Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-scalar comparison methods for urban mobility models

ZHANG Yang SHI Wu TAN Suoyi MOU Jianhong ZHOU Yilong YU Hongjie LU Xin

Citation:

Multi-scalar comparison methods for urban mobility models

ZHANG Yang, SHI Wu, TAN Suoyi, MOU Jianhong, ZHOU Yilong, YU Hongjie, LU Xin
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • With accelerating urbanization, accurately predicting intra-urban population mobility has become a fundamental requirement for urban planning and policy formulation. However, the adaptability and performance of existing mobility models across spatial scales remain unclear, and there is a lack of systematic evaluation frameworks that integrate spatial granularity, travel distance, and population heterogeneity. This study addresses these gaps by proposing a cross-scale comparative framework to evaluate three representative mobility models—the Gravity Model (GM), Radiation Model (RM), and Population-Weighted Opportunities Model (PWO)—under varying urban conditions.
    We construct three groups of controlled experiments using high-resolution mobile phone data from Shanghai to assess model performance across spatial (grid size), distance, and population density scales. Furthermore, we apply multivariate analysis of variance (MANOVA) to decompose the relative contributions of different spatial factors to prediction errors.
    The results demonstrate distinct scale sensitivities among the models. The GM model, grounded in Newtonian gravitational principles, shows high robustness over longer distances (>5 km), yet suffers from performance degradation under fine spatial granularity due to spatial heterogeneity. Its accuracy improves with population scale but decreases significantly when regional area disparities exceed a threshold—prediction performance drops by over 40% when grid size differences surpass 3 km. The RM model, based on the nearest-best-opportunity assumption, performs well for short-distance, origin-driven flows, such as commuting, but introduces systematic bias in small-scale contexts. Its sensitivity to origin population density makes it more suitable for high-density urban cores. The PWO model enhances RM by incorporating destination population weights, exhibiting superior compatibility with spatial heterogeneity in dense, polycentric cities. It performs best at short distances (<5 km) but loses effectiveness as travel distance increases.
    MANOVA results confirm that GM is primarily influenced by population density and area scale, whereas RM and PWO are more sensitive to distance and destination-related factors. Based on these findings, we propose a model selection strategy tailored to mobility drivers: GM is recommended for long-distance prediction in spatially homogeneous regions, while PWO is preferred for short-range flows between small, densely populated areas. RM serves as a complementary model when origin-driven flows dominate.
    This study not only clarifies the physical mechanisms underlying scale-dependent model performance but also offers an actionable decision-making framework for selecting appropriate models in different urban mobility scenarios. Future research can further improve predictive accuracy by developing hybrid models that combine strengths of multiple frameworks, integrating multi-source spatial data such as POIs and land use, and coupling traditional models with deep learning approaches to enhance non-linear pattern recognition while preserving interpretability. By uncovering the scale-sensitivity of mobility models, this work lays a theoretical and methodological foundation for multi-scenario mobility forecasting in smart city planning and fine-grained urban governance.
  • [1]

    Batty M 2008 Science 319 769

    [2]

    Andrienko G, Andrienko N, Boldrini C, Caldarelli G, Cintia P, Cresci S, Facchini A, Giannotti F, Gionis A, Guidotti R, Mathioudakis M, Muntean C I, Pappalardo L, Pedreschi D, Pournaras E, Pratesi F, Tesconi M, Trasarti R 2021 Int. J. Data. Sci. Anal. 11 311

    [3]

    Barbosa H, Barthelemy M, Ghoshal G, James C R, Lenormand M, Louail T, Menezes R, Ramasco J J, Simini F, Tomasini M 2018 Phys. Rep. 734 1

    [4]

    Xu Y, Belyi A, Bojic I, Ratti C 2018 Comput. Environ. Urban Syst. 72 51

    [5]

    Guo Y T, Peeta S 2020 Travel Behav. Soc. 19 99

    [6]

    Helbing D 2001 Rev. Mod. Phys. 73 1067

    [7]

    Toole J L, Colak S, Sturt B, Alexander L P, Evsukoff A, González M C 2015 Transp. Res. Part C Emerging Technol. 58 162

    [8]

    Voukelatou V, Gabrielli L, Miliou I, Cresci S, Sharma R, Tesconi M, Pappalardo L 2021 Int. J. Data. Sci. Anal. 11 279

    [9]

    Louf R, Barthelemy M 2014 Sci. Rep. 4 5561

    [10]

    Hufnagel L, Brockmann D, Geisel T 2004 Proc. Natl. Acad. Sci. 101 15124

    [11]

    Xiong C F, Hu S H, Yang M F, Luo W Y, Zhang L 2020 Proc. Natl. Acad. Sci. 117 27087

    [12]

    NaDai M D, Xu Y Y, Letouzé E, González M C, Lepri B 2020 Sci. Rep. 10 13871

    [13]

    Simini F, Barlacchi G, Luca M, Pappalardo L 2021 Nat. Commun. 12 6576

    [14]

    Yao X, Gao Y, Zhu D, Manley E, Wang J, Liu Y 2021 IEEE Trans. Intell. Transp. Syst. 22 7474

    [15]

    Liu Z C, Miranda F, Xiong W T, Yang J Y, Wang Q, Silva C 2020 AAAI 34 808

    [16]

    Dai G N, Hu X Y, Ge Y M, Ning Z Q, Liu Y B 2021 Front. Comput. Sci. 15 152317

    [17]

    Tian C J, Zhu X N, Hu Z, Ma J 2020 Appl. Intell. 50 3057

    [18]

    Luca M, Barlacchi G, Lepri B, Pappalardo L 2023 ACM Comput. Surv. 55 1

    [19]

    Zipf G K 1946 Am. Sociol. Rev. 11 677

    [20]

    Goh S, Lee K, Park J S, Choi M Y 2012 Phys. Rev. E 86 26102

    [21]

    Krings G, Calabrese F, Ratti C, Blondel V D 2009 J. Stat. Mech:Theory Exp. 2009 L07003

    [22]

    Prieto Curiel R, Pappalardo L, Gabrielli L, Bishop S R 2018 PLOS One 13 e0199892

    [23]

    Wang Y X, Li X, Yao X, Li S, Liu Y 2022 Ann. Am. Assoc. Geogr. 112 1441

    [24]

    Brockmann D, Helbing D 2013 Science 342 1337

    [25]

    Stouffer S A 1940 Am. Sociol. Rev. 5 845

    [26]

    Ortúzar J D D, Willumsen L G 2011 Modelling Transport. 1st edn.(Wiley), pp 207-208

    [27]

    Simini F, González M C, Maritan A, Barabási A L 2012 Nature 484 96

    [28]

    Yan X Y, Zhao C, Fan Y, Di Z R, Wang W X 2014 J. R. Soc. Interface 11 20140834

    [29]

    Liu E J, Yan X Y 2019 Physica A 526 121023

    [30]

    Liu E J, Yan X Y 2020 Sci. Rep. 10 4657

    [31]

    Yan X Y, Zhou T 2019 Sci. Rep. 9 9466

    [32]

    Lawson H C, Dearinger J A 1967 J. Highw. Div. 93 1

    [33]

    Liang X, Zhao J C, Dong L, Xu K 2013 Sci. Rep. 3 2983

    [34]

    Okabe A 1976 Reg. Sci. Urban Econ. 6 381

    [35]

    Hong I, Jung W S, Jo H H 2019 PLOS ONE 14 e0218028

    [36]

    Kluge L, Schewe J 2021 Phys. Rev. E 104 54311

    [37]

    Piovani D, Arcaute E, Uchoa G, Wilson A, Batty M 2018 R. Soc. Open Sci. 5 171668

    [38]

    Stefanouli M, Polyzos S 2017 Transp. Res. Procedia 24 65

    [39]

    Yang Y X, Herrera C, Eagle N, González M C 2014 Sci. Rep. 4 5662

    [40]

    Heydari S, Huang Z, Hiraoka T, De León Chávez A P, Ala-Nissila T, Leskelä L, Kivelä M, Saramäki J 2023 Travel Behav. Soc. 31 93

    [41]

    Masucci A P, Serras J, Johansson A, Batty M 2013 Phys. Rev. E 88 22812

    [42]

    Palchykov V, Mitrović M, Jo H H, Saramäki J, Pan R K 2014 Sci. Rep. 4 6174

    [43]

    Lenormand M, Bassolas A, Ramasco J J 2016 J. Transp. Geogr. 51 158

    [44]

    Lenormand M, Huet S, Gargiulo F, Deffuant G 2012 PLoS One 7 e45985

    [45]

    Gargiulo F, Lenormand M, Huet S, Baqueiro Espinosa O 2012 Jasss. 15 6

  • [1] LIANG Zongwen, LIAO Junzhuo, XUE Chongchen, AO Yongcai. Bi-dimensional gravity-influence model: Quantitative assessment of node performance based on individual potential and geographic location. Acta Physica Sinica, doi: 10.7498/aps.74.20241256
    [2] Qiang Qi-Chao, Peng Zhi-Qian, Gao Qing. Primordial black holes and secondary gravitational waves produced by S-dual inflation model. Acta Physica Sinica, doi: 10.7498/aps.72.20230605
    [3] Ruan Yi-Run, Lao Song-Yang, Tang Jun, Bai Liang, Guo Yan-Ming. Node importance ranking method in complex network based on gravity method. Acta Physica Sinica, doi: 10.7498/aps.71.20220565
    [4] Liu Er-Jian, Yan Xiao-Yong. Research advances in intervening opportunity class models for predicting human mobility. Acta Physica Sinica, doi: 10.7498/aps.69.20201119
    [5] Wei Wen-Ye, Shen Jia-Yin, Wu Yi-Wei, Yang Li-Xiang, Xue Xun, Yuan Tzu-Chiang. E(2) gauge theory model of effective gravitational theory at large scale. Acta Physica Sinica, doi: 10.7498/aps.66.130301
    [6] Li Duo-Fang, Cao Tian-Guang, Geng Jin-Peng, Zhan Yong. Damage-repair model for mutagenic effects of plant induced by ionizing radiation. Acta Physica Sinica, doi: 10.7498/aps.64.248701
    [7] Zhang Yu-Mei, Wu Xiao-Jun, Bai Shu-Lin. Chaotic characteristic analysis for traffic flow series and DFPSOVF prediction model. Acta Physica Sinica, doi: 10.7498/aps.62.190509
    [8] Meng Qing-Fang, Chen Yue-Hui, Feng Zhi-Quan, Wang Feng-Lin, Chen Shan-Shan. Nonlinear prediction of small scale network traffic based on local relevance vector machine regression model. Acta Physica Sinica, doi: 10.7498/aps.62.150509
    [9] Gong Yong-Wang, Song Yu-Rong, Jiang Guo-Ping. Epidemic spreading model and stability of the networks in mobile environment. Acta Physica Sinica, doi: 10.7498/aps.61.110205
    [10] Chen Wei-Hua, Du Lei, Zhuang Yi-Qi, Bao Jun-Lin, He Liang, Zhang Tian-Fu, Zhang Xue. A model considering the ionizing radiation effects in MOS structure. Acta Physica Sinica, doi: 10.7498/aps.58.4090
    [11] Fan Hua, Li Li, Yuan Jian, Shan Xiu-Ming. Langevin model of the flow control in the internet and its phase transition analysis. Acta Physica Sinica, doi: 10.7498/aps.58.7507
    [12] Qian Jiang-Hai, Han Ding-Ding. Gravity model for spatial network based on optimal expected traffic. Acta Physica Sinica, doi: 10.7498/aps.58.3028
    [13] Qin Sen, Dai Guan-Zhong, Wang Lin, Fan Ming. A weighted network model with accelerated evolution. Acta Physica Sinica, doi: 10.7498/aps.56.6326
    [14] Zhou Hua-Liang, Gao Zi-You, Li Ke-Ping. Cellular automaton model for moving-like block system and study of train’s delay propagation. Acta Physica Sinica, doi: 10.7498/aps.55.1706
    [15] Yan Jun, Tao Bi-You. A five-dimensional cosmic branes solution in Einstein-Maxwell-dilaton gravity model. Acta Physica Sinica, doi: 10.7498/aps.53.2843
    [16] ZHANG JUN, PEI WEN-BING, GU PEI-JUN, SUI CHENG-ZHI, CHANG TIE-QIANG. SELF-MODIFIED QUASI-STATIONARY MODEL FOR THE RADIATION ABLATION. Acta Physica Sinica, doi: 10.7498/aps.45.1677
    [17] HE LIN, DENG YONG-YUAN. . Acta Physica Sinica, doi: 10.7498/aps.44.80
    [18] YAN YONG-LIAN, QIN RONG-XIAN. THE THREE-DEGREE OF FREEDOM MODEL OF THE TUNING FORK ANTENNA WITH COLLECTIVE MASS. Acta Physica Sinica, doi: 10.7498/aps.32.1586
    [19] ZHANG YUAN-ZHONG, GUO HAN-YING. ON THE VECTOR-TENSOR INTERACTION OF GRAVITATION. Acta Physica Sinica, doi: 10.7498/aps.31.1554
    [20] Pan Shao-hua, Luo Qi-guang, Liu Fu-sui. A MODEL OF THE RELATIVE DISPLACEMENT OF THE d BAND IN A-15 SUPERCONDUCTING COMPOUNDS. Acta Physica Sinica, doi: 10.7498/aps.29.836
Metrics
  • Abstract views:  82
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  27 May 2025

/

返回文章
返回