Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual-absorption-layer heterojunction strategy for enhancing photovoltaic performance of all-perovskite tandem solar cell

YUAN Xiang ZHANG Zifa WANG Mingji HE Danmin LU Yingshen HONG Feng JIANG Zuimin XU Run WANG Yingmin MA Zhongquan SONG Hongwei XU Fei

Citation:

Dual-absorption-layer heterojunction strategy for enhancing photovoltaic performance of all-perovskite tandem solar cell

YUAN Xiang, ZHANG Zifa, WANG Mingji, HE Danmin, LU Yingshen, HONG Feng, JIANG Zuimin, XU Run, WANG Yingmin, MA Zhongquan, SONG Hongwei, XU Fei
cstr: 32037.14.aps.74.20250372
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Organic cations in hybrid organic-inorganic perovskite solar cells are susceptible to decomposition under high temperatures and ultraviolet light, leading their power conversion efficiency (PCE) to decrease. All-inorganic perovskite solar cells exhibit both high PCE and superior photothermal stability, making them promising candidates for single-junction and tandem photovoltaic applications. The mixed-halide perovskite CsPbI2Br has received much attention as a top cell in semi-transparent and tandem solar cells due to its excellent thermal stability and suitable bandgap (1.90 eV). Although the PCE of CsPbI2Br-based solar cells is approaching its theoretical limit, the energy loss caused by non-radiative recombination remains a major barrier to further improving performance. This non-radiative recombination is mainly caused by inadequate band alignment between the absorption layer and the transport layer, resulting in the loss of open-circuit voltage (VOC) and decrease of short-circuit current density (JSC). Two-dimensional perovskite passivation formed through solution processing can mitigate interfacial recombination, but it can also impede efficient charge transport. Constructing three-dimensional perovskite structures not only provides an effective solution to these limitations but also enhances sunlight absorption and facilitates carrier transport. In this study, we propose a dual-absorption-layer perovskite heterojunction (DPHJ) strategy, which involves integrating a staggered type-II perovskite heterojunction (p-pCsPbI2Br-CsPbIBr2) into the absorption layer of the top cell in an all-perovskite tandem solar cell. The simulation result indicates that stacking a 100-nm-thick CsPbIBr2 layer atop a 300-nm-thick CsPbI2Br layer greatly enhances the PCE of the single-junction device from 19.46% to 22.29%. This improvement is mainly attributed to band bending at the CsPbI2Br/CsPbIBr2 interface, which enhances the built-in electric field, facilitates carrier transport, and suppresses non-radiative recombination within the absorption layer. Compared with the tandem solar cell utilizing a single-absorption-layer CsPbI2Br top cell, the DPHJ-based tandem solar cell significantly increases VOC from 2.16 to 2.25 V and JSC from 15.96 to 16.76 mA⋅cm–2. As a result, the DPHJ-based tandem solar cell achieves a high theoretical PCE of 32.47%. In addition, the DPHJ-based tandem solar cell exhibits a significantly enhanced external quantum efficiency in a wavelength range of 500–580 nm, which can be attributed to the band-edge absorption of CsPbIBr2. This enhanced absorption generates more photogenerated carriers, thereby significantly improving the JSC. The VOC and PCE values in this study exceed those experimentally reported values of current CsPbI2Br single-junction and all-perovskite tandem solar cells. Compared with the single-layer CsPbI2Br (E2 = 101.9 meV, electron-phonon coupling strength $ {\gamma _{{\text{ac}}}} = 1.2 \times {10^{ - 2}},{\text{ }}{\gamma _{{\text{LO}}}} = 6.9 \times {10^3} $), the double-absorption-layer film exhibits a high exciton binding energy (E2 = 110.7 meV) and reduced electron-phonon coupling strength ($ {\gamma _{{\text{ac}}}} = 1.1 \times {10^{ - 2}},{\text{ }}{\gamma _{{\text{LO}}}} = $$ 6.3 \times {10^3} $), which helps suppress phase segregation and enhance both optical and thermal stability, which is favorable for fabricating long-term stable all-perovskite tandem solar cells. This work provides new ideas and theoretical guidance for improving the efficiency and stability of all-perovskite tandem solar cells. In addition, it also proposes a universal design concept for optimizing absorption layers in all-perovskite multijunction cells, which is expected to further advance the research in this field.
      Corresponding author: WANG Yingmin, wym@nchu.edu.cn ; XU Fei, feixu@shu.edu.cn
    • Funds: Project supported by the National Key Research and Development Projiect of China (Grant No. 2024YFA1209500), the National Natural Science Foundation of China (Grant Nos. 62350054, 12175131, 12374379), the Shangrao Technology Project, China (Grant No. 2022A004), and the Key Research and Development Project of Jiangxi Province, China (Grant Nos. 20223BBE51026, 20232BBE50035).
    [1]

    Jiang Q, Zhu K 2024 Nat. Rev. Mater. 6 399

    [2]

    Zhang Z, Wang X, Yan Q, Yuan X, Lu Y, Cao H, He D, Jiang Z, Xu R, Chen T, Ma Z, Song H, Hong F, Xu F 2024 Sol. RRL 8 2400216Google Scholar

    [3]

    蒋泵, 陈思良, 崔晓磊, 胡紫婷, 李跃, 张笑铮, 吴康敬, 王文贞, 蒋最敏, 洪峰, 马忠权, 赵磊, 徐飞, 徐闰, 詹义强 2019 物理学报 68 246801Google Scholar

    Jiang B, Chen S, Cui X, Hu Z, Li Y, Zhang X, Wu K, Wang W, Jiang Z, Hong F, Ma Z, Zhao L, Xu F, Xu R, Zhan Y 2019 Acta Phys. Sin. 68 246801Google Scholar

    [4]

    Khan F, Rezgui B D, Khan M T, Al-Sulaiman F 2022 Renewable Sustainable Energy Rev. 165 112553Google Scholar

    [5]

    Kim J, Lee H, Lee Y, Kim J 2024 ChemSusChem 17 e202400945Google Scholar

    [6]

    Bai Y, Tian R, Sun K, Liu C, Lang X, Yang M, Meng Y, Xiao C, Wang Y, Lu X, Wang J, Pan H, Song Z, Zhou S, Ge Z 2024 Energy Environ. Sci. 17 8557Google Scholar

    [7]

    Xie G, Li H, Wang X, Fang J, Lin D, Wang D, Li S, He S, Qiu L 2023 Adv. Funct. Mater. 33 2308794Google Scholar

    [8]

    Liu Z, Lin R, Wei M, Yin M, Wu P, Li M, Li L, Wang Y, Chen G, Carnevali V, Agosta L, Slama V, Lempesis N, Wang Z, Wang M, Deng Y, Luo H, Gao H, Rothlisberger U, Zakeeruddin S M, Luo X, Liu Y, Grätzel M, Tan H 2025 Nat. Mater. 24 252Google Scholar

    [9]

    Zou F, Duan C, Lin Z, Zhang Z, Xu S, Chen C, Chen J, Li J, Zou S, Ding L, Luo H, Yan K 2024 Chem. Eng. J. 491 152118Google Scholar

    [10]

    Chu X, Ye Q, Wang Z, Zhang C, Ma F, Qu Z, Zhao Y, Yin Z, Deng H X, Zhang X, You J 2023 Nat. Energy 8 372Google Scholar

    [11]

    Patil J V, Mali S S, Hong C K 2024 Adv. Funct. Mater. 33 2408721

    [12]

    张子发, 袁翔, 鹿颖申, 何丹敏, 严全河, 曹浩宇, 洪峰, 蒋最敏, 徐闰, 马忠权, 宋宏伟, 徐飞 2024 物理学报 73 098803Google Scholar

    Zhang Z, Yuan X, Lu Y, He D, Yan Q, Cao H, Hong F, Jiang Z, Xu R, Ma Z, Song H, Xu F 2024 Acta Phys. Sin. 73 098803Google Scholar

    [13]

    Duan C, Zhang K, Peng Z, Li S, Zou F, Wang F, Li J, Zhang Z, Chen C, Zhu Q, Qiu J, Lu X, Li N, Ding L, Brabec C J, Gao F, Yan K 2025 Nature 637 1111Google Scholar

    [14]

    Lu Y, He D, Yuan X, Yan Q, Shu X, Hu Z, Zhang Z, Liu Z, Jiang Z, Xu R, Wang W, Ma Z, Chen T, Xu H, Xu F, Hong F, Song H 2025 Adv. Funct. Mater. 35 2413507Google Scholar

    [15]

    Xu H, Guo Z, Chen P, Wang S 2024 Chem. Commun. 60 12287Google Scholar

    [16]

    Sha W E I, Wang X Y, Chen W C, Fu Y H, Zhang L J, Tian L, Lin M S, Jiao S D, Xu T, Sun T G, Liu D X 2025 Chin. Phys. B 34 018801Google Scholar

    [17]

    Liu X, Li J, Liu Z, Tan X, Sun B, Xi S, Shi T, Tang Z, Liao G 2020 Electrochimica Acta 330 135266Google Scholar

    [18]

    Zou C, Zheng J, Chang C, Majumdar A, Lin L Y 2019 Adv. Opt. Mater. 7 1900558Google Scholar

    [19]

    Roy R, Byranvand M M, Zohdi M R, et al. 2025 Energy Environ. Sci. 18 1920Google Scholar

    [20]

    Wang Y, Li J, Chen Q, Liu W, Gao Z, Fu Y, Liu Q, He D, Li Y 2023 ACS Appl. Energy Mater. 6 4584Google Scholar

    [21]

    Sittinger V, Schulze P S C, Messmer C, Pflug A, Goldschmidt J C 2022 Opt. Express 30 37957Google Scholar

    [22]

    Steirer K X, Ndione P F, Widjonarko N E, Lloyd M T, Meyer J, Ratcliff E L, Kahn A, Armstrong N R, Curtis C J, Ginley D S, Berry J J, Olson D C 2011 Adv. Energy Mater. 1 813Google Scholar

    [23]

    Wang N, Zhou Y, Ju M G, Garces H F, Ding T, Pang S, Zeng X C, Padture N P, Sun X W 2016 Adv. Energy Mater. 6 1601130Google Scholar

    [24]

    Stewart A W, Bouich A, Soucase B M 2021 J. Mater. Sci. 56 20071Google Scholar

    [25]

    Wang J, Zhao P, Hu Y, Lin Z, Su J, Zhang J, Chang J, Hao Y 2021 Sol. RRL 5 2100121Google Scholar

    [26]

    Rahman M S, Miah S, Marma M S W, Ibrahim M 2020 2020 IEEE Reg. 10 Conf. Cox'sBazar, Bangladesh, February 7–9, 2019 p140

    [27]

    Chen W, Li D, Chen S, Liu S, Shen Y, Zeng G, Zhu X, Zhou E, Jiang L, Li Y, Li Y 2020 Adv. Energy Mater. 10 2000851Google Scholar

    [28]

    Yuan Y, Yan G, Hong R, Liang Z, Kirchartz T 2022 Adv. Mater. 34 2108132Google Scholar

    [29]

    Li Y, Zhang Y, Zhu P, Li J, Wu J, Zhang J, Zhou X, Jiang Z, Wang X, Xu B 2023 Adv. Funct. Mater. 33 2309010Google Scholar

    [30]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [31]

    Zhuang J, Wei Y, Luan Y, Chen N, Mao P, Cao S, Wang J 2019 Nanoscale 11 14553Google Scholar

    [32]

    Ozturk T, Akman E, Shalan A E, Akin S 2021 Nano Energy 87 106157Google Scholar

    [33]

    Han Y, Zhao H, Duan C, Yang S, Yang Z, Liu Z, Liu S (Frank) 2020 Adv. Funct. Mater. 30 1909972Google Scholar

    [34]

    Meng L, Wei Z, Zuo T, Gao P 2020 Nano Energy 75 104866Google Scholar

    [35]

    Lin R, Wang Y, Lu Q, et al. 2023 Nature 620 994Google Scholar

    [36]

    Tress W, Petrich A, Hummert M, Hein M, Leo K, Riede M 2011 Appl. Phys. Lett. 98 063301Google Scholar

    [37]

    Liu M, Wan Q, Wang H, Carulli F, Sun X, Zheng W, Kong L, Zhang Q, Zhang C, Zhang Q, Brovelli S, Li L 2021 Nat. Photonics 15 379Google Scholar

    [38]

    Jiang B, Li Y, Zhu J, Hu Z, Zhou X, Zhang Y, Gao M, Wang W, Jiang Z, Ma Z, Zhao L, Chen T, Xu Z, Xu H, Xu F, Xu R, Hong F 2020 Appl. Phys. Lett. 116 072104Google Scholar

    [39]

    Yang Z, Wang M, Qiu H, Yao X, Lao X, Xu S, Lin Z, Sun L, Shao J 2018 Adv. Funct. Mater. 28 1705908Google Scholar

    [40]

    Dai J, Zheng H, Zhu C, Lu J, Xu C 2016 J. Mater. Chem. C 4 4408Google Scholar

    [41]

    Zeng Q, Zhang X, Liu C, Feng T, Chen Z, Zhang W, Zheng W, Zhang H, Yang B 2019 Sol. RRL 3 1800239Google Scholar

    [42]

    Blancon J C, Tsai H, Nie W, et al. 2017 Science 355 1288Google Scholar

    [43]

    Li C, Cao Q, Wang F, Xiao Y, Li Y, Delaunay J J, Zhu H 2018 Chem. Soc. Rev. 47 4981Google Scholar

    [44]

    Gregg B A, Hanna M C 2003 J. Appl. Phys. 93 3605Google Scholar

    [45]

    Jin B, Zuo N, Hu Z Y, Cui W, Wang R, Van Tendeloo G, Zhou X, Zhai T 2020 Adv. Funct. Mater. 30 2006166Google Scholar

    [46]

    Wright A D, Verdi C, Milot R L, Eperon G E, Pérez-Osorio M A, Snaith H J, Giustino F, Johnston M B, Herz L M 2016 Nat. Commun. 7 11755Google Scholar

    [47]

    Bischak C G, Hetherington C L, Wu H, Aloni S, Ogletree D F, Limmer D T, Ginsberg N S 2017 Nano Lett. 17 1028Google Scholar

    [48]

    Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar

    [49]

    Ji R, Zhang Z, Hofstetter Y J, Buschbeck R, Hänisch C, Paulus F, Vaynzof Y 2022 Nat. Energy 7 1170Google Scholar

    [50]

    Mali S S, Patil J V, Shao J Y, Zhong Y W, Rondiya S R, Dzade N Y, Hong C K 2023 Nat. Energy 8 989Google Scholar

    [51]

    Xiao H, Zuo C, Yan K, Jin Z, Cheng Y, Tian H, Xiao Z, Liu F, Ding Y, Ding L 2023 Adv. Energy Mater. 13 2300738Google Scholar

    [52]

    Shan S, Xu C, Wu H, Niu B, Fu W, Zuo L, Chen H 2023 Adv. Energy Mater. 13 2203682Google Scholar

    [53]

    Liu X, Lian H, Zhou Z, Zou C, Xie J, Zhang F, Yuan H, Yang S, Hou Y, Yang H G 2022 Adv. Energy Mater. 12 2103933Google Scholar

    [54]

    Guo Z, Jena A K, Takei I, Ikegami M, Ishii A, Numata Y, Shibayama N, Miyasaka T 2021 Adv. Funct. Mater. 31 2103614Google Scholar

    [55]

    Mali S S, Patil J V, Shinde P S, de Miguel G, Hong C K 2021 Matter 4 635Google Scholar

    [56]

    Ahmad K, Ahmad Khan R, Shakhawat Hossain M, Sonic M M R 2024 ChemistrySelect 9 e202401827Google Scholar

    [57]

    Duan Q, Ji J, Hong X, Fu Y, Wang C, Zhou K, Liu X, Yang H, Wang Z Y 2020 Sol. Energy 201 555Google Scholar

    [58]

    Karthick S, Velumani S, Bouclé J 2020 Sol. Energy 205 349Google Scholar

    [59]

    Lin R, Xu J, Wei M, Wang Y, Qin Z, Liu Z, Wu J, Xiao K, Chen B, Park S M, Chen G, Atapattu H R, Graham K R, Xu J, Zhu J, Li L, Zhang C, Sargent E H, Tan H 2022 Nature 603 73Google Scholar

    [60]

    Chen J, Du J, Cai J, Ouyang B, Li Z, Wu X, Tian C, Sun A, Zhuang R, Wu X, Chen C, Cen T, Li R, Xue T, Zhao Y, Zhao K, Chen Q, Chen C C 2025 ACS Energy Lett. 10 1117Google Scholar

    [61]

    Pan Y, Wang J, Sun Z, et al. 2024 Nat. Commun. 15 7335Google Scholar

    [62]

    Li M, Yan J, Zhang A, Zhao X, Yang X, Yan S, Ma N, Ma T, Luo D, Chen Z, Li L, Li X, Chen C, Song H, Tang J 2025 Joule 9 101825Google Scholar

    [63]

    Hu H, Pan T, Singh R, Nejand B A, Paetzold U W 2025 ACS Appl. Mater. Interfaces 17 7804Google Scholar

    [64]

    Wang W, Yu G, Attique S 2023 Sol. RRL 7 2201064Google Scholar

    [65]

    Xie Z, Zhang S, Chen S, Pei Y, Li L, Yang J, Fu G, Wu P 2025 Chem. Eng. J. 506 159788Google Scholar

    [66]

    Xie Z, Chen S, Pei Y, Li L, Zhang S, Wu P 2024 Chem. Eng. J. 482 148638Google Scholar

    [67]

    Moradbeigi M, Razaghi M 2024 Renewable Energy 220 119723Google Scholar

    [68]

    Rajagopal A, Yang Z, Jo S B, Braly I L, Liang P W, Hillhouse H W, Jen A K Y 2017 Adv. Mater. 29 1702140Google Scholar

    [69]

    Lim E L, Yang J, Wei Z 2023 Energy Environ. Sci. 16 862Google Scholar

  • 图 1  双吸收层钙钛矿异质结(p-pCsPbI2Br-CsPbIBr2)太阳电池 (a) 电池结构图; (b) J-V曲线; (c) 光伏参数; (d) Control电池能带图; (e) DPHJ电池能带图. Control和DPHJ电池 (f) 内部电势和电场强度图; (g) 电子电流密度和空穴电流密度分布曲线; (h) 载流子浓度分布曲线; (i) 钙钛矿与传输层界面处的复合速率

    Figure 1.  Dual-absorption-layer perovskite heterojunction (p-pCsPbI2Br-CsPbIBr2) solar cells: (a) Device architecture diagram; (b) J-V curves; (c) photovoltaic parameters; (d) energy band diagram of Control device; (e) energy band diagram of DPHJ device. Control and DPHJ cells: (f) Internal potential and electric field–strength diagrams; (g) distribution curves of electron and hole current densities; (h) carrier concentration distribution curve; (i) recombination rate at the perovskite and transport layer interface.

    图 4  (a) 本工作与已经报道的CsPbI2Br钙钛矿单结太阳电池开路电压与效率对比图; (b) 本工作与全钙钛矿叠层太阳电池顶电池开路电压与效率对比图 (实心点表示实验结果, 空心点为模拟结果)

    Figure 4.  Performance benchmarking of this work: (a) Comparison of VOC and PCE between this work and previously reported perovskite single-junction solar cells; (b) comparison of VOC of the top subcell and PCE in this work with those of all-perovskite tandem solar cells reported in the literature. (Solid symbols: experimental records; open symbols: simulated values).

    图 2  (a) 叠层太阳电池电池结构图; (b) AM1.5G标准太阳光谱辐照度; (c) 经过顶电池过滤后的太阳光谱辐照度; (d) 底电池的短路电流随厚度变化曲线; Control电池和DPHJ电池作为顶电池的叠层太阳电池及其子电池的J-V曲线(e)和EQE曲线(f)

    Figure 2.  (a) Device architecture of tandem solar cells; (b) AM1.5G standard solar spectral irradiance; (c) filtered spectral irradiance through the top cell; (d) thickness-dependent short-circuit current density of the bottom cell; (e) J-V curves and (f) EQE spectra of tandem solar cells with control top cell and DPHJ top cell.

    图 3  CsPbI2Br薄膜、CsPbIBr2薄膜和DPHJ薄膜的 (a)—(c) 变温PL谱, (d)—(f) 归一化投影图, (g)—(i) 积分强度和半高宽的温度变化曲线(虚线为采用(10)式的单指数函数拟合的曲线); 持续光照下薄膜的PL谱随时间的变化 (j) CsPbI2Br, (k) CsPbIBr2, (l) DPHJ; (m) 峰位和半高宽随时间变化曲线(实心表示峰位; 空心表示半高宽); (n) DPHJ薄膜的顶视图和底视图以及其PL及紫外-可见吸收光谱; (o) CsPbI2Br薄膜和CsPbIBr2薄膜随时间老化图像

    Figure 3.  (a)–(c) PL spectra of CsPbI2Br films, CsPbIBr2 films and DPHJ films; (d)–(f) normalized projection diagram; (g)–(i) temperature dependence of the integrated PL intensity and full width at half-maximum (FWHM); Dashed lines are single-exponential fits according to Eq. (10). Evolution of the PL spectra under continuous illumination for (j) CsPbI2Br, (k) CsPbIBr2 and (l) DPHJ films; (m) temporal evolution of the PL peak position (filled symbols) and FWHM (open symbols); (n) top-view and bottom-view photographs of the DPHJ film together with its PL and UV–vis absorption spectra; (o) photographic images showing the aging of CsPbI2Br and CsPbIBr2 films over time.

    表 1  全无机钙钛矿光吸收层和传输层的光伏模拟参数[10,24-28]

    Table 1.  Photovoltaic simulation parameters of all-inorganic perovskite light-absorbing layer coupled with transport layers (ETL/HTL) [10,24-28].

    参数CsPbI2BrCsPbIBr2CsSnI3NiOXPCBMSnO2Spiro-OMeTAD
    厚度/nm30010080030305050
    受主浓度/cm–31×10151×10155×10161×1015001×1019
    施主浓度/cm–300005×10171×10190
    带隙/eV1.922.111.273.5023.492.6
    导带有效态密度/cm–35.1×10171×10191.58×10192.8×10191×10194.36×10182.5×1020
    价带有效态密度/cm–31.8×10181×10191.47×10181.8×10191×10192.52×10192.5×1020
    电子亲合能/eV4.163.564.471.804.304.312.60
    相对介电常数7.432010.5910.70493
    电子迁移率/(cm2⋅V–1⋅s–1)1.02×1052.3×1034.37121×10–42402×10–4
    空穴迁移率/(cm2⋅V–1⋅s–1)1.93×1043.2×1024.37251×10–2252×10–4
    DownLoad: CSV

    表 2  变温PL的拟合参数

    Table 2.  Temperature-dependent photoluminescence fitting parameters.

    SampleE1/meVE2/meVγacγLOELO/meV
    CsPbI2Br7.85101.91.2×10–26.9×103156.6
    CsPbIBr29.2585.81.8×10–35.8×103167.7
    DPHJ8.98110.71.1×10–26.3×103162.5
    DownLoad: CSV
  • [1]

    Jiang Q, Zhu K 2024 Nat. Rev. Mater. 6 399

    [2]

    Zhang Z, Wang X, Yan Q, Yuan X, Lu Y, Cao H, He D, Jiang Z, Xu R, Chen T, Ma Z, Song H, Hong F, Xu F 2024 Sol. RRL 8 2400216Google Scholar

    [3]

    蒋泵, 陈思良, 崔晓磊, 胡紫婷, 李跃, 张笑铮, 吴康敬, 王文贞, 蒋最敏, 洪峰, 马忠权, 赵磊, 徐飞, 徐闰, 詹义强 2019 物理学报 68 246801Google Scholar

    Jiang B, Chen S, Cui X, Hu Z, Li Y, Zhang X, Wu K, Wang W, Jiang Z, Hong F, Ma Z, Zhao L, Xu F, Xu R, Zhan Y 2019 Acta Phys. Sin. 68 246801Google Scholar

    [4]

    Khan F, Rezgui B D, Khan M T, Al-Sulaiman F 2022 Renewable Sustainable Energy Rev. 165 112553Google Scholar

    [5]

    Kim J, Lee H, Lee Y, Kim J 2024 ChemSusChem 17 e202400945Google Scholar

    [6]

    Bai Y, Tian R, Sun K, Liu C, Lang X, Yang M, Meng Y, Xiao C, Wang Y, Lu X, Wang J, Pan H, Song Z, Zhou S, Ge Z 2024 Energy Environ. Sci. 17 8557Google Scholar

    [7]

    Xie G, Li H, Wang X, Fang J, Lin D, Wang D, Li S, He S, Qiu L 2023 Adv. Funct. Mater. 33 2308794Google Scholar

    [8]

    Liu Z, Lin R, Wei M, Yin M, Wu P, Li M, Li L, Wang Y, Chen G, Carnevali V, Agosta L, Slama V, Lempesis N, Wang Z, Wang M, Deng Y, Luo H, Gao H, Rothlisberger U, Zakeeruddin S M, Luo X, Liu Y, Grätzel M, Tan H 2025 Nat. Mater. 24 252Google Scholar

    [9]

    Zou F, Duan C, Lin Z, Zhang Z, Xu S, Chen C, Chen J, Li J, Zou S, Ding L, Luo H, Yan K 2024 Chem. Eng. J. 491 152118Google Scholar

    [10]

    Chu X, Ye Q, Wang Z, Zhang C, Ma F, Qu Z, Zhao Y, Yin Z, Deng H X, Zhang X, You J 2023 Nat. Energy 8 372Google Scholar

    [11]

    Patil J V, Mali S S, Hong C K 2024 Adv. Funct. Mater. 33 2408721

    [12]

    张子发, 袁翔, 鹿颖申, 何丹敏, 严全河, 曹浩宇, 洪峰, 蒋最敏, 徐闰, 马忠权, 宋宏伟, 徐飞 2024 物理学报 73 098803Google Scholar

    Zhang Z, Yuan X, Lu Y, He D, Yan Q, Cao H, Hong F, Jiang Z, Xu R, Ma Z, Song H, Xu F 2024 Acta Phys. Sin. 73 098803Google Scholar

    [13]

    Duan C, Zhang K, Peng Z, Li S, Zou F, Wang F, Li J, Zhang Z, Chen C, Zhu Q, Qiu J, Lu X, Li N, Ding L, Brabec C J, Gao F, Yan K 2025 Nature 637 1111Google Scholar

    [14]

    Lu Y, He D, Yuan X, Yan Q, Shu X, Hu Z, Zhang Z, Liu Z, Jiang Z, Xu R, Wang W, Ma Z, Chen T, Xu H, Xu F, Hong F, Song H 2025 Adv. Funct. Mater. 35 2413507Google Scholar

    [15]

    Xu H, Guo Z, Chen P, Wang S 2024 Chem. Commun. 60 12287Google Scholar

    [16]

    Sha W E I, Wang X Y, Chen W C, Fu Y H, Zhang L J, Tian L, Lin M S, Jiao S D, Xu T, Sun T G, Liu D X 2025 Chin. Phys. B 34 018801Google Scholar

    [17]

    Liu X, Li J, Liu Z, Tan X, Sun B, Xi S, Shi T, Tang Z, Liao G 2020 Electrochimica Acta 330 135266Google Scholar

    [18]

    Zou C, Zheng J, Chang C, Majumdar A, Lin L Y 2019 Adv. Opt. Mater. 7 1900558Google Scholar

    [19]

    Roy R, Byranvand M M, Zohdi M R, et al. 2025 Energy Environ. Sci. 18 1920Google Scholar

    [20]

    Wang Y, Li J, Chen Q, Liu W, Gao Z, Fu Y, Liu Q, He D, Li Y 2023 ACS Appl. Energy Mater. 6 4584Google Scholar

    [21]

    Sittinger V, Schulze P S C, Messmer C, Pflug A, Goldschmidt J C 2022 Opt. Express 30 37957Google Scholar

    [22]

    Steirer K X, Ndione P F, Widjonarko N E, Lloyd M T, Meyer J, Ratcliff E L, Kahn A, Armstrong N R, Curtis C J, Ginley D S, Berry J J, Olson D C 2011 Adv. Energy Mater. 1 813Google Scholar

    [23]

    Wang N, Zhou Y, Ju M G, Garces H F, Ding T, Pang S, Zeng X C, Padture N P, Sun X W 2016 Adv. Energy Mater. 6 1601130Google Scholar

    [24]

    Stewart A W, Bouich A, Soucase B M 2021 J. Mater. Sci. 56 20071Google Scholar

    [25]

    Wang J, Zhao P, Hu Y, Lin Z, Su J, Zhang J, Chang J, Hao Y 2021 Sol. RRL 5 2100121Google Scholar

    [26]

    Rahman M S, Miah S, Marma M S W, Ibrahim M 2020 2020 IEEE Reg. 10 Conf. Cox'sBazar, Bangladesh, February 7–9, 2019 p140

    [27]

    Chen W, Li D, Chen S, Liu S, Shen Y, Zeng G, Zhu X, Zhou E, Jiang L, Li Y, Li Y 2020 Adv. Energy Mater. 10 2000851Google Scholar

    [28]

    Yuan Y, Yan G, Hong R, Liang Z, Kirchartz T 2022 Adv. Mater. 34 2108132Google Scholar

    [29]

    Li Y, Zhang Y, Zhu P, Li J, Wu J, Zhang J, Zhou X, Jiang Z, Wang X, Xu B 2023 Adv. Funct. Mater. 33 2309010Google Scholar

    [30]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [31]

    Zhuang J, Wei Y, Luan Y, Chen N, Mao P, Cao S, Wang J 2019 Nanoscale 11 14553Google Scholar

    [32]

    Ozturk T, Akman E, Shalan A E, Akin S 2021 Nano Energy 87 106157Google Scholar

    [33]

    Han Y, Zhao H, Duan C, Yang S, Yang Z, Liu Z, Liu S (Frank) 2020 Adv. Funct. Mater. 30 1909972Google Scholar

    [34]

    Meng L, Wei Z, Zuo T, Gao P 2020 Nano Energy 75 104866Google Scholar

    [35]

    Lin R, Wang Y, Lu Q, et al. 2023 Nature 620 994Google Scholar

    [36]

    Tress W, Petrich A, Hummert M, Hein M, Leo K, Riede M 2011 Appl. Phys. Lett. 98 063301Google Scholar

    [37]

    Liu M, Wan Q, Wang H, Carulli F, Sun X, Zheng W, Kong L, Zhang Q, Zhang C, Zhang Q, Brovelli S, Li L 2021 Nat. Photonics 15 379Google Scholar

    [38]

    Jiang B, Li Y, Zhu J, Hu Z, Zhou X, Zhang Y, Gao M, Wang W, Jiang Z, Ma Z, Zhao L, Chen T, Xu Z, Xu H, Xu F, Xu R, Hong F 2020 Appl. Phys. Lett. 116 072104Google Scholar

    [39]

    Yang Z, Wang M, Qiu H, Yao X, Lao X, Xu S, Lin Z, Sun L, Shao J 2018 Adv. Funct. Mater. 28 1705908Google Scholar

    [40]

    Dai J, Zheng H, Zhu C, Lu J, Xu C 2016 J. Mater. Chem. C 4 4408Google Scholar

    [41]

    Zeng Q, Zhang X, Liu C, Feng T, Chen Z, Zhang W, Zheng W, Zhang H, Yang B 2019 Sol. RRL 3 1800239Google Scholar

    [42]

    Blancon J C, Tsai H, Nie W, et al. 2017 Science 355 1288Google Scholar

    [43]

    Li C, Cao Q, Wang F, Xiao Y, Li Y, Delaunay J J, Zhu H 2018 Chem. Soc. Rev. 47 4981Google Scholar

    [44]

    Gregg B A, Hanna M C 2003 J. Appl. Phys. 93 3605Google Scholar

    [45]

    Jin B, Zuo N, Hu Z Y, Cui W, Wang R, Van Tendeloo G, Zhou X, Zhai T 2020 Adv. Funct. Mater. 30 2006166Google Scholar

    [46]

    Wright A D, Verdi C, Milot R L, Eperon G E, Pérez-Osorio M A, Snaith H J, Giustino F, Johnston M B, Herz L M 2016 Nat. Commun. 7 11755Google Scholar

    [47]

    Bischak C G, Hetherington C L, Wu H, Aloni S, Ogletree D F, Limmer D T, Ginsberg N S 2017 Nano Lett. 17 1028Google Scholar

    [48]

    Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar

    [49]

    Ji R, Zhang Z, Hofstetter Y J, Buschbeck R, Hänisch C, Paulus F, Vaynzof Y 2022 Nat. Energy 7 1170Google Scholar

    [50]

    Mali S S, Patil J V, Shao J Y, Zhong Y W, Rondiya S R, Dzade N Y, Hong C K 2023 Nat. Energy 8 989Google Scholar

    [51]

    Xiao H, Zuo C, Yan K, Jin Z, Cheng Y, Tian H, Xiao Z, Liu F, Ding Y, Ding L 2023 Adv. Energy Mater. 13 2300738Google Scholar

    [52]

    Shan S, Xu C, Wu H, Niu B, Fu W, Zuo L, Chen H 2023 Adv. Energy Mater. 13 2203682Google Scholar

    [53]

    Liu X, Lian H, Zhou Z, Zou C, Xie J, Zhang F, Yuan H, Yang S, Hou Y, Yang H G 2022 Adv. Energy Mater. 12 2103933Google Scholar

    [54]

    Guo Z, Jena A K, Takei I, Ikegami M, Ishii A, Numata Y, Shibayama N, Miyasaka T 2021 Adv. Funct. Mater. 31 2103614Google Scholar

    [55]

    Mali S S, Patil J V, Shinde P S, de Miguel G, Hong C K 2021 Matter 4 635Google Scholar

    [56]

    Ahmad K, Ahmad Khan R, Shakhawat Hossain M, Sonic M M R 2024 ChemistrySelect 9 e202401827Google Scholar

    [57]

    Duan Q, Ji J, Hong X, Fu Y, Wang C, Zhou K, Liu X, Yang H, Wang Z Y 2020 Sol. Energy 201 555Google Scholar

    [58]

    Karthick S, Velumani S, Bouclé J 2020 Sol. Energy 205 349Google Scholar

    [59]

    Lin R, Xu J, Wei M, Wang Y, Qin Z, Liu Z, Wu J, Xiao K, Chen B, Park S M, Chen G, Atapattu H R, Graham K R, Xu J, Zhu J, Li L, Zhang C, Sargent E H, Tan H 2022 Nature 603 73Google Scholar

    [60]

    Chen J, Du J, Cai J, Ouyang B, Li Z, Wu X, Tian C, Sun A, Zhuang R, Wu X, Chen C, Cen T, Li R, Xue T, Zhao Y, Zhao K, Chen Q, Chen C C 2025 ACS Energy Lett. 10 1117Google Scholar

    [61]

    Pan Y, Wang J, Sun Z, et al. 2024 Nat. Commun. 15 7335Google Scholar

    [62]

    Li M, Yan J, Zhang A, Zhao X, Yang X, Yan S, Ma N, Ma T, Luo D, Chen Z, Li L, Li X, Chen C, Song H, Tang J 2025 Joule 9 101825Google Scholar

    [63]

    Hu H, Pan T, Singh R, Nejand B A, Paetzold U W 2025 ACS Appl. Mater. Interfaces 17 7804Google Scholar

    [64]

    Wang W, Yu G, Attique S 2023 Sol. RRL 7 2201064Google Scholar

    [65]

    Xie Z, Zhang S, Chen S, Pei Y, Li L, Yang J, Fu G, Wu P 2025 Chem. Eng. J. 506 159788Google Scholar

    [66]

    Xie Z, Chen S, Pei Y, Li L, Zhang S, Wu P 2024 Chem. Eng. J. 482 148638Google Scholar

    [67]

    Moradbeigi M, Razaghi M 2024 Renewable Energy 220 119723Google Scholar

    [68]

    Rajagopal A, Yang Z, Jo S B, Braly I L, Liang P W, Hillhouse H W, Jen A K Y 2017 Adv. Mater. 29 1702140Google Scholar

    [69]

    Lim E L, Yang J, Wei Z 2023 Energy Environ. Sci. 16 862Google Scholar

  • [1] YUAN Heze, CHEN Xinliang, LIANG Bingquan, SUN Aixin, WANG Xuejiao, ZHAO Ying, ZHANG Xiaodan. Research progress of passivation layer technology for crystalline silicon solar cells. Acta Physica Sinica, 2025, 74(4): 047801. doi: 10.7498/aps.74.20241292
    [2] Juan Ting, Xing Jia-He, Zeng Fan-Cong, Zheng Xin, Xu Lin. Performance of perovskite solar cells based on SnO2:DPEPO hybrid electron transport layer. Acta Physica Sinica, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [3] Zhang Sheng-Yuan, Xia Kang-Long, Zhang Mao-Lin, Bian Ang, Liu Zeng, Guo Yu-Feng, Tang Wei-Hua. Self-powered dual-mode UV detector based on GaN/(BA)2PbI4 heterojunction. Acta Physica Sinica, 2024, 73(6): 067301. doi: 10.7498/aps.73.20231698
    [4] Li Jia-Sen, Liang Chun-Jun, Ji Chao, Gong Hong-Kang, Song Qi, Zhang Hui-Min, Liu Ning. Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene. Acta Physica Sinica, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [5] Li Xue, Cao Bao-Long, Wang Ming-Hao, Feng Zeng-Qin, Chen Shu-Fen. Perovskite light-emitting diode based on combination of modified hole-injection layer and polymer composite emission layer. Acta Physica Sinica, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [6] Xi Yu-Ying, Han Yue, Li Guo-Hui, Zhai Ai-Ping, Ji Ting, Hao Yu-Ying, Cui Yan-Xia. Application of heterostructures in halide perovskite photovoltaic devices. Acta Physica Sinica, 2020, 69(16): 167804. doi: 10.7498/aps.69.20200591
    [7] Cui Xing-Hua, Xu Qiao-Jing, Shi Biao, Hou Fu-Hua, Zhao Ying, Zhang Xiao-Dan. Research progress of wide bandgap perovskite materials and solar cells. Acta Physica Sinica, 2020, 69(20): 207401. doi: 10.7498/aps.69.20200822
    [8] Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [9] Song Rui, Feng Kai, Lin Shang-Jin, He Man-Li, Tong Liang. First principles study of structural, electric, and magnetic properties of fluoride perovskite NaFeF3. Acta Physica Sinica, 2019, 68(14): 147101. doi: 10.7498/aps.68.20190573
    [10] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [11] Huang Wei, Li Yue-Long, Ren Hui-Zhi, Wang Peng-Yang, Wei Chang-Chun, Hou Guo-Fu, Zhang De-Kun, Xu Sheng-Zhi, Wang Guang-Cai, Zhao Ying, Yuan Ming-Jian, Zhang Xiao-Dan. Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer. Acta Physica Sinica, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [12] Xia Jun-Min, Liang Chao, Xing Gui-Chuan. Inkjet printed perovskite solar cells: progress and prospects. Acta Physica Sinica, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [13] Chen Xin-Liang, Chen Li, Zhou Zhong-Xin, Zhao Ying, Zhang Xiao-Dan. Progress of Cu2O/ZnO oxide heterojunction solar cells. Acta Physica Sinica, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [14] Xia Xiang, Liu Xi-Zhe. Effects of CH3NH3I on fabricating CH3NH3PbI(3-x)Clx perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [15] Yang Xu-Dong, Chen Han, Bi En-Bing, Han Li-Yuan. Key issues in highly efficient perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [16] Wu Di, Zhao Ji-Jun, Tian Hua. Effect of substitution Fe2+ on physical properties of MgSiO3 perovskite at high temperature and high pressure. Acta Physica Sinica, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [17] Xue Yuan, Gao Chao-Jun, Gu Jin-Hua, Feng Ya-Yang, Yang Shi-E, Lu Jing-Xiao, Huang Qiang, Feng Zhi-Qiang. Study on the properties and optical emission spectroscopy of the intrinsic silicon thin film in silicon heterojunction solar cells. Acta Physica Sinica, 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [18] Li Yan-Wu, Liu Peng-Yi, Hou Lin-Tao, Wu Bing. Heterojunction organic solar cells with Rubrene as electron transporting layer. Acta Physica Sinica, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [19] Chen Ming-Bo, Cui Rong-Qiang, Wang Liang-Xing, Zhang Zhong-Wei, Lu Jian-Feng, Chi Wei-Ying. p-n GaInP2/GaAs tandem solar cells*. Acta Physica Sinica, 2004, 53(11): 3632-3636. doi: 10.7498/aps.53.3632
    [20] LI SHU-PING, WANG REN-ZHI, ZHENG YONG-MEI, CAI SHU-HUI, HE GUO-MIN. APPLLICATIONS OF AVERAGE-BOND-ENERGY METHOD IN STRAINED-LAYER HETEROJUNCTION BAND OFFSET. Acta Physica Sinica, 2000, 49(8): 1441-1446. doi: 10.7498/aps.49.1441
Metrics
  • Abstract views:  431
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Received Date:  22 March 2025
  • Accepted Date:  22 April 2025
  • Available Online:  16 May 2025
  • Published Online:  20 July 2025
  • /

    返回文章
    返回