Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Review of the research on nano-structure used as light harvesting in perovskite solar cells

Pan Heng Chen Pei-Run Shi Biao Li Yu-Cheng Gao Qing-Yun Zhang Li Zhao Ying Huang Qian Zhang Xiao-Dan

Citation:

Review of the research on nano-structure used as light harvesting in perovskite solar cells

Pan Heng, Chen Pei-Run, Shi Biao, Li Yu-Cheng, Gao Qing-Yun, Zhang Li, Zhao Ying, Huang Qian, Zhang Xiao-Dan
PDF
HTML
Get Citation
  • In recent years, nano-structures used as light harvesting have been widely used in perovskite cells to enhance the photon absorption of cells. The introduction of trapping structures in perovskite cells can change the photon propagation in the cell and the photon energy absorbed by the cell. The nano-structure used in different interfaces of perovskite cells can increase the absorption of light by the device to different degrees, and ultimately improve the efficiency of the solar cell. Therefore, the effective light trapping structure has become trending in the application of perovskite cells. How to effectively apply the such nano-structure is the key to improve the power conversion efficiency(PCE) of perovskite cells. So far, there is three ways including surface antireflection nanostructure, texture structure and plasmon nanostructure to apply to perovskite solar cell. The first one is ordered and disordered antireflection nanostructure that enhance the absorption of light on the surface of perovskite cells and makes visible light scatter at the interface of the nanostructure to reflection probability, the second one is texture structure that can not only improve the light absorption but avoid the formation of short-circuit channel inside the cell, the third one is plasmon nanostructure that can further improve the absorption of the thin film absorption material in the long band, so as to achieve the effect of improving the light utilization and cell efficiency. The trap structure is expected to achieve good photon absorption performance in wide spectral range and wide incidence angle range under the condition of reducing the thickness of active layer. At the same time, it has the advantages of good repeatability, easy to simulate and easy to change the structure. Therefore, using various trap technologies to design efficient trap structure has become a research hotspot in the field of solar cells. So far, most of the reports on the trapping structure have been applied to the silicon-based thin film solar cells, but few of them have been reported on the perovskite cells. This paper starts from the description of the perovskite cell with different nano-structures, comparing and summarizing the different structures, and analyzes the advantages and Disadvantage.
      Corresponding author: Huang Qian, carolinehq@nankai.edu.cn
    [1]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [2]

    Yu Z L, Zhao Y Q, He P B, Liu B, Cai M Q 2019 J. Phys. Condens. Matter 32 065002

    [3]

    ZhaoY Q, Ma Q R, Liu B, Yu Z L, Yang J L, Cai M Q 2018 Nanoscale 10 8677Google Scholar

    [4]

    ZiD X, QiZ Q, Qing Z Y, Cai M Q 2019 Curr. Appl. Phys. 19 279Google Scholar

    [5]

    Yu Z L, Ma Q R, Liu B, Zhao Y Q, Wang L Z, Zhou H, Cai M Q 2017 J. Phys. D: Appl. Phys. 50 465101Google Scholar

    [6]

    Liao C S, Zhao Q Q, ZhaoY Q, Yu Z L, Zhou H, He P B, Yang J L, Cai M Q 2019 J. Phys. Chem. Solids 135 109060Google Scholar

    [7]

    Deng X Z, Zhang J R, Zhao Y Q, Yu Z L, Yang J L, Cai M Q 2019 J. Phys. Condens. Matter 32 065004

    [8]

    Yang D J, DuY H, ZhaoY Q, Yu Z L, Cai M Q 2019 Phys. Status Solidi B 256 1800540Google Scholar

    [9]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat.Photonics 8 506Google Scholar

    [10]

    De W S, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar

    [11]

    Noh J H, SangH I, JinH H, MandalT N, Sang I S 2013 NanoLett. 13 1764Google Scholar

    [12]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Science 7 982

    [13]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [14]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, SumT C 2013 Science 342 344Google Scholar

    [15]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [16]

    Seo J, Noh J H, Seok S I 2016 Acc. Chem. Res. 49 562Google Scholar

    [17]

    Raut H K, Ganesh V A, Nairb A S, Ramakrishna S 2011 Energy Environ. Sci. 4 3779Google Scholar

    [18]

    Zhu J, Hsu C M, Yu Z 2010 Nano Lett. 10 1979Google Scholar

    [19]

    Yablonovitch E, Cody G D 1982 IEEE Trans. 29 300Google Scholar

    [20]

    Goetzberger A 1981 15 th Photovoltaic Specialists Conference, Kissimmee, FL 11 867

    [21]

    Yablonovitch E 1982 Opt. Soc. Am. 72 899Google Scholar

    [22]

    Green M A 1999 Prog. Photovoltaics 7 327Google Scholar

    [23]

    Lifante G 2005 Phys. Scr.T. 118 72

    [24]

    Atwater J H, Spinelli P, Kosten E, Parsons J, Lare C V, GroepJ V, Garcia de A J, Polman, Atwater H A 2011 Appl. Phys. Lett. 99 151

    [25]

    Trupke T, Daub E, Wuerfel P 1998 Sol. Cells 53 103

    [26]

    Miller O D, Yablonovitch E 2011 arxiv preprint arXiv 2 303

    [27]

    SmestadG, Ries H 1992 Sol. Engrgy Mater. Sol. Cells 25 51Google Scholar

    [28]

    deQuilettes D W, Vorpahl S M, Stranks S D, Nagaoka H, Eperon G E, Ziffer M E, Snaith H J, Ginger D S 2015 Science 348 683Google Scholar

    [29]

    Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 6225 967

    [30]

    Pazos-Outón L M, Szumilo M, Lamboll R, Richter J M, Crespo-Quesada M, Abdi-Jalebi M, Beeson H J, Vrućinić M, Alsari M, Snaith H J, Ehrler B, Friend R H, Deschler F 2016 Science 351 1430Google Scholar

    [31]

    Stranks D, Eperon E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 6156 341

    [32]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar

    [33]

    Long M, Chen Z, Zhang T, Xiao Y, Zeng X, Chen J, Yan K, Xu J 2016 Nanoscale 8 6290Google Scholar

    [34]

    Raut H K, Ganesh V A, Nair AS 2011 Energy. Environ. Sci. 4 3779

    [35]

    Kaminski P M, Womack G, Walls J M 2014 40th IEEE Photovoltaic Specialist Conference Denver, CO, USA, June 8–13 2014 0160 8371

    [36]

    Tavakoli M M, Tsui K H, Zhang Q P, He J, Ya oY, LiD D, FanZ Y 2015 ACSNano 9 10287

    [37]

    Bhaskar D, Jin H H, Jung W L, YuJ S, Im S H 2016 J. Mater. Chem. A 4 7573Google Scholar

    [38]

    Jošt M, Albrecht S, Kegelmann L, Wolff C M, Lang F, ipovšek B L, Krč J, Korte L, Neher D, Rech B, Topič M 2017 ACS Photonics 4 1232Google Scholar

    [39]

    Omar A M, Abdelraouf, Nageh K A 2016 Sol. Energy 137 364370

    [40]

    Shi B, Liu B F, Luo J S, Li Y L, Zheng C C, Yao X, Fan L, Liang J H, Ding Y, Wei C C, Zhang D K, Zhao Y, Zhang X D 2017 Sol. Energy. Mater. Sol. Cells 168 214Google Scholar

    [41]

    Zhou Y Y, Game O S, Pang S P, Padture N P 2015 J. Phys. Chem. Lett. 6 4827Google Scholar

    [42]

    Eperon G E, Burlakov V M, Docampo P 2014 Adv. Funct. Mater. 24 151Google Scholar

    [43]

    Huang F Z, Dkhissi Y, HuangW C, Xiao M D, Benesperi I, Rubanov S, Zhu Y, Lin X F, Jiang L C, Zhou Y C, Gray-Weale A, Etheridge J, McNeill C R, Caruso R A, Bach U, Spiccia L, Cheng Y B 2014 Nano Energy 10 10

    [44]

    Xiao M, Huang F, Huang W, Dkhissi Y, Zh uY, Etheridge J, Gray-Weale A, Bach U, Cheng Y B, Spiccia L, Chem A 2014 In. Ed. 53 9898

    [45]

    Seong M K, Segeun J, Lee J K, Yoon J J, Yoo D E, Lee J W, Choi M, Park N G 2016 Small Nano 18 2443

    [46]

    Lee J W, Lee S H, Ko H Se, Kwon J, Park J H, Kang S M, Ahn N Y, Choi M S, Kim J K, Park N G 2015 J. Mater. Chem. A 3 9179Google Scholar

    [47]

    Zhang J, Pauporte T 2015 Chem. Phys. Chem. 16 2836Google Scholar

    [48]

    Ho C C, Chen P Y, Lin K H 2011 ACS Appl. Mater. Interfaces 3 204Google Scholar

    [49]

    Chan K, Wright M, Elumalai N 2016 Adv. Opt. Mater. 5 160

    [50]

    Pascoe A R, Meyer S, Huang W C, Li W, Benesperi I, Duffy N W, Spiccia L, Bach U, Cheng Y B 2016 Adv. Funct. Mater. 26 1278Google Scholar

    [51]

    Stenzel O, Stendal A, Voigtsberger K, von Borczyskowski C 1995 Sol. Energy Mater. Sol. Cells 37 337Google Scholar

    [52]

    Morfa A J, Rowlen K L, Reilly I T, Romero M J, Van De Lagemaat J 2008 Appl. Phys. Lett. 92 013

    [53]

    Salvado M, MacLeod B A, Hess A, Kulkarni P, Munechika K, Chen J I, Ginger D S 2012 ACS Nano 6 10024Google Scholar

    [54]

    Liu C M, Chen C M, Su Y W, Wang S M, Wei K H 2013 Org. Electron. 14 2476Google Scholar

    [55]

    Jankovic V, Yeng Y, You J, Dou L, Liu Y, Cheung P, Chang J P, Yang Y 2013 ACS Nano 7 3815Google Scholar

    [56]

    Cheng C E, Pei Z, Hsu C C, Chang C S, Shih-Sen Chien F 2014 Sol. Energy Mater. Sol. Cells 121 80Google Scholar

    [57]

    Baek S W, Park G, Noh J, Cho C, Lee C H, Seo M K, Song H, Lee J Y 2014 ACS Nano 8 3302Google Scholar

    [58]

    Chen X, Zuo L, Fu W, Yan Q, Fan C, Chen H 2013 Sol. Energy Mater. Sol. Cells 111 1Google Scholar

    [59]

    Li X, Choy W C H, Huo L, Xie F, Sha W E I, Ding B, Gu oX, Li Y, Hou J, You J, Yang Y 2012 Adv. Mater. 24 3046Google Scholar

    [60]

    Kang M G, Xu T, Park H J, Luo X, Guo L J 2010 Adv. Mater. 22 4378Google Scholar

    [61]

    Zhang W, Saliba M, Stranks S D 2013 Nano Lett. 13 4505Google Scholar

    [62]

    Saliba M, Zhang W, Burlakov V 2015 Adv. Funct. Mater. 25 5038Google Scholar

    [63]

    Cui J, Chen C, Han J B, Cao K, Zhang W J, Shen Y, Wang M K 2016 Adv. Sci. 3 1500312Google Scholar

    [64]

    LuZ L, Pan X J, Ma Y Z, Zheng L L, Zhang D F, Xu Q, Chen Z J, Wang S F, Qu B, Liu F, HuangY D, Xiao L X, Gonga Q H 2015 RSC Adv. 5 111

    [65]

    MaliS S, Shim C S, Kim H, Patil P S, Hong C K 2016 Nanoscale 8 2664Google Scholar

    [66]

    Batmunkh M, Macdonald T J, Peveler W J 2017 ChemSusChem 10 1Google Scholar

  • 图 1  纳米陷光原理图24 (a)纳米陷光结构图[24]; (b) Mie共振; (c) 低品质因子法布里珀罗共振; (d)波导共振; (e)光栅模式

    Figure 1.  Schematic diagram of nano trapping24: (a) Schematic diagram of nano-trapping structure[24]; (b) Mie resonance; (c) low-quality-factor Fabry-Perot standing-wave resonance; (d) guided resonance; (e) diffracted modes.

    图 2  香港科技大学电子与计算机工程系Tavakoli等[36]制备的钙钛矿电池器件结构与性能36 (a)电池结构为纳米锥抗反射层/柔性玻璃衬底/掺锡氧化物透明电极/氧化锌/钙钛矿/Spiro-OmeTAD/金; (b) 有无纳米锥结构的电池外量子效率; (c)无纳米锥结构时的活性层中电磁场分布特性; (d)有纳米锥结构时的活性层中电磁场分布特性

    Figure 2.  Structure and performance of perovskite cell made byTavakoli[36] form Department of electronic and computer engineering, Hong Kong University of science and technology36: (a) Schematic structure of the perovskite solar cell device with nanocone PDMS film attached on the top and flexible glass substrate/tin doped oxide transparent electrode/zinc oxide/perovskite/spiro OmeTAD/gold; (b) QE measurement of perovskite devices with and without a PDMS nanocone film; Electric field in the active layer (c) without and (d) with PDMS nanocone film with red showing a high generation rate and blue showing a low generation rate.

    图 3  本课题组石标等制作的钙钛矿电池器件结构与性能[40](a)在绒面FTO玻璃上生长的钙钛矿太阳电池; (b) 在绒面结构上钙钛矿吸收层的表面形貌; (c) 在平面结构上钙钛矿吸收层的表面形貌; (d) 钙钛矿吸收层在平面和绒面FTO上的可见光吸收率以及钙钛矿电池在绒面和平面FTO上的可见光吸收率; (e) 在绒面和平面FTO上的I-V特性曲线

    Figure 3.  The structure and performance of perovskite cell made by Dr.Shi of our group[40] of our research group: (a) Schematics of possible incident light paths within perovskite solar cells with textured substrate; (b) surface morphologies of SEM images oftextured FTO/TiO2/perovskite film; (c) surface morphologies of SEM images ofsmooth FTO/TiO2/perovskite film; (d) absorption coefficient of different perovskite films without/with Au back contact; (e) performance of devices with different FTO substrates. J-V characteristics.

    图 4  莫纳什大学材料科学与工程系Huang等制作的钙钛矿电池器件结构与性能[43]制作的钙钛矿电池器件结构与性能 (a)制作过程图解; (b)绒面钙钛矿TEM图; (c)平面钙钛矿与绒面钙钛矿的外量子效率与电流密度

    Figure 4.  Structure and performance of perovskite battery devices made by Huang et al from Department of Materials Engineering, Monash University[43]: (a) Schematic diagram illustrating the fabrication procedure (b) centred dark-field TEM image for a cross-section of a textured perovskite sample deposited on FTO-glass; (c) IPCE spectrum (solid lines) of a planar perovskite device (grey line) and a textured.

    图 5  首尔国立大学机械与航空航天工程系Seong等制作的材料结构与陷光性能[45] (a)蛾眼介孔二氧化钛三维图解; (b)带有蛾眼介孔二氧化钛的钙钛矿吸收层电磁场强度分布

    Figure 5.  Material structure and light trapping properties ofSeong[45], Department of mechanical and aerospaceengineering, Seoul National University (a) 3D illustration of moth-eye patterned mesoporous TiO2 (mp-TiO2) layer; (b) electric field on active layer with Moth-eye TiO2.

    图 6  莫纳什大学材料科学与工程系Pascoe等制作的钙钛矿器件陷光原理图[50]制作的钙钛矿器件陷光原理图 (a)嵌入金属纳米粒子在吸收层附近的近场增强型表面等离子激元共振; (b)周期性结构表面等离子激元纳米结构

    Figure 6.  Trapping principle diagram of perovskite devices made byPascoe[50], Department of materials science andengineering, Monash University: (a) Near-field Enhanced Surface Plasmon Resonance of Metal Nanoparticles Embedded near the Absorp-tion Layer; (b) surface plasmon nanostructures with periodic structures.

    表 1  有无抗反射层结构电池的各参数对比集合

    Table 1.  Photovoltaic parameters of perovskite solar cells with (‘ARC’) and without (‘Ref’) an anti-reflection coating placed at the air/glass interface of the cell.

    Device structureSourceJSC/mA·cm–2VOC/VFF/%PCE/%
    RefARCRefARCRefARCRefARC
    PDMS/FTO glass/TiO2/MAPbI3/PTAA/Au[37]20.621.21.091.0976.676.617.1717.74
    LMF/Glass/ITO/PEDOT:PSS/MAPbI3/PCBM/BCP/Ag[38]20.721.71.111.1170.971.216.317.1
    LMF: Light management foil
    DownLoad: CSV

    表 2  有无等离激元纳米结构的电池参数

    Table 2.  Photovoltaic parameters of perovskite solar cells with the same fabrication parameters, with (‘NSs’)embedded plasmonic nanostructures, and without them (‘Ref’).

    SourceNSsJSC/mA·cm–2 VOC/VFF/%PCE/%
    RefNSsRefNSs RefNSs RefNSs
    [61]Au@SiO2 80 nm spheres14.816.9 1.021.04 6467 10.711.4
    [62]Ag@TiO2 40 nm spheres17.319.7 1.031.04 6467 11.413.7
    [63]Au@SiO2 40 nm rods13.917.4 1.171.16 6668 10.713.7
    [64]Au-Ag 100 nm popcorn15.516.5 0.920.95 6366 8.910.3
    [65]Au/TiO2 Fibres19.620.8 0.850.99 6270 10.314.4
    [66]Au stars 20 nm21.123 1.051.08 6971 15.217.7
    DownLoad: CSV
  • [1]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [2]

    Yu Z L, Zhao Y Q, He P B, Liu B, Cai M Q 2019 J. Phys. Condens. Matter 32 065002

    [3]

    ZhaoY Q, Ma Q R, Liu B, Yu Z L, Yang J L, Cai M Q 2018 Nanoscale 10 8677Google Scholar

    [4]

    ZiD X, QiZ Q, Qing Z Y, Cai M Q 2019 Curr. Appl. Phys. 19 279Google Scholar

    [5]

    Yu Z L, Ma Q R, Liu B, Zhao Y Q, Wang L Z, Zhou H, Cai M Q 2017 J. Phys. D: Appl. Phys. 50 465101Google Scholar

    [6]

    Liao C S, Zhao Q Q, ZhaoY Q, Yu Z L, Zhou H, He P B, Yang J L, Cai M Q 2019 J. Phys. Chem. Solids 135 109060Google Scholar

    [7]

    Deng X Z, Zhang J R, Zhao Y Q, Yu Z L, Yang J L, Cai M Q 2019 J. Phys. Condens. Matter 32 065004

    [8]

    Yang D J, DuY H, ZhaoY Q, Yu Z L, Cai M Q 2019 Phys. Status Solidi B 256 1800540Google Scholar

    [9]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat.Photonics 8 506Google Scholar

    [10]

    De W S, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar

    [11]

    Noh J H, SangH I, JinH H, MandalT N, Sang I S 2013 NanoLett. 13 1764Google Scholar

    [12]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Science 7 982

    [13]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [14]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, SumT C 2013 Science 342 344Google Scholar

    [15]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [16]

    Seo J, Noh J H, Seok S I 2016 Acc. Chem. Res. 49 562Google Scholar

    [17]

    Raut H K, Ganesh V A, Nairb A S, Ramakrishna S 2011 Energy Environ. Sci. 4 3779Google Scholar

    [18]

    Zhu J, Hsu C M, Yu Z 2010 Nano Lett. 10 1979Google Scholar

    [19]

    Yablonovitch E, Cody G D 1982 IEEE Trans. 29 300Google Scholar

    [20]

    Goetzberger A 1981 15 th Photovoltaic Specialists Conference, Kissimmee, FL 11 867

    [21]

    Yablonovitch E 1982 Opt. Soc. Am. 72 899Google Scholar

    [22]

    Green M A 1999 Prog. Photovoltaics 7 327Google Scholar

    [23]

    Lifante G 2005 Phys. Scr.T. 118 72

    [24]

    Atwater J H, Spinelli P, Kosten E, Parsons J, Lare C V, GroepJ V, Garcia de A J, Polman, Atwater H A 2011 Appl. Phys. Lett. 99 151

    [25]

    Trupke T, Daub E, Wuerfel P 1998 Sol. Cells 53 103

    [26]

    Miller O D, Yablonovitch E 2011 arxiv preprint arXiv 2 303

    [27]

    SmestadG, Ries H 1992 Sol. Engrgy Mater. Sol. Cells 25 51Google Scholar

    [28]

    deQuilettes D W, Vorpahl S M, Stranks S D, Nagaoka H, Eperon G E, Ziffer M E, Snaith H J, Ginger D S 2015 Science 348 683Google Scholar

    [29]

    Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 6225 967

    [30]

    Pazos-Outón L M, Szumilo M, Lamboll R, Richter J M, Crespo-Quesada M, Abdi-Jalebi M, Beeson H J, Vrućinić M, Alsari M, Snaith H J, Ehrler B, Friend R H, Deschler F 2016 Science 351 1430Google Scholar

    [31]

    Stranks D, Eperon E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 6156 341

    [32]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar

    [33]

    Long M, Chen Z, Zhang T, Xiao Y, Zeng X, Chen J, Yan K, Xu J 2016 Nanoscale 8 6290Google Scholar

    [34]

    Raut H K, Ganesh V A, Nair AS 2011 Energy. Environ. Sci. 4 3779

    [35]

    Kaminski P M, Womack G, Walls J M 2014 40th IEEE Photovoltaic Specialist Conference Denver, CO, USA, June 8–13 2014 0160 8371

    [36]

    Tavakoli M M, Tsui K H, Zhang Q P, He J, Ya oY, LiD D, FanZ Y 2015 ACSNano 9 10287

    [37]

    Bhaskar D, Jin H H, Jung W L, YuJ S, Im S H 2016 J. Mater. Chem. A 4 7573Google Scholar

    [38]

    Jošt M, Albrecht S, Kegelmann L, Wolff C M, Lang F, ipovšek B L, Krč J, Korte L, Neher D, Rech B, Topič M 2017 ACS Photonics 4 1232Google Scholar

    [39]

    Omar A M, Abdelraouf, Nageh K A 2016 Sol. Energy 137 364370

    [40]

    Shi B, Liu B F, Luo J S, Li Y L, Zheng C C, Yao X, Fan L, Liang J H, Ding Y, Wei C C, Zhang D K, Zhao Y, Zhang X D 2017 Sol. Energy. Mater. Sol. Cells 168 214Google Scholar

    [41]

    Zhou Y Y, Game O S, Pang S P, Padture N P 2015 J. Phys. Chem. Lett. 6 4827Google Scholar

    [42]

    Eperon G E, Burlakov V M, Docampo P 2014 Adv. Funct. Mater. 24 151Google Scholar

    [43]

    Huang F Z, Dkhissi Y, HuangW C, Xiao M D, Benesperi I, Rubanov S, Zhu Y, Lin X F, Jiang L C, Zhou Y C, Gray-Weale A, Etheridge J, McNeill C R, Caruso R A, Bach U, Spiccia L, Cheng Y B 2014 Nano Energy 10 10

    [44]

    Xiao M, Huang F, Huang W, Dkhissi Y, Zh uY, Etheridge J, Gray-Weale A, Bach U, Cheng Y B, Spiccia L, Chem A 2014 In. Ed. 53 9898

    [45]

    Seong M K, Segeun J, Lee J K, Yoon J J, Yoo D E, Lee J W, Choi M, Park N G 2016 Small Nano 18 2443

    [46]

    Lee J W, Lee S H, Ko H Se, Kwon J, Park J H, Kang S M, Ahn N Y, Choi M S, Kim J K, Park N G 2015 J. Mater. Chem. A 3 9179Google Scholar

    [47]

    Zhang J, Pauporte T 2015 Chem. Phys. Chem. 16 2836Google Scholar

    [48]

    Ho C C, Chen P Y, Lin K H 2011 ACS Appl. Mater. Interfaces 3 204Google Scholar

    [49]

    Chan K, Wright M, Elumalai N 2016 Adv. Opt. Mater. 5 160

    [50]

    Pascoe A R, Meyer S, Huang W C, Li W, Benesperi I, Duffy N W, Spiccia L, Bach U, Cheng Y B 2016 Adv. Funct. Mater. 26 1278Google Scholar

    [51]

    Stenzel O, Stendal A, Voigtsberger K, von Borczyskowski C 1995 Sol. Energy Mater. Sol. Cells 37 337Google Scholar

    [52]

    Morfa A J, Rowlen K L, Reilly I T, Romero M J, Van De Lagemaat J 2008 Appl. Phys. Lett. 92 013

    [53]

    Salvado M, MacLeod B A, Hess A, Kulkarni P, Munechika K, Chen J I, Ginger D S 2012 ACS Nano 6 10024Google Scholar

    [54]

    Liu C M, Chen C M, Su Y W, Wang S M, Wei K H 2013 Org. Electron. 14 2476Google Scholar

    [55]

    Jankovic V, Yeng Y, You J, Dou L, Liu Y, Cheung P, Chang J P, Yang Y 2013 ACS Nano 7 3815Google Scholar

    [56]

    Cheng C E, Pei Z, Hsu C C, Chang C S, Shih-Sen Chien F 2014 Sol. Energy Mater. Sol. Cells 121 80Google Scholar

    [57]

    Baek S W, Park G, Noh J, Cho C, Lee C H, Seo M K, Song H, Lee J Y 2014 ACS Nano 8 3302Google Scholar

    [58]

    Chen X, Zuo L, Fu W, Yan Q, Fan C, Chen H 2013 Sol. Energy Mater. Sol. Cells 111 1Google Scholar

    [59]

    Li X, Choy W C H, Huo L, Xie F, Sha W E I, Ding B, Gu oX, Li Y, Hou J, You J, Yang Y 2012 Adv. Mater. 24 3046Google Scholar

    [60]

    Kang M G, Xu T, Park H J, Luo X, Guo L J 2010 Adv. Mater. 22 4378Google Scholar

    [61]

    Zhang W, Saliba M, Stranks S D 2013 Nano Lett. 13 4505Google Scholar

    [62]

    Saliba M, Zhang W, Burlakov V 2015 Adv. Funct. Mater. 25 5038Google Scholar

    [63]

    Cui J, Chen C, Han J B, Cao K, Zhang W J, Shen Y, Wang M K 2016 Adv. Sci. 3 1500312Google Scholar

    [64]

    LuZ L, Pan X J, Ma Y Z, Zheng L L, Zhang D F, Xu Q, Chen Z J, Wang S F, Qu B, Liu F, HuangY D, Xiao L X, Gonga Q H 2015 RSC Adv. 5 111

    [65]

    MaliS S, Shim C S, Kim H, Patil P S, Hong C K 2016 Nanoscale 8 2664Google Scholar

    [66]

    Batmunkh M, Macdonald T J, Peveler W J 2017 ChemSusChem 10 1Google Scholar

  • [1] SHANG Wenli, WANG Likun, ZHANG Xiaochun, YUE Xin, LI Yifeng, WAN Zhenghui, YANG Huayi, LI Ting, WANG Hui. Fabrication of n-i-p perovskite solar cells based on strategy of buried interface modification. Acta Physica Sinica, 2025, 74(2): 028401. doi: 10.7498/aps.74.20241549
    [2] Qu Zi-Han, Zhao Yang, Ma Fei, You Jing-Bi. Preparation of high-performance large-area perovskite solar cells by atomic layer deposition of metal oxide buffer layer. Acta Physica Sinica, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [3] Zhang Xi-Sheng, Yan Chun-Yu, Hu Li-Na, Wang Jing-Zhou, Yao Chen-Zhong. Perovskite solar cells prepared by processing CsPbBr3 nanocrystalline films in low temperature solution. Acta Physica Sinica, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [4] Han Xiao-Jing, Yang Jing, Zhang Jia-Li, Liu Dong-Xue, Shi Biao, Wang Peng-Yang, Zhao Ying, Zhang Xiao-Dan. Electron transport layer of tin dioxide deposited by reactive plasma and its application in perovskite solar cells. Acta Physica Sinica, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [5] Han Mei-Dou-Xue,  Wang Ya,  Wang Rong-Bo,  Zhao Jun-Tao,  Ren Hui-Zhi,  Hou Guo-Fu,  Zhao Ying,  Zhang Xiao-Dan,  Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [6] Han Mei-Dou-Xue, Wang Ya, Wang Rong-Bo, Zhao Jun-Tao, Ren Hui-Zhi, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan, Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [7] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Simulation and property calculation for FA1–xCsx PbI3–y Bry: Structures and optoelectronical properties. Acta Physica Sinica, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [8] Xu Ting, Wang Zi-Shuai, Li Xuan-Hua, Sha Wei E. I.. Loss mechanism analyses of perovskite solar cells with equivalent circuit model. Acta Physica Sinica, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [9] Li Yan, He Hong, Dang Wei-Wu, Chen Xue-Lian, Sun Can, Zheng Jia-Lu. Research progress of light irradiation stability of functional layers in perovskite solar cells. Acta Physica Sinica, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [10] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Structure optimization and optoelectronical property calculation for organic lead iodine perovskite solar cells. Acta Physica Sinica, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [11] Chen Yong-Liang, Tang Ya-Wen, Chen Pei-Run, Zhang Li, Liu Qi, Zhao Ying, Huang Qian, Zhang Xiao-Dan. Progress in perovskite solar cells based on different buffer layer materials. Acta Physica Sinica, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [12] Liang Xiao-Juan, Cao Yu, Cai Hong-Kun, Su Jian, Ni Jian, Li Juan, Zhang Jian-Jun. Simulation and architectural design for Schottky structure perovskite solar cells. Acta Physica Sinica, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [13] Wu Bu-Jun, Lin Dong-Xu, Li Zheng, Cheng Zhen-Ping, Li Xin, Chen Ke, Shi Ting-Ting, Xie Wei-Guang, Liu Peng-Yi. Optimization of grain size to achieve high-performance perovskite solar cells in vapor deposition. Acta Physica Sinica, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [14] Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Shao-Hua, Pan Ling, Li Wen-Biao, Yang Shi-E, Chen Yong-Sheng. Influence of annealing temperature on properties of Cu2O thin films deposited by electron beam evaporation. Acta Physica Sinica, 2018, 67(5): 053301. doi: 10.7498/aps.67.20172463
    [15] Li Shao-Hua, Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Wen-Biao, Pan Ling, Yang Shi-E, Chen Yong-Sheng. Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [16] Wang Jun-Xia, Bi Zhuo-Neng, Liang Zhu-Rong, Xu Xue-Qing. Progress of new carbon material research in perovskite solar cells. Acta Physica Sinica, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [17] Wang Fu-Zhi, Tan Zhan-Ao, Dai Song-Yuan, Li Yong-Fang. Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [18] Chen Pei-Zhuan, Hou Guo-Fu, Suo Song, Ni Jian, Zhang Jian-Jun, Zhang Xiao-Dan, Zhao Ying. One-dimensional photonic crystal(1D PC)-based back reflectors for amorphous silicon thin film solar cell. Acta Physica Sinica, 2014, 63(7): 077301. doi: 10.7498/aps.63.077301
    [19] Qin Fei-Fei, Zhang Hai-Ming, Wang Cai-Xia, Guo Cong, Zhang Jing-Jing. Design and simulation of anodic aluminum oxide nanograting double light trapping structure for thin film silicon solar cells. Acta Physica Sinica, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [20] Yu Xiao-Ming, Zhao Jing, Hou Guo-Fu, Zhang Jian-Jun, Zhang Xiao-Dan, Zhao Ying. Investigation of light trapping structure and performance in PIN-type and NIP-type thin film silicon solar cells. Acta Physica Sinica, 2013, 62(12): 120101. doi: 10.7498/aps.62.120101
Metrics
  • Abstract views:  12691
  • PDF Downloads:  388
  • Cited By: 0
Publishing process
  • Received Date:  30 October 2019
  • Accepted Date:  15 January 2020
  • Published Online:  05 April 2020

/

返回文章
返回