Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of local stress field enhanced pyroelectric performance of PNZST:AlN composite ceramics

Li Ling Pan Tian-Ze Ma Jia-Jun Zhang Shan-Tao Wang Yao-Jin

Citation:

Mechanism of local stress field enhanced pyroelectric performance of PNZST:AlN composite ceramics

Li Ling, Pan Tian-Ze, Ma Jia-Jun, Zhang Shan-Tao, Wang Yao-Jin
PDF
HTML
Get Citation
  • In this work, composite ceramics (1–x)Pb0.99Nb0.02[(Zr0.57Sn0.43)0.94Ti0.06]0.98O3:xAlN (abbreviated (1–x)PNZST:xAlN, x = 0, 0.1, 0.2, 0.3 and 0.4) are prepared by a two-step solid phase synthesis method. The crystal structures, micromorphologies, domain structure evolutions, ferroelectric, dielectric and pyroelectric properties of those composite ceramics are systematically investigated. The results show that the difference in thermal expansion coefficient between PNZST and AlN creates compressive stresses in the PNZST matrix when cooling down from the sintering temperature, then a metastable ferroelectric (FE) phase is induced in the anti-FE matrix by the AlN component-induced internal stress, and in turn ferroelectric/antiferroelectric phase boundary is constructed near room temperature. As the temperature increases, the ferroelectric-to-antiferroelectric phase transition causes a larger pyroelectric current peak. In particular, the composition with x = 0.1 exhibits a high pyroelectric coefficient p = 3.3×10–3 C⋅m–2⋅K–1 and figure-of-merit with current responsivity Fi = 3.16×10–9 m⋅V–1, voltage responsivity Fv = 0.613 m2⋅C–1, and detectivity Fd = 4.4×10–4 Pa–1/2 around human body temperature. Moreover, the enhanced pyroelectric coefficient exists in a broad operation temperature range with a large full width at half maximums of 16.3 ℃ at 37 ℃. With the increase of AlN content, the pyroelectric peak temperature of the composite ceramic is adjustable in a wide temperature range of 37–73 ℃, showing good temperature stability.
      Corresponding author: Zhang Shan-Tao, stzhang@nju.edu.cn ; Wang Yao-Jin, yjwang@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874032, 52072178, 52202139), the Fundamental Research Funds for the Central Universities (Grant Nos. 30920041119, 30922010402), the China Postdoctoral Science Foundation (Grant No. 2021M701716), and the Jiangsu Funding Program for Excellent Postdoctoral Talent (Grant No. 2022ZB248).
    [1]

    Liu Z, Lu T, Dong X, Wang G, Liu Y 2021 IEEE Trans. Ultrason. Ferr. 68 242Google Scholar

    [2]

    Jia J, Guo S, Yan S, Cao F, Yao C, Dong X, Wang G 2019 Appl. Phys. Lett. 114 032902Google Scholar

    [3]

    Whatmore R W 1986 Rep. Prog. Phys. 49 1135Google Scholar

    [4]

    Wang Y, Yuan G, Luo H, Li J, Viehland D 2017 Phys. Rev. Appl. 8 034032Google Scholar

    [5]

    Domingo N, Bagués N, Santiso J, Catalan G 2015 Phys. Rev. B 91 094111Google Scholar

    [6]

    Pandya S, Wilbur J, Kim J, Gao R, Dasgupta A, Dames C, Martin L W 2018 Nat. Mater. 17 432Google Scholar

    [7]

    Yang M M, Luo Z D, Mi Z, Zhao J, Sharel P E, Alexe M 2020 Nature 584 377Google Scholar

    [8]

    郭少波, 闫世光, 曹菲, 姚春华, 王根水, 董显林 2020 物理学报 69 127708Google Scholar

    Guo S B, Yan S G, Cao F, Yao C H, Wang G S, Dong X L 2020 Acta Phys. Sin. 69 127708Google Scholar

    [9]

    Xu Y Q, Wu N J, Ignatiev A 2000 J. Appl. Phys. 88 1004Google Scholar

    [10]

    Zhang S, Lebrun L, Jeong D Y, Randall C A, Zhang Q, Shrout T R 2003 J. Appl. Phys. 93 9257Google Scholar

    [11]

    Huang X, Tang Y, Wang F, Ming Leung C, Zhao X, Qin X, Wang T, Duan Z, Wu Y, Wang J, Shi W 2022 J. Am. Ceram. Soc. 105 327Google Scholar

    [12]

    He H, Lu X, Hanc E, Chen C, Zhang H, Lu L 2020 J. Mater. Chem. C 8 1494Google Scholar

    [13]

    Song K, Ma N, Mishra Y K, Adelung R, Yang Y 2019 Adv. Electron. Mater. 5 1800413Google Scholar

    [14]

    Srikanth K S, Singh V P, Vaish R 2017 J. Eur. Ceram. Soc. 37 3943Google Scholar

    [15]

    Patel S, Weyland F, Tan X, Novak N 2018 Energy Technology 6 865Google Scholar

    [16]

    Li L, Liu H, Wang R X, Zhang H, Huang H, Lu M H, Zhang S T, Jiang S, Wu D, Chen Y F 2020 J. Mater. Chem. C 8 7820Google Scholar

    [17]

    Liu B, Li L, Zhang S T, Zhou L, Tan X 2022 J. Am. Ceram. Soc. 105 794Google Scholar

    [18]

    Riemer L M, Lalitha K V, Jiang X, Liu N, Dietz C, Stark R W, Groszewicz P B, Buntkowsky G, Chen J, Zhang S T, Rodel J, Koruza J 2017 Act. Mater. 136 271Google Scholar

    [19]

    Yin J, Wang Y, Zhang Y, Wu B, Wu J 2018 Act. Mater. 158 269Google Scholar

    [20]

    Tabary P, Servant C, Alary J A 2000 J. Eur. Ceram. Soc. 20 913Google Scholar

    [21]

    田野, 靳立, 冯玉军, 庄永勇, 徐卓, 魏晓勇 2017 物理学进展 37 155

    Tian Y, Jin L, Feng Y J, Zhuang Y Y, Xu Z, Wei X 2017 Prog. Phys. 37 155

    [22]

    Wang H, Jiang B, Thomas R S, Cao W 2004 IEEE Trans. Ultrason. Ferr. 51 908Google Scholar

    [23]

    Lee H J, Zhang S, Luo J, Li F, Shrout T R 2010 Adv. Funct. Mater. 20 3154Google Scholar

    [24]

    Shen M, Hu Z, Qiu Y, Qiu S, Li M Y, Zhang G, Zhang S, Yang Z, Kagawa F, Jiang S 2019 J. Eur. Ceram. Soc. 39 5243Google Scholar

    [25]

    You D, Tan H, Yan Z, Gao H, Chen S, Ma W, Fan P, Tran N M, Liu Y, Salamon D, Zhang H 2022 ACS Appl. Mater. Inter. 14 17652Google Scholar

    [26]

    Tan X, Frederick J, Ma C, Aulbach E, Marsilius M, Hong W, Granzow T, Jo W, Rödel J 2010 Phys. Rev. B 81 014103Google Scholar

    [27]

    Tan X, Jo W, Granzow T, Frederick J, Aulbach E, Rödel J 2009 Appl. Phys. Lett. 94 042909Google Scholar

    [28]

    Frederick J, Tan X, Jo W 2011 J. Am. Ceram. Soc. 94 1149Google Scholar

    [29]

    He H, Tan X 2007 J. Phys. Condens. Matter. 19 136003Google Scholar

    [30]

    Tan X, Frederick J, Ma C, Jo W, Rodel J 2010 Phys. Rev. Lett. 105 255702Google Scholar

    [31]

    Yang X, Zhuo F, Wang C, Liu Y, Wang Z, He C, Long X 2020 Act. Mater. 186 523Google Scholar

    [32]

    Li S, Nie H, Wang G, Liu N, Zhou M, Cao F, Dong X 2019 J. Mater. Chem. C 7 4403Google Scholar

    [33]

    Zhou M, Liang R, Zhou Z, Dong X 2019 J. Am. Ceram. Soc. 103 193Google Scholar

    [34]

    Thakre A, Maurya D, Kim D Y, Kim Y, Sriboriboon P, Yoo I R, Priya S, Cho K H, Song H C, Ryu J 2021 J. Eur. Ceram. Soc. 41 2524Google Scholar

    [35]

    Whatmore R W 2021 Encyclopedia Mater. Tech. Ceram. Glasses 3 139

    [36]

    Qiao P, Zhang Y, Chen X, Zhou M, Wang G, Dong X 2019 Ceram. Int. 45 7114Google Scholar

    [37]

    Jiang X P, Chen Y, Lam K H, Choy S H, Wang J 2010 J. Alloys Compd. 506 323Google Scholar

    [38]

    Liu Z, Ren W, Peng P, Guo S, Lu T, Liu Y, Dong X, Wang G 2018 Appl. Phys. Lett. 112 142903Google Scholar

    [39]

    Srikanth K S, Patel S, Steiner S, Vaish R 2018 Scr. Mater. 146 146Google Scholar

    [40]

    Chen H, Guo S, Dong X, Cao F, Mao C, Wang G 2017 J. Alloys Compd. 695 2723Google Scholar

  • 图 1  不同组分的(1–x)PNZST:xAlN (x = 0.1, 0.2, 0.3, 0.4)复合陶瓷的XRD谱和(111)与(200)衍射峰的放大图谱

    Figure 1.  XRD patterns of (1–x)PNZST:xAlN (x = 0.1, 0.2, 0.3, 0.4) ceramics, enlarged (111) and (200) diffraction peaks.

    图 2  (1–x)PNZST:xAlN (x = 0, 0.1, 0.2, 0.3和0.4)陶瓷的(a)—(e) SEM图像和(f)晶粒尺寸分布 (a) x = 0; (b) x = 0.1; (c) x = 0.2; (d) x = 0.3; (e) x = 0.4; (f)平均晶粒尺寸随AlN含量变化的关系

    Figure 2.  The SEM images (a)–(e) and grain size distribution (f) of (1–x)PNZST:xAlN: (a) x = 0; (b) x = 0.1; (c) x = 0.2; (d) x = 0.3; (e) x = 0.4; (f) the composition dependence of average grain size.

    图 3  0.9PNZST:0.1ZnO的(a) SEM图像; (b)—(h) Pb, Nb, Zr, Ti, O, Al和N元素分布(比例尺: 2.5 µm)

    Figure 3.  Typical SEM micrograph (a) and element distribution of Pb, Nb, Zr, Ti, O, Al and N (b)–(h) for 0.9PNZST:0.1ZnO (scale bar: 2.5 µm).

    图 4  (1–x)PNZST:xAlN陶瓷在直流电压为0, 10, 20, 30和40 V极化后的室温振幅图和相位图 (a) x = 0; (b) x = 0.1

    Figure 4.  Room temperature out-of-plane amplitude and phase images of (1–x)PNZST:xAlN ceramics after poling with the DC voltage of 0, 10, 20, 30 and 40 V: (a) x = 0; (b) x = 0.1.

    图 5  (a)—(e)不同组分(1–x)PNZST:xAlN (x = 0, 0.1, 0.2, 0.3, 0.4)陶瓷样品极化后的介电温谱和(f)铁电-反铁电相转变温度TFE-AFE

    Figure 5.  Temperature-dependent dielectric properties (a)–(e) and the composition dependent TFE-AFE (f) of (1–x)PNZST:xAlN (x = 0, 0.1, 0.2, 0.3, 0.4) composite.

    图 6  不同组分(1–x)PNZST:xAlN陶瓷样品在室温不同电场下的P-E (a)—(e)和J-E (f)—(j)曲线 (a), (f) x = 0; (b), (g) x = 0.1; (c), (h) x = 0.2; (d), (i) x = 0.3; (e), (j) x = 0.4

    Figure 6.  Electric field-dependent P-E loops (a)–(e) and J-E (f)–(j) curves of (1–x)PNZST:xAlN composite at room temperature: (a), (f) x = 0; (b), (g) x = 0.1; (c), (h) x = 0.2; (d), (i) x = 0.3; (e), (j) x = 0.4.

    图 7  不同组分(1–x)PNZST:xAlN陶瓷样品在不同电场下的P-E (a)—(d)和J-E (e)—(h)曲线 (a), (e) x = 0.1; (b), (f) x = 0.2; (c), (g) x = 0.3; (d), (h) x = 0.4

    Figure 7.  Temperature-dependent P-E loops (a)–(d) and J-E curves (e)–(h) of (1–x)PNZST:xAlN composite at room temperature: (a), (e) x = 0.1; (b), (f) x = 0.2; (c), (g) x = 0.3; (d), (h) x = 0.4.

    图 8  不同组分(1–x)PNZST:xAlN(x = 0, 0.1, 0.2, 0.3, 0.4)陶瓷样品随温度变化的热释电系数值

    Figure 8.  Temperature-dependent pyroelectric coefficient of (1–x)PNZST:xAlN (x = 0, 0.1, 0.2, 0.3 and 0.4) composite.

    表 1  PNZST:AlN复合陶瓷与其他已报道的无铅材料和PZT基材料的热释电性能参数比较

    Table 1.  Comparison of the pyroelectric parameters of PNZST:AlN ceramics, other reported lead-free materials and PZT-based materials.

    材料组成介电常数εr介电损耗tanδ热释电系数p/
    (10–4 C·m–2·K–1)
    电流优值因子Fi/
    (10–10 m·V–1)
    电压优值因子Fv/
    (10–2 m2·C–1)
    探测率优值因子Fd/
    (10–5 Pa–1/2)
    文献
    TGS550.0255.52.12436.1[1]
    LiTaO3 crystal470.00052.30.721715.7[1]
    PVDF110.020.30.1313.40.9[35]
    BNT-BT4030.0112.422.681.53[2]
    BNT-BT-ST12780.1095.72.081.80.589[2]
    PLZT5110.0144.01.663.62.07[36]
    KNN-BKT9800.0352.180.9941.140.57[37]
    BNT-BA-KNN5140.0293.71.322.891.15[38]
    BCT-BST35000.0252.0510.320.41[39]
    CSBN3280.0331.240.62.030.61[40]
    PZT-based2900.00273.86.05.8[2]
    KBT-BT-NBT6600.232.580.921.50.53[34]
    PIMNT film28240.0048.53.401.41.03[11]
    x = 0.1583.60.0133.031.661.344.0本工作
    DownLoad: CSV
  • [1]

    Liu Z, Lu T, Dong X, Wang G, Liu Y 2021 IEEE Trans. Ultrason. Ferr. 68 242Google Scholar

    [2]

    Jia J, Guo S, Yan S, Cao F, Yao C, Dong X, Wang G 2019 Appl. Phys. Lett. 114 032902Google Scholar

    [3]

    Whatmore R W 1986 Rep. Prog. Phys. 49 1135Google Scholar

    [4]

    Wang Y, Yuan G, Luo H, Li J, Viehland D 2017 Phys. Rev. Appl. 8 034032Google Scholar

    [5]

    Domingo N, Bagués N, Santiso J, Catalan G 2015 Phys. Rev. B 91 094111Google Scholar

    [6]

    Pandya S, Wilbur J, Kim J, Gao R, Dasgupta A, Dames C, Martin L W 2018 Nat. Mater. 17 432Google Scholar

    [7]

    Yang M M, Luo Z D, Mi Z, Zhao J, Sharel P E, Alexe M 2020 Nature 584 377Google Scholar

    [8]

    郭少波, 闫世光, 曹菲, 姚春华, 王根水, 董显林 2020 物理学报 69 127708Google Scholar

    Guo S B, Yan S G, Cao F, Yao C H, Wang G S, Dong X L 2020 Acta Phys. Sin. 69 127708Google Scholar

    [9]

    Xu Y Q, Wu N J, Ignatiev A 2000 J. Appl. Phys. 88 1004Google Scholar

    [10]

    Zhang S, Lebrun L, Jeong D Y, Randall C A, Zhang Q, Shrout T R 2003 J. Appl. Phys. 93 9257Google Scholar

    [11]

    Huang X, Tang Y, Wang F, Ming Leung C, Zhao X, Qin X, Wang T, Duan Z, Wu Y, Wang J, Shi W 2022 J. Am. Ceram. Soc. 105 327Google Scholar

    [12]

    He H, Lu X, Hanc E, Chen C, Zhang H, Lu L 2020 J. Mater. Chem. C 8 1494Google Scholar

    [13]

    Song K, Ma N, Mishra Y K, Adelung R, Yang Y 2019 Adv. Electron. Mater. 5 1800413Google Scholar

    [14]

    Srikanth K S, Singh V P, Vaish R 2017 J. Eur. Ceram. Soc. 37 3943Google Scholar

    [15]

    Patel S, Weyland F, Tan X, Novak N 2018 Energy Technology 6 865Google Scholar

    [16]

    Li L, Liu H, Wang R X, Zhang H, Huang H, Lu M H, Zhang S T, Jiang S, Wu D, Chen Y F 2020 J. Mater. Chem. C 8 7820Google Scholar

    [17]

    Liu B, Li L, Zhang S T, Zhou L, Tan X 2022 J. Am. Ceram. Soc. 105 794Google Scholar

    [18]

    Riemer L M, Lalitha K V, Jiang X, Liu N, Dietz C, Stark R W, Groszewicz P B, Buntkowsky G, Chen J, Zhang S T, Rodel J, Koruza J 2017 Act. Mater. 136 271Google Scholar

    [19]

    Yin J, Wang Y, Zhang Y, Wu B, Wu J 2018 Act. Mater. 158 269Google Scholar

    [20]

    Tabary P, Servant C, Alary J A 2000 J. Eur. Ceram. Soc. 20 913Google Scholar

    [21]

    田野, 靳立, 冯玉军, 庄永勇, 徐卓, 魏晓勇 2017 物理学进展 37 155

    Tian Y, Jin L, Feng Y J, Zhuang Y Y, Xu Z, Wei X 2017 Prog. Phys. 37 155

    [22]

    Wang H, Jiang B, Thomas R S, Cao W 2004 IEEE Trans. Ultrason. Ferr. 51 908Google Scholar

    [23]

    Lee H J, Zhang S, Luo J, Li F, Shrout T R 2010 Adv. Funct. Mater. 20 3154Google Scholar

    [24]

    Shen M, Hu Z, Qiu Y, Qiu S, Li M Y, Zhang G, Zhang S, Yang Z, Kagawa F, Jiang S 2019 J. Eur. Ceram. Soc. 39 5243Google Scholar

    [25]

    You D, Tan H, Yan Z, Gao H, Chen S, Ma W, Fan P, Tran N M, Liu Y, Salamon D, Zhang H 2022 ACS Appl. Mater. Inter. 14 17652Google Scholar

    [26]

    Tan X, Frederick J, Ma C, Aulbach E, Marsilius M, Hong W, Granzow T, Jo W, Rödel J 2010 Phys. Rev. B 81 014103Google Scholar

    [27]

    Tan X, Jo W, Granzow T, Frederick J, Aulbach E, Rödel J 2009 Appl. Phys. Lett. 94 042909Google Scholar

    [28]

    Frederick J, Tan X, Jo W 2011 J. Am. Ceram. Soc. 94 1149Google Scholar

    [29]

    He H, Tan X 2007 J. Phys. Condens. Matter. 19 136003Google Scholar

    [30]

    Tan X, Frederick J, Ma C, Jo W, Rodel J 2010 Phys. Rev. Lett. 105 255702Google Scholar

    [31]

    Yang X, Zhuo F, Wang C, Liu Y, Wang Z, He C, Long X 2020 Act. Mater. 186 523Google Scholar

    [32]

    Li S, Nie H, Wang G, Liu N, Zhou M, Cao F, Dong X 2019 J. Mater. Chem. C 7 4403Google Scholar

    [33]

    Zhou M, Liang R, Zhou Z, Dong X 2019 J. Am. Ceram. Soc. 103 193Google Scholar

    [34]

    Thakre A, Maurya D, Kim D Y, Kim Y, Sriboriboon P, Yoo I R, Priya S, Cho K H, Song H C, Ryu J 2021 J. Eur. Ceram. Soc. 41 2524Google Scholar

    [35]

    Whatmore R W 2021 Encyclopedia Mater. Tech. Ceram. Glasses 3 139

    [36]

    Qiao P, Zhang Y, Chen X, Zhou M, Wang G, Dong X 2019 Ceram. Int. 45 7114Google Scholar

    [37]

    Jiang X P, Chen Y, Lam K H, Choy S H, Wang J 2010 J. Alloys Compd. 506 323Google Scholar

    [38]

    Liu Z, Ren W, Peng P, Guo S, Lu T, Liu Y, Dong X, Wang G 2018 Appl. Phys. Lett. 112 142903Google Scholar

    [39]

    Srikanth K S, Patel S, Steiner S, Vaish R 2018 Scr. Mater. 146 146Google Scholar

    [40]

    Chen H, Guo S, Dong X, Cao F, Mao C, Wang G 2017 J. Alloys Compd. 695 2723Google Scholar

  • [1] Tian Guo, Fan Zhen, Chen De-Yang, Hou Zhi-Peng, Liu Jun-Ming, Gao Xing-Sen. Laboratory experiments based on tip probe - Scanning probe detection and regulation of ferroelectric domains and their microscopic physical properties. Acta Physica Sinica, 2023, 72(20): 207501. doi: 10.7498/aps.72.20230954
    [2] Guo Shao-Bo, Yan Shi-Guang, Cao Fei, Yao Chun-Hua, Wang Gen-Shui, Dong Xian-Lin. Research progress of pyroelectric characteristics of lead-free ferroelectric ceramics for infrared detection. Acta Physica Sinica, 2020, 69(12): 127708. doi: 10.7498/aps.69.20200303
    [3] Liu Di, Wang Jing, Wang Jun-Sheng, Huang Hou-Bing. Phase field simulation of misfit strain manipulating domain structure and ferroelectric properties in PbZr(1–x)TixO3 thin films. Acta Physica Sinica, 2020, 69(12): 127801. doi: 10.7498/aps.69.20200310
    [4] Yang Wen-Da, Chen Hong-Ying, Chen Yan, Tian Guo, Gao Xing-Sen. Recent progress in exotic polar topological states in ferroelectric nanostructures. Acta Physica Sinica, 2020, 69(21): 217501. doi: 10.7498/aps.69.20201063
    [5] Tan Cong-Bing, Zhong Xiang-Li, Wang Jin-Bin. Polar topological structures in ferroelectric materials. Acta Physica Sinica, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [6] Jiang Zhao-Xiu, Wang Yong-Gang, Nie Heng-Chang, Liu Yu-Sheng. Effects of poling state and direction on domain switching and phase transformation of Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under uniaxial compression. Acta Physica Sinica, 2017, 66(2): 024601. doi: 10.7498/aps.66.024601
    [7] Zhang Run-Lan, Xing Hui, Chen Chang-Le, Duan Meng-Meng, Luo Bing-Cheng, Jin Ke-Xin. Study on ferroelectric behaviors and ferroelectric nanodomains of YMnO3 thin film. Acta Physica Sinica, 2014, 63(18): 187701. doi: 10.7498/aps.63.187701
    [8] Zhou Bo, Chen Yun-Lin, Liu Gang, Zhan He. Improvement on the classical model for new domain nucleation in ferroelectrics. Acta Physica Sinica, 2009, 58(4): 2762-2767. doi: 10.7498/aps.58.2762
    [9] Wang Long-Hai, Yu Jun, Liu Feng, Zheng Chao-Dan, Li Jia, Wang Yun-Bo, Gao Jun-Xiong, Wang Zhi-Hong, Zeng Hui-Zhong, Zhao Su-Ling. The domain and domain wall structure of PT/PZT/PT ferroelectric thin film. Acta Physica Sinica, 2006, 55(5): 2590-2595. doi: 10.7498/aps.55.2590
    [10] Liu Hong, Pu Zhao-Hui, Gong Xiao-Gang, Wang Zhi-Hong, Huang Hui-Dong, Li Yan-Rong, Xiao Ding-Quan, Zhu Jian-Guo. Study of nanoscale banded 90° domain patterns and pyroelectric properties in (111) oriented (Pb,La)TiO3 thin films. Acta Physica Sinica, 2006, 55(11): 6123-6128. doi: 10.7498/aps.55.6123
    [11] Zeng Hua-Rong, Yu Han-Feng, Chu Rui-Qing, Li Guo-Rong, Yin Qing-Rui, Tang Xin-Gui. Field-induced displacement properties of nanoscale domain structure in PZT thin film. Acta Physica Sinica, 2005, 54(3): 1437-1441. doi: 10.7498/aps.54.1437
    [12] Zhang Li-Na, Zhao Su-Chuan, Zheng Liao-Ying, Li Guo-Rong, Yin Qing-Rui. Microstructure, dielectric and piezoelectric properties of mixed-layered Bi7Ti4NbO21 ferroelectric ceramics. Acta Physica Sinica, 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [13] Zhu Jun, Zhang Xing-Yuan, Lu Hong-Bo. Effect of annealing and polarizing temperature on the trap level distribution in nylon 11 film electrets. Acta Physica Sinica, 2005, 54(7): 3414-3417. doi: 10.7498/aps.54.3414
    [14] Ma Shi-Hong, Yan Mei, Li Shu-Hong, Lu Xing-Ze, Wang Gen-Shui, Zhu Jun-Hao, Wang Wen-Cheng. Optimization of pyroelectric properties in ultrathin organized molecular films. Acta Physica Sinica, 2003, 52(1): 197-201. doi: 10.7498/aps.52.197
    [15] Yang Xin-Sheng, Chen Min, Wang Yu. High temperature heat-electric phenomenon of Tb4O7 doped W O3 ceramics. Acta Physica Sinica, 2003, 52(6): 1545-1548. doi: 10.7498/aps.52.1545
    [16] Liu Peng, Bian Xiao-Bing, Zhang Liang-Ying, Yao Xi. . Acta Physica Sinica, 2002, 51(7): 1628-1633. doi: 10.7498/aps.51.1628
    [17] FENG YU-JUN, YAO XI, XU ZHUO. PYROELECTRICITY OF TEMPERATURE-INDUCED PHASE TRANSITION IN TIN-MODIFIED LEAD ZIRCONATE TITANATE. Acta Physica Sinica, 2000, 49(8): 1606-1610. doi: 10.7498/aps.49.1606
    [18] YAN MEI, MA SHI-HONG, LIU LI-YING, WANG WEN-CHENG, CHEN ZHANG-HAI, LIU PU-LIN. THE MECHANISM OF PYROELECTRIC EFFECT IN ULTRATHIN MOLECULAR ORGANIZED FILMS OF HEMICYANINE DYES. Acta Physica Sinica, 1998, 47(11): 1917-1922. doi: 10.7498/aps.47.1917
    [19] SHE WEI-LONG, YU ZHEN-XIN, LEI DE-MING. PYROELECTRIC AFFECTION ON THE READOUT OF PHOTO-REFRACTIVE HOLOGRAPHIC GRATING. Acta Physica Sinica, 1996, 45(10): 1655-1659. doi: 10.7498/aps.45.1655
    [20] WANG CHUN-LEI, ZHONG WEI-LIE, ZHANG PEI-LIN. PHASE TRANSITION IN FERROELECTRIC FILMS WITH DOMAIN STRUCTURE. Acta Physica Sinica, 1993, 42(10): 1703-1706. doi: 10.7498/aps.42.1703
Metrics
  • Abstract views:  4888
  • PDF Downloads:  84
  • Cited By: 0
Publishing process
  • Received Date:  26 June 2022
  • Accepted Date:  18 July 2022
  • Available Online:  27 October 2022
  • Published Online:  05 November 2022

/

返回文章
返回