Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-scalar comparison methods for urban mobility models

ZHANG Yang SHI Wu TAN Suoyi MOU Jianhong ZHOU Yilong YU Hongjie LU Xin

Citation:

Multi-scalar comparison methods for urban mobility models

ZHANG Yang, SHI Wu, TAN Suoyi, MOU Jianhong, ZHOU Yilong, YU Hongjie, LU Xin
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • With accelerating urbanization, accurately predicting intra-urban population mobility has become a fundamental requirement for urban planning and policy formulation. However, the adaptability and performance of existing mobility models across spatial scales remain unclear, and there is a lack of systematic evaluation frameworks that integrate spatial granularity, travel distance, and population heterogeneity. This study addresses these gaps by proposing a cross-scale comparative framework to evaluate three representative mobility models—the Gravity Model (GM), Radiation Model (RM), and Population-Weighted Opportunities Model (PWO)—under varying urban conditions.We construct three groups of controlled experiments using high-resolution mobile phone data from Shanghai to assess model performance across spatial (grid size), distance, and population density scales. Furthermore, we apply multivariate analysis of variance (MANOVA) to decompose the relative contributions of different spatial factors to prediction errors.The results demonstrate distinct scale sensitivities among the models. The GM model, grounded in Newtonian gravitational principles, shows high robustness over longer distances (>5 km), yet suffers from performance degradation under fine spatial granularity due to spatial heterogeneity. Its accuracy improves with population scale but decreases significantly when regional area disparities exceed a threshold—prediction performance drops by over 40% when grid size differences surpass 3 km. The RM model, based on the nearest-best-opportunity assumption, performs well for short-distance, origin-driven flows, such as commuting, but introduces systematic bias in small-scale contexts. Its sensitivity to origin population density makes it more suitable for high-density urban cores. The PWO model enhances RM by incorporating destination population weights, exhibiting superior compatibility with spatial heterogeneity in dense, polycentric cities. It performs best at short distances (<5 km) but loses effectiveness as travel distance increases.MANOVA results confirm that GM is primarily influenced by population density and area scale, whereas RM and PWO are more sensitive to distance and destination-related factors. Based on these findings, we propose a model selection strategy tailored to mobility drivers: GM is recommended for long-distance prediction in spatially homogeneous regions, while PWO is preferred for short-range flows between small, densely populated areas. RM serves as a complementary model when origin-driven flows dominate.This study not only clarifies the physical mechanisms underlying scale-dependent model performance but also offers an actionable decision-making framework for selecting appropriate models in different urban mobility scenarios. Future research can further improve predictive accuracy by developing hybrid models that combine strengths of multiple frameworks, integrating multi-source spatial data such as POIs and land use, and coupling traditional models with deep learning approaches to enhance non-linear pattern recognition while preserving interpretability. By uncovering the scale-sensitivity of mobility models, this work lays a theoretical and methodological foundation for multi-scenario mobility forecasting in smart city planning and fine-grained urban governance.
  • 图 1  上海市人口及流量空间分布. 上图呈现了上海市人口流动的空间分布特征(基于抽样数据), 其中流量大小通过线条粗细和颜色深浅表示(流量越大, 线条越粗且颜色越偏蓝色); 下图展示了上海市各网格单元的人口规模分布情况, 其中网格内人口数量与柱状图高度呈正相关, 并通过颜色梯度表示(人口越多, 柱状图越高且颜色越偏蓝色; 人口越少, 柱状图越低且颜色越偏红色)

    Figure 1.  Spatial distribution of population and flow in Shanghai. The upper panel depicts the spatial pattern of population flow (based on sampled data), where the magnitude of flow is represented by both the thickness of the lines and the intensity of the color (greater flow is denoted by thicker lines with bluer tones). The lower panel illustrates the population distribution across grid cells in Shanghai, where the population size within each grid is represented by both the height of the bar and a color gradient (higher population corresponds to taller bars with bluer hues, while lower population is indicated by shorter bars with redder hues).

    图 2  不同网格尺度下模型效果 (a) 出发地和目的地网格尺度相等时模型预测效果; (b) 出发地网格尺度对模型效果的影响; (c)目的地网格尺度对模型效果的影响; (d)—(f) GM模型、RM模型、PWO模型关于不同网格尺度下的效果热力图

    Figure 2.  the model performance at different grid scales: (a) the prediction performance of the model when the grid scales of the origin and destination are equal; (b) the impact of the grid scale of the origin on the model performance; (c) the impact of the grid scale of the destination on the model performance; (d)–(f) heatmaps of the performance of the Gravity Model, Radiation Model, and PWO Model at different grid scales.

    图 3  不同距离尺度下模型效果 (a) 三种模型在不同距离尺度下的CPC值; (b)—(d) 出发地空间尺度和距离尺度的交互效应, 出发地网格边长$ L_o $越大, 颜色越深; (e)—(f) 目的地空间尺度和距离尺度的交互效应, 目的地网格边长$ L_d $越大, 颜色越深

    Figure 3.  Model performance at different distance scales. (a) CPC values of the three models at different distance scales; (b)–(d) Interaction effects between origin spatial scale and distance scale; (e)–(f) Interaction effects between destination spatial scale and distance scale.

    图 4  不同人口密度尺度下模型效果 (a) 出发地人口密度对模型效果的影响; (b) 目的地人口密度对模型效果的影响; (c)—(e) GM模型、RM模型、PWO模型关于不同人口密度尺度下的效果热力图

    Figure 4.  Model performance at different population density scales: (a) the impact of origin population density on model performance; (b) the impact of destination population on model performance; (c)–(e) heatmaps showing the performance of the Gravity Model, Radiation Model, and PWO Model across different population scales.

    图 5  不同因素对模型性能的影响雷达图

    Figure 5.  Radar chart of the impact of different factors on model performance. The longer the edge of a factor, the greater its influence on the model.

    图 6  跨尺度场景下的模型选择

    Figure 6.  Model Selection in Cross-Scale Scenario.

    表 1  不同模型多因素方差分析(ANOVA)结果

    Table 1.  Results of Multi-Factor ANOVA for Different Models.

    因素 GM RM PWO
    F $ P_R > $F F $ P_R > $F F $ P_R > $F
    出发地面积 9010 0.00 604629 0.00 180 0.00
    目的地面积 10912 0.00 58721 0.00 38511 0.00
    出发地面积: 目的地面积 9073 0.00 5132 0.00 1117 0.00
    出发地人口密度 65161 0.00 179437 0.00 20934 0.00
    目的地人口密度 61262 0.00 1587 0.00 127280 0.00
    两地距离 688 0.00 321208 0.00 262932 0.00
    DownLoad: CSV
  • [1]

    Batty M 2008 Science 319 769Google Scholar

    [2]

    Andrienko G, Andrienko N, Boldrini C, Caldarelli G, Cintia P, Cresci S, Facchini A, Giannotti F, Gionis A, Guidotti R, Mathioudakis M, Muntean C I, Pappalardo L, Pedreschi D, Pournaras E, Pratesi F, Tesconi M, Trasarti R 2021 Int. J. Data. Sci. Anal. 11 311Google Scholar

    [3]

    Barbosa H, Barthelemy M, Ghoshal G, James C R, Lenormand M, Louail T, Menezes R, Ramasco J J, Simini F, Tomasini M 2018 Phys. Rep. 734 1Google Scholar

    [4]

    Xu Y, Belyi A, Bojic I, Ratti C 2018 Comput. Environ. Urban Syst. 72 51Google Scholar

    [5]

    Guo Y T, Peeta S 2020 Travel Behav. Soc. 19 99Google Scholar

    [6]

    Helbing D 2001 Rev. Mod. Phys. 73 1067Google Scholar

    [7]

    Toole J L, Colak S, Sturt B, Alexander L P, Evsukoff A, González M C 2015 Transp. Res. Part C Emerging Technol. 58 162Google Scholar

    [8]

    Voukelatou V, Gabrielli L, Miliou I, Cresci S, Sharma R, Tesconi M, Pappalardo L 2021 Int. J. Data. Sci. Anal. 11 279Google Scholar

    [9]

    Louf R, Barthelemy M 2014 Sci. Rep. 4 5561Google Scholar

    [10]

    Hufnagel L, Brockmann D, Geisel T 2004 Proc. Natl. Acad. Sci. 101 15124Google Scholar

    [11]

    Xiong C F, Hu S H, Yang M F, Luo W Y, Zhang L 2020 Proc. Natl. Acad. Sci. 117 27087Google Scholar

    [12]

    NaDai M D, Xu Y Y, Letouzé E, González M C, Lepri B 2020 Sci. Rep. 10 13871Google Scholar

    [13]

    Simini F, Barlacchi G, Luca M, Pappalardo L 2021 Nat. Commun. 12 6576Google Scholar

    [14]

    Yao X, Gao Y, Zhu D, Manley E, Wang J, Liu Y 2021 IEEE Trans. Intell. Transp. Syst. 22 7474Google Scholar

    [15]

    Liu Z C, Miranda F, Xiong W T, Yang J Y, Wang Q, Silva C 2020 AAAI 34 808Google Scholar

    [16]

    Dai G N, Hu X Y, Ge Y M, Ning Z Q, Liu Y B 2021 Front. Comput. Sci. 15 152317Google Scholar

    [17]

    Tian C J, Zhu X N, Hu Z, Ma J 2020 Appl. Intell. 50 3057Google Scholar

    [18]

    Luca M, Barlacchi G, Lepri B, Pappalardo L 2023 ACM Comput. Surv. 55 1

    [19]

    Zipf G K 1946 Am. Sociol. Rev. 11 677Google Scholar

    [20]

    Goh S, Lee K, Park J S, Choi M Y 2012 Phys. Rev. E 86 26102Google Scholar

    [21]

    Krings G, Calabrese F, Ratti C, Blondel V D 2009 J. Stat. Mech: Theory Exp. 200 9

    [22]

    Prieto Curiel R, Pappalardo L, Gabrielli L, Bishop S R 2018 PLOS One 1 3

    [23]

    Wang Y X, Li X, Yao X, Li S, Liu Y 2022 Ann. Am. Assoc. Geogr. 112 1441

    [24]

    Brockmann D, Helbing D 2013 Science 342 1337Google Scholar

    [25]

    Stouffer S A 1940 Am. Sociol. Rev. 5 845Google Scholar

    [26]

    Ortúzar J D D, Willumsen L G 2011 Modelling Transport. 1 st edn. (Wiley), pp 207–208

    [27]

    Simini F, González M C, Maritan A, Barabási A L 2012 Nature 484 96Google Scholar

    [28]

    Yan X Y, Zhao C, Fan Y, Di Z R, Wang W X 2014 J. R. Soc. Interface 11 20140834Google Scholar

    [29]

    Liu E J, Yan X Y 2019 Physica A 526 121023Google Scholar

    [30]

    Liu E J, Yan X Y 2020 Sci. Rep. 10 4657Google Scholar

    [31]

    Yan X Y, Zhou T 2019 Sci. Rep. 9 9466Google Scholar

    [32]

    Lawson H C, Dearinger J A 1967 J. Highw. Div. 93 1

    [33]

    Liang X, Zhao J C, Dong L, Xu K 2013 Sci. Rep. 3 2983Google Scholar

    [34]

    Okabe A 1976 Reg. Sci. Urban Econ. 6 381Google Scholar

    [35]

    Hong I, Jung W S, Jo H H 2019 PLOS ONE 1 4

    [36]

    Kluge L, Schewe J 2021 Phys. Rev. E 104 54311Google Scholar

    [37]

    Piovani D, Arcaute E, Uchoa G, Wilson A, Batty M 2018 R. Soc. Open Sci. 5 171668Google Scholar

    [38]

    Stefanouli M, Polyzos S 2017 Transp. Res. Procedia 24 65Google Scholar

    [39]

    Yang Y X, Herrera C, Eagle N, González M C 2014 Sci. Rep. 4 5662Google Scholar

    [40]

    Heydari S, Huang Z, Hiraoka T, De León Chávez A P, Ala-Nissila T, Leskelä L, Kivelä M, Saramäki J 2023 Travel Behav. Soc. 31 93Google Scholar

    [41]

    Masucci A P, Serras J, Johansson A, Batty M 2013 Phys. Rev. E 88 22812Google Scholar

    [42]

    Palchykov V, Mitrović M, Jo H H, Saramäki J, Pan R K 2014 Sci. Rep. 4 6174Google Scholar

    [43]

    Lenormand M, Bassolas A, Ramasco J J 2016 J. Transp. Geogr. 51 158Google Scholar

    [44]

    Lenormand M, Huet S, Gargiulo F, Deffuant G 2012 PLoS One 7 e45985Google Scholar

    [45]

    Gargiulo F, Lenormand M, Huet S, Baqueiro Espinosa O 2012 Jasss. 15 6

  • [1] LIANG Zongwen, LIAO Junzhuo, XUE Chongchen, AO Yongcai. Bi-dimensional gravity-influence model: Quantitative assessment of node performance based on individual potential and geographic location. Acta Physica Sinica, doi: 10.7498/aps.74.20241256
    [2] Qiang Qi-Chao, Peng Zhi-Qian, Gao Qing. Primordial black holes and secondary gravitational waves produced by S-dual inflation model. Acta Physica Sinica, doi: 10.7498/aps.72.20230605
    [3] Ruan Yi-Run, Lao Song-Yang, Tang Jun, Bai Liang, Guo Yan-Ming. Node importance ranking method in complex network based on gravity method. Acta Physica Sinica, doi: 10.7498/aps.71.20220565
    [4] Liu Er-Jian, Yan Xiao-Yong. Research advances in intervening opportunity class models for predicting human mobility. Acta Physica Sinica, doi: 10.7498/aps.69.20201119
    [5] Wei Wen-Ye, Shen Jia-Yin, Wu Yi-Wei, Yang Li-Xiang, Xue Xun, Yuan Tzu-Chiang. E(2) gauge theory model of effective gravitational theory at large scale. Acta Physica Sinica, doi: 10.7498/aps.66.130301
    [6] Li Duo-Fang, Cao Tian-Guang, Geng Jin-Peng, Zhan Yong. Damage-repair model for mutagenic effects of plant induced by ionizing radiation. Acta Physica Sinica, doi: 10.7498/aps.64.248701
    [7] Zhang Yu-Mei, Wu Xiao-Jun, Bai Shu-Lin. Chaotic characteristic analysis for traffic flow series and DFPSOVF prediction model. Acta Physica Sinica, doi: 10.7498/aps.62.190509
    [8] Meng Qing-Fang, Chen Yue-Hui, Feng Zhi-Quan, Wang Feng-Lin, Chen Shan-Shan. Nonlinear prediction of small scale network traffic based on local relevance vector machine regression model. Acta Physica Sinica, doi: 10.7498/aps.62.150509
    [9] Gong Yong-Wang, Song Yu-Rong, Jiang Guo-Ping. Epidemic spreading model and stability of the networks in mobile environment. Acta Physica Sinica, doi: 10.7498/aps.61.110205
    [10] Chen Wei-Hua, Du Lei, Zhuang Yi-Qi, Bao Jun-Lin, He Liang, Zhang Tian-Fu, Zhang Xue. A model considering the ionizing radiation effects in MOS structure. Acta Physica Sinica, doi: 10.7498/aps.58.4090
    [11] Fan Hua, Li Li, Yuan Jian, Shan Xiu-Ming. Langevin model of the flow control in the internet and its phase transition analysis. Acta Physica Sinica, doi: 10.7498/aps.58.7507
    [12] Qian Jiang-Hai, Han Ding-Ding. Gravity model for spatial network based on optimal expected traffic. Acta Physica Sinica, doi: 10.7498/aps.58.3028
    [13] Qin Sen, Dai Guan-Zhong, Wang Lin, Fan Ming. A weighted network model with accelerated evolution. Acta Physica Sinica, doi: 10.7498/aps.56.6326
    [14] Zhou Hua-Liang, Gao Zi-You, Li Ke-Ping. Cellular automaton model for moving-like block system and study of train’s delay propagation. Acta Physica Sinica, doi: 10.7498/aps.55.1706
    [15] Yan Jun, Tao Bi-You. A five-dimensional cosmic branes solution in Einstein-Maxwell-dilaton gravity model. Acta Physica Sinica, doi: 10.7498/aps.53.2843
    [16] ZHANG JUN, PEI WEN-BING, GU PEI-JUN, SUI CHENG-ZHI, CHANG TIE-QIANG. SELF-MODIFIED QUASI-STATIONARY MODEL FOR THE RADIATION ABLATION. Acta Physica Sinica, doi: 10.7498/aps.45.1677
    [17] HE LIN, DENG YONG-YUAN. . Acta Physica Sinica, doi: 10.7498/aps.44.80
    [18] YAN YONG-LIAN, QIN RONG-XIAN. THE THREE-DEGREE OF FREEDOM MODEL OF THE TUNING FORK ANTENNA WITH COLLECTIVE MASS. Acta Physica Sinica, doi: 10.7498/aps.32.1586
    [19] ZHANG YUAN-ZHONG, GUO HAN-YING. ON THE VECTOR-TENSOR INTERACTION OF GRAVITATION. Acta Physica Sinica, doi: 10.7498/aps.31.1554
    [20] Pan Shao-hua, Luo Qi-guang, Liu Fu-sui. A MODEL OF THE RELATIVE DISPLACEMENT OF THE d BAND IN A-15 SUPERCONDUCTING COMPOUNDS. Acta Physica Sinica, doi: 10.7498/aps.29.836
Metrics
  • Abstract views:  180
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Received Date:  11 March 2025
  • Accepted Date:  22 April 2025
  • Available Online:  27 May 2025

/

返回文章
返回