二芴[Spiro-OMeTAD(正结构)]、聚[双(4苯基)2, 4, 6三甲基苯基]胺[PTAA(倒置结构)]等有机p型材料作为其空穴传输材料[3,4]. 该类材料对温度、湿度、紫外照射等外界环境因素较敏感, 性能不够稳定, 从而将加速钙钛矿太阳电池在实际工作环境中的衰退甚至失效[5,6]. 无机载流子传输材料不但能够保证自身性能的稳定, 还可通过屏蔽外界环境因素向钙钛矿材料内部的渗透, 从而有利于提高钙钛矿太阳电池的稳定性. 因此探索优异稳定的无机空穴传输材料对进一步提高钙钛矿太阳电池的性能至关重要.
CuSCN是一种稳定的无机p型半导体材料, 其具有很宽的带隙(约3.9 eV), 相对较高的空穴迁移率(约0.1 cm2/(V·s)), 且其能级与钙钛矿能级较为匹配[7]. 2017年, Arora等[8]采用CuSCN空穴传输层实现了效率为20.2%的钙钛矿太阳电池, 该效率值与采用Spiro-OMeTAD空穴传输层的参考器件效率相当(20.5%), 也是迄今为止仅以CuSCN作为空穴传输层的钙钛矿太阳电池最高效率. 器件还表现出良好的环境稳定性, 在放置1000 h后仍能保持初始效率的95%以上. 因此采用CuSCN作为空穴传输层可提高钙钛矿太阳电池的稳定性, 为高性能钙钛矿太阳电池的制备提供了一种新的策略.
然而与采用Spiro-OMeTAD的钙钛矿太阳电池相比, 基于CuSCN空穴传输材料的电池效率还有待进一步提升, 这主要归因于CuSCN电学特性相对较差. 本工作发现锂掺杂可有效提高CuSCN的导电特性, 进而提高倒置结构钙钛矿太阳电池的性能. 空穴传输层与钙钛矿界面的缺陷态同样是导致器件性能差的重要因素, 所以研究空穴传输层与钙钛矿界面的能级匹配也是有重要意义的, 能够为提高钙钛矿太阳电池的性能做出贡献[9,10].
2. CuSCN薄膜的掺杂实现及其对光电性能的影响
2.1 CuSCN薄膜的制备
取一定质量的CuSCN粉末使其溶于二乙基硫醚溶剂中, 然后将其放在搅拌台上并将搅拌台升温到70 ℃后搅拌1 h至其完全溶解. 取相同质量的LiSCN水合物使其溶于N, N-二甲基甲酰胺(DMF)中. 然后分别取一定量的两种溶液进行掺杂, 如5 mL的LiSCN溶液和995 mL的CuSCN溶液使得体积比为0.005(LiSCN∶CuSCN = 0.5%). 本文将主要研究LiSCN与CuSCN体积比为0.1%, 0.5%, 1%三种掺杂情况下的CuSCN薄膜. 取制备好的CuSCN溶液以4000 r/min的转速旋涂30 s后, 在150 ℃的加热台上退火15 min, 待温度降至常温后完成CuSCN薄膜制备.
2.2 锂掺杂对CuSCN薄膜光学特性的影响
图1(a)所示为在CuSCN中掺杂不同体积比LiSCN所得薄膜的光透过图谱. 其中不进行锂掺杂的样品记为Control. 由于CuSCN光学带隙可达约3.9 eV, 参比样品在350—900 nm的宽光谱范围内均可实现接近或超过80%的光透过率. 锂掺杂可在350—600 nm的范围内进一步提高薄膜的光透过率, 因此有利于钙钛矿吸收层对光的有效吸收和利用. 由图1(b)可以看出, 锂掺杂对CuSCN光学带隙的影响较小(其中α为吸收系数, h为普朗克常数, v为光子频率), 但其可有效降低Urbach能, 如图1(c)所示. 当LiSCN掺杂比例为0.5%时, CuSCN的Urbach能从参比样品中的122.3 meV大幅降至58.8 meV, 说明通过锂掺杂可有效降低CuSCN的带尾缺陷态密度, 其中锂掺杂比例为0.5%时CuSCN的带尾缺陷态密度最低.
2.3 锂掺杂对CuSCN薄膜电学特性的影响
为了评估锂掺杂对CuSCN载流子迁移率的影响, 制备了CuSCN薄膜晶体管(TFT), 器件结构及Vg-Id转移曲线(其中Vg是栅极电压、Id是漏电流)[11-13]如图2所示. 器件表现出典型的p型沟道特征, 其详细的电学特性参数总结于表1. 锂掺杂可有效降低器件的阈值电压Vth, 说明锂掺杂可大幅提高CuSCN的空穴浓度, 另外载流子迁移率μFE也随着掺杂体积比的增大而逐渐上升, 从不掺杂时的0.031 cm2/(V·s)升至2.28 cm2/(V·s). 因此锂掺杂通过降低CuSCN的缺陷态密度、提高空穴浓度及迁移率, 有效提高了对空穴的传输能力.
表 1 掺锂前后CuSCN薄膜的μFE和Vth (Vd是漏电压)Table 1. μFE and Vth of CuSCN films doped with or without Li.Vd/V μFE/(cm2·(V·s)–1) Vth/V Control +1 0.031 –4.93 0.1%LiSCN+CuSCN +1 0.88 –1.72 0.5%LiSCN+CuSCN +1 1.13 4.35 1%LiSCN+CuSCN +1 2.28 –0.71 3. 基于CuSCN空穴传输材料的p-i-n结构钙钛矿太阳电池性能探究
3.1 钙钛矿太阳电池的制备
器件选用ITO玻璃衬底, CuSCN薄膜在ITO玻璃衬底上制备完毕后(详见2.1节), 在CuSCN薄膜上用两步法[14]制备工艺进行钙钛矿薄膜的制备, 有机盐旋涂后立刻将样品拿到湿度为30%—40%环境中进行退火, 退火温度为150 ℃, 时长15 min. 然后依次旋涂富勒烯衍生物(PCBM)以及浴铜灵(BCP), 最后沉积金电极.
3.2 锂掺杂对载流子抽取的影响
从2.2节和2.3节可知, 锂掺杂对CuSCN薄膜的光电性能均有所提升, 基于此制备了以CuSCN为空穴传输层, 结构为glass/ITO/CuSCN/FAMAPbI3/PCBM/BCP/Au的倒置平面钙钛矿太阳电池(其中FAMAPbI3为甲脒甲胺碘基钙钛矿). 图3(a)和图3(b)分别为CuSCN空穴传输层上方钙钛矿薄膜的光致发光(PL)和时间分辨光致发光(TRPL)谱. 锂掺杂的CuSCN上方钙钛矿发光峰峰强明显降低, 并且在锂掺杂量为0.5%时发光淬灭最为显著. 同时利用双指数衰减函数式
y=C+A1exp(−tτ1)+A2exp(−tτ2), (1) 可得到载流子快速、慢速复合寿命以及平均寿命τave, 如表2所列. 这里C是常数, A1和A2是相对幅度, τ1和τ2是快速复合和慢速复合的拟合寿命[15-17]. 当锂掺杂量为0.5%时, 平均载流子寿命可从参比样品中的293 ns降至156 ns, 表明适量的锂掺杂可进一步促进钙钛矿薄膜中的光生空穴提取. 如上所述, 这主要是因为锂掺杂有效提高了CuSCN对空穴的传输能力. 利用0.5%锂掺杂的CuSCN作为空穴传输材料, 器件效率可从参比器件的11.80%提升至12.89%.
表 2 不掺杂和CuSCN中掺杂不同体积比LiSCN所得薄膜上的钙钛矿薄膜的TRPL拟合结果Table 2. TRPL fitting results of perovskite films fabricated on CuSCN with different LiSCN doping ratio.τ1/ns A1/(A1+A2)/% τ2/ns A2/(A1+A2)/% τave/ns Control 20.02 0.80 295.88 99.20 293.67 0.1%LiSCN+CuSCN 16.44 1.58 179.74 98.42 177.16 0.5%LiSCN+CuSCN 21.98 2.29 159.29 97.71 156.15 1%LiSCN+CuSCN 19.21 2.29 170.87 97.71 167.51 3.3 CuSCN表面修饰对钙钛矿太阳电池性能的影响
尽管采用CuSCN的锂掺杂策略, 通过提高其空穴传输特性实现了器件性能的提升. 然而器件效率仅有12.89%, 仍然保持在一个较低的水平. 为了分析原因, 对CuSCN上方钙钛矿的表面形貌及结晶性能进行系统评价. 图4(a)和图4(c)分别给出了CuSCN上方钙钛矿薄膜的表面扫描电子显微镜(SEM)图和X射线衍射(XRD)图谱. 从图4(a)可以看出, CuSCN上方钙钛矿薄膜晶粒较小, 且薄膜中存在孔洞, 这将导致晶界处严重的光生载流子复合以及漏电流的产生[18,19]. 通过XRD可以观察到明显的PbI2衍射峰, 前期研究表明适量的PbI2残留可以钝化薄膜中存在的缺陷进而提高器件性能; 然而过量的PbI2残留将在钙钛矿内部引入势垒阻碍载流子的纵向传输. 同时残余PbI2光照分解还将在钙钛矿内部形成Pb0深能级缺陷导致严重的载流子非辐射复合.
图 4 (a)无修饰和(b) PTAA修饰后CuSCN薄膜上的钙钛矿薄膜表面SEM图; (c)无修饰和PTAA修饰后CuSCN薄膜上的钙钛矿薄膜XRD图Fig. 4. (a), (b) SEM images of perovskite film surface on CuSCN film (a) without modification and (b) with PTAA modification; (c) XRD patterns of perovskite films on CuSCN films without modification and after PTAA modification.SCN–作为类卤素阴离子与卤素离子具有相似的半径和化学性质[20]. 通常情况下, 将其引入钙钛矿层, 可通过其与Pb2+间的强相互作用来抑制钙钛矿的分解. 本工作采用两步法制备工艺在CuSCN上方制备钙钛矿薄膜, 因此CuSCN可能会与PbI2形成强的相互作用, 从而为PbI2的结晶提供更多的成核位点, 进而形成更为致密的PbI2薄层. 这将抑制后期PbI2与有机盐之间的固液互扩反应和高质量钙钛矿薄膜的生长, 并在钙钛矿底部形成过量的未参与反应的PbI2残留. 为了证实上述机制并解决由此带来的负面效应, 在CuSCN上方引入了PTAA表面修饰层[21]如图5所示, 图5(a)为器件结构, 图5(b)为能带结构图. 在本文中PTAA修饰层的浓度为5 mg/mL, 薄膜制备过程中转速为4000 r/min, PTAA修饰层避免CuSCN与PbI2之间直接的相互作用. 如图4(b)所示, PTAA修饰层的引入促进了钙钛矿晶粒的生长, 且薄膜更为致密; 并且由图4(c)可以看出, PTAA修饰明显降低了PbI2的衍射峰强.
在此基础上, 采用0.5%锂掺杂的CuSCN作为空穴传输层, 并通过PTAA修饰策略对钙钛矿太阳电池性能进行系统优化, 图6(a)为器件的典型J-V曲线. 器件效率显著提升至16.26%, 且表现出较小的J-V正反扫迟滞. 相应器件的外量子效率(EQE)谱如图6(b)所示, 器件在300—800 nm的宽谱范围内表现出较好的光响应, 同时在400—750 nm的范围内曲线较为平坦且均接近或超过80%, 表明器件在此宽光谱范围内对光生载流子具有高效的抽取和收集. 由EQE所得积分电流达22.6 mA/cm2, 略低于J-V曲线所得短路电流, 这归因于不同激发光源光谱上的差异.
进一步对器件进行深入分析发现, PTAA修饰后器件反向饱和暗电流得到了明显的抑制, 如图7(a)所示. 这主要归因于PTAA修饰后, 平整且致密钙钛矿薄膜的实现抑制了由薄膜结构缺陷导致的漏电流. 如图7(b)所示, 利用Spiro-OMeTAD制备单空穴传输器件并通过空间电荷限制电流(SCLC)测试发现[22], 引入PTAA还可有效降低缺陷态密度. 这是因为PTAA的引入可通过阻断CuSCN与PbI2间较强的相互作用来促进钙钛矿晶粒的生长, 进而有效抑制了晶界及晶界缺陷的形成. 通过对器件进行C-V测试发现, PTAA修饰还可以增加器件的内建电场, 如图7(c)所示, 这更有利于光生载流子的分离和提取, 因此在提高器件开路电压的同时还可以提高短路电流. 而内建电场的增加可能主要来自于对器件内部缺陷态的有效抑制.
4. 总 结
为了进一步提高采用CuSCN为空穴传输层的钙钛矿太阳电池性能, 需要对CuSCN薄膜电学特性进行提升和优化. 本工作在CuSCN薄膜中引入了不同体积比的LiSCN, 发现锂掺杂可有效提高CuSCN的电学特性, 进而提高太阳电池效率. 然而CuSCN与PbI2间较强的相互作用会抑制大晶粒、致密钙钛矿薄膜在其上方的制备. 为此, 通过对CuSCN表面进行PTAA修饰, 大幅提高了钙钛矿薄膜的性能, 最终实现了太阳电池性能的大幅提升. 本工作为钙钛矿太阳电池稳定性及效率的进一步提升提供了一种可行的策略.
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
Google Scholar
[2] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
Google Scholar
[3] Zhang J, Zhang T, Jiang L, Bach U, Cheng Y B 2018 ACS Energy Lett. 3 1677
Google Scholar
[4] Petrus M L, Bein T, Dingemans T J, Docampo P 2015 J. Mater. Chem. A. 3 12159
Google Scholar
[5] Kim J Y, Jung J H, Lee D E, Joo J 2002 Synth. Met. 126 311
Google Scholar
[6] Li W, Liu C, Li Y, Kong W, Wang X, Chen H, Xu B, Cheng C 2018 Sol. RRL. 2 1800173
Google Scholar
[7] Jaffe J E, Kaspar T C, Droubay T C, Varga T, Bowden M E, Exarhos G J 2010 J. Phys. Chem. C 114 9111
Google Scholar
[8] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Grätzel M 2017 Science 358 768
Google Scholar
[9] Ren X, Wang Z, Sha W E I, Choy W C H 2017 ACS Photonics 4 934
Google Scholar
[10] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥 2022 物理学报 71 208802
Google Scholar
Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802
Google Scholar
[11] Zaumseil J, Sirringhaus H 2007 Chem. Rev. 107 1296
Google Scholar
[12] Zhang C, Chen P, Hu W 2016 Small 12 1252
Google Scholar
[13] Guo N, Li J, Yang S, Zhang J, Ni J, Cai H 2021 Nanotechnology 32 395704
Google Scholar
[14] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542
Google Scholar
[15] Yang J, Liu C, Cai C, Hu X, Huang Z, Duan X, Meng X, Yuan Z, Tan L, Chen Y 2019 Adv. Energy Mater. 9 1900198
Google Scholar
[16] Luo J, Xia J, Yang H, Malik H A, Han F, Shu H, Yao X, Wan Z, Jia C 2020 Nano Energy 70 104509
Google Scholar
[17] Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358
Google Scholar
[18] Wang S, Sakurai T, Wen W, Qi Y 2018 Adv. Mater. Interfaces 5 1800260
Google Scholar
[19] Sherkar T S, Momblona C, Gil-Escrig L, Bolink H J, Koster L J A 2017 Adv. Energy Mater. 7 1602432
Google Scholar
[20] Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206
Google Scholar
[21] Hou F, Shi B, Li T, Xin C, Ding Y, Wei C, Wang G, Li Y, Zhao Y, Zhang X 2019 ACS Appl. Mater. Interfaces 11 25218
Google Scholar
[22] Wang P, Li R, Chen B, Hou F, Zhang J, Zhao Y, Zhang X 2020 Adv. Mater. 32 1905766
Google Scholar
期刊类型引用(0)
其他类型引用(2)
-
图 4 (a)无修饰和(b) PTAA修饰后CuSCN薄膜上的钙钛矿薄膜表面SEM图; (c)无修饰和PTAA修饰后CuSCN薄膜上的钙钛矿薄膜XRD图
Figure 4. (a), (b) SEM images of perovskite film surface on CuSCN film (a) without modification and (b) with PTAA modification; (c) XRD patterns of perovskite films on CuSCN films without modification and after PTAA modification.
表 1 掺锂前后CuSCN薄膜的μFE和Vth (Vd是漏电压)
Table 1. μFE and Vth of CuSCN films doped with or without Li.
Vd/V μFE/(cm2·(V·s)–1) Vth/V Control +1 0.031 –4.93 0.1%LiSCN+CuSCN +1 0.88 –1.72 0.5%LiSCN+CuSCN +1 1.13 4.35 1%LiSCN+CuSCN +1 2.28 –0.71 表 2 不掺杂和CuSCN中掺杂不同体积比LiSCN所得薄膜上的钙钛矿薄膜的TRPL拟合结果
Table 2. TRPL fitting results of perovskite films fabricated on CuSCN with different LiSCN doping ratio.
τ1/ns A1/(A1+A2)/% τ2/ns A2/(A1+A2)/% τave/ns Control 20.02 0.80 295.88 99.20 293.67 0.1%LiSCN+CuSCN 16.44 1.58 179.74 98.42 177.16 0.5%LiSCN+CuSCN 21.98 2.29 159.29 97.71 156.15 1%LiSCN+CuSCN 19.21 2.29 170.87 97.71 167.51 -
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
Google Scholar
[2] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
Google Scholar
[3] Zhang J, Zhang T, Jiang L, Bach U, Cheng Y B 2018 ACS Energy Lett. 3 1677
Google Scholar
[4] Petrus M L, Bein T, Dingemans T J, Docampo P 2015 J. Mater. Chem. A. 3 12159
Google Scholar
[5] Kim J Y, Jung J H, Lee D E, Joo J 2002 Synth. Met. 126 311
Google Scholar
[6] Li W, Liu C, Li Y, Kong W, Wang X, Chen H, Xu B, Cheng C 2018 Sol. RRL. 2 1800173
Google Scholar
[7] Jaffe J E, Kaspar T C, Droubay T C, Varga T, Bowden M E, Exarhos G J 2010 J. Phys. Chem. C 114 9111
Google Scholar
[8] Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Grätzel M 2017 Science 358 768
Google Scholar
[9] Ren X, Wang Z, Sha W E I, Choy W C H 2017 ACS Photonics 4 934
Google Scholar
[10] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥 2022 物理学报 71 208802
Google Scholar
Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802
Google Scholar
[11] Zaumseil J, Sirringhaus H 2007 Chem. Rev. 107 1296
Google Scholar
[12] Zhang C, Chen P, Hu W 2016 Small 12 1252
Google Scholar
[13] Guo N, Li J, Yang S, Zhang J, Ni J, Cai H 2021 Nanotechnology 32 395704
Google Scholar
[14] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542
Google Scholar
[15] Yang J, Liu C, Cai C, Hu X, Huang Z, Duan X, Meng X, Yuan Z, Tan L, Chen Y 2019 Adv. Energy Mater. 9 1900198
Google Scholar
[16] Luo J, Xia J, Yang H, Malik H A, Han F, Shu H, Yao X, Wan Z, Jia C 2020 Nano Energy 70 104509
Google Scholar
[17] Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358
Google Scholar
[18] Wang S, Sakurai T, Wen W, Qi Y 2018 Adv. Mater. Interfaces 5 1800260
Google Scholar
[19] Sherkar T S, Momblona C, Gil-Escrig L, Bolink H J, Koster L J A 2017 Adv. Energy Mater. 7 1602432
Google Scholar
[20] Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M 2016 Science 354 206
Google Scholar
[21] Hou F, Shi B, Li T, Xin C, Ding Y, Wei C, Wang G, Li Y, Zhao Y, Zhang X 2019 ACS Appl. Mater. Interfaces 11 25218
Google Scholar
[22] Wang P, Li R, Chen B, Hou F, Zhang J, Zhao Y, Zhang X 2020 Adv. Mater. 32 1905766
Google Scholar
期刊类型引用(0)
其他类型引用(2)
Catalog
Metrics
- Abstract views: 5221
- PDF Downloads: 119
- Cited By: 2