搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S-dual模型产生的原初黑洞和次级引力波

强琪超 彭智谦 郜青

引用本文:
Citation:

S-dual模型产生的原初黑洞和次级引力波

强琪超, 彭智谦, 郜青

Primordial black holes and secondary gravitational waves produced by S-dual inflation model

Qiang Qi-Chao, Peng Zhi-Qian, Gao Qing
PDF
HTML
导出引用
  • 在S-dual暴涨模型中通过在非正则动能项中引入峰值函数, 可产生丰度可观的原初黑洞和次级引力波. 该模型分别在1012, 108和105 Mpc–1对原初密度扰动的功率谱进行放大, 产生了质量量级分别为10–13太阳质量、地球质量、行星质量的原初黑洞, 以及峰值频率分别为毫赫兹、微赫兹、纳赫兹的次级引力波. 其中在10–13太阳质量附近的原初黑洞可以解释全部的暗物质, 产生的次级引力波能被未来的空间引力波探测器探测到.
    It is discussed in this work to produce primordial black hole (PBH) dark matter (DM) and scalar induced secondary gravitational waves by using the enhancement mechanism with a peak function in the non-canonical kinetic term in S-dual inflation. It is shown explicitly that the power spectrum for the primordial curvature perturbation can be enhanced at 1012, 108 and 105 Mpc–1, respectively, that the primordial black hole dark matter with peak mass around 10–13 solar mass, the Earth’s mass and the stellar mass are generated, respectively, and that the scalar induced gravitational wave with peak frequency around mHz, μHz and nHz are created, respectively. The primordial black hole with the mass scale 10–13 solar mass can make up almost all the dark matter and the associated scalar induced secondary gravitational waves is testable by spaced based gravitational wave observatory.The amplitude of primordial curvature perturbations on a small scale can become large by the enhancement mechanism with a peak function in the non-canonical kinetic term. We apply the enhancement mechanism to S-dual inflation to produce abundant PBHs and observable scalar induced gravitational waves (SIGWs). The power spectrum on a large scale is consistent with observational constraint, and the power spectrum on a small scale is enhanced to the 0.01. It is possible that either sharp peak or broad peak possesses a different peak shape for the peak function by choosing a different value of q. By adjusting the peak position ϕp in the peak function, the power spectrum is enhanced on a different scale, henceforth associated with the generation of SIGWs with a different peak frequency, PBHs with different mass are produced. We choose three different values of ϕp to obtain enhance power spectrum at 1012, 108 and 105 Mpc–1, respectively. The enhanced curvature perturbation produces PBH DM with peak mass around 10–13 solar mass, the Earth’s mass and the stellar mass, and SIGW with peak frequency around mHz, µHz and nHz, respectively. The stellar mass PBHs may explain black holes observed by LIGO/Virgo collaboration, and the earth-mass PBHs may explain the planet 9. The PBH with the mass scale 10–13 solar mass can make up almost all the dark matter. The SIGW with the peak frequency around nHz is testable by pulsar timing array observations, and SIGW with the peak frequency around mHz is testable by space based GW observatory. The results show that the enhancement mechanism with a peak function in the non-canonical kinetic term works for S-dual inflation.
      通信作者: 郜青, gaoqing1024@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12175184)资助的课题
      Corresponding author: Gao Qing, gaoqing1024@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12175184).
    [1]

    Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [2]

    Hawking S 1971 Mon. Not. Roy. Astron. Soc. 152 75Google Scholar

    [3]

    郜青, 龚云贵, 龙江 2021 中山大学学报(自然科学版) 60 86Google Scholar

    Gao Q, Gong Y G, Long J 2021 Acta Scientiarum Naturalium Universitatis Sunyatseni 60 86Google Scholar

    [4]

    Carr B, Kuhnel F 2020 Annu. Rev. Nucl. Part. Sci. 70 355Google Scholar

    [5]

    Scholtz J, Unwin J 2020 Phys. Rev. Lett. 125 051103Google Scholar

    [6]

    Inomata K, Nakama T 2019 Phys. Rev. D 99 043511Google Scholar

    [7]

    Danzmann K 1997 Class. Quantum Grav. 14 1399Google Scholar

    [8]

    Hu W R, Wu Y L 2017 Natl. Sci. Rev. 4 685Google Scholar

    [9]

    罗俊, 艾凌皓, 艾艳丽等 2021 中山大学学报(自然科学版) 60 1Google Scholar

    Luo J, Ai L H, Ai Y L, et al. 2021 Acta Scientiarum Naturalium Universitatis Sunyatseni 60 1Google Scholar

    [10]

    Lu Y Z, Gong Y G, Yi Z, et al. 2019 J. Cosmol. Astropart. Phys. 12 1Google Scholar

    [11]

    Akrami Y, Arroja F, Ashdown M, et al. 2020 Astron. Astrophys. 641 A10

    [12]

    Anchordoqui L A, Barger V, Goldberg H, et al. 2014 Phys. Lett. B 734 134Google Scholar

    [13]

    Inomata K, Kawasaki M, Tada Y 2016 Phys. Rev. D 94 043527Google Scholar

    [14]

    Fixsen D J, Cheng E S, Gales J M, et al. 1996 Astrophys. J. 473 576Google Scholar

    [15]

    Carr B J, Kohri K, Sendouda Y, et al. 2010 Phys. Rev. D 81 104019Google Scholar

    [16]

    Dasgupta B, Laha R, Ray A 2020 Phys. Rev. Lett. 125 101101Google Scholar

    [17]

    Graham P W, Rajendran S, Varela J 2015 Phys. Rev. D 92 063007Google Scholar

    [18]

    Niikura H, Takada M, Yasuda N, et al. 2019 Nature Astron. 3 524Google Scholar

    [19]

    Griest K, Cieplak M, Lehner M J 2013 Phys. Rev. Lett. 111 181302Google Scholar

    [20]

    Tisserand P, Guillou L L, Afonso C, et al. 2007 Astron. Astrophys. 469 387Google Scholar

    [21]

    Chen Z C, Chen Y, Huang Q G 2020 Phys. Rev. Lett. 124 251101Google Scholar

    [22]

    Moore C, Cole R, Berry C 2015 Class. Quantum Grav. 32 015014Google Scholar

    [23]

    Aasi J, Abbott B P 2015 Class. Quantum Grav. 32 074001Google Scholar

  • 图 1  不同模型的功率谱. 实线代表q = 1的模型, 虚线代表q = 5/4的模型. 蓝色、红色和黑色分别代表峰值为1012, 108和105 Mpc–1的模型. 模型的参数和峰值见表1, 峰值对应的功率谱数值见表2. 浅绿色区域是被CMB观测结果排除的参数范围[11], 粉色、天蓝色和橘色区域分别代表EPTA[6], BBN[13], μ-distortion[14]排除的参数范围

    Fig. 1.  Power spectra of the different models. Implement the model representing q = 1, the dashed line represents the model of q = 5/4. Blue, red and black respectively represent the model with a peak value of 1012, 108 and 105 Mpc–1. Parameters and peak values of the model are in Table 1, and the power spectrum values corresponding to the peak value are in Table 2. The light green area is the parameter range excluded by the CMB observation results[11], and the pink, sky blue and orange areas represent the parameter range excluded by EPTA[6], BBN[13] and μ-distortion[14] respectively.

    图 2  不同模型的原初黑洞丰度. 模型参数同表1, 峰值对应的丰度和质量见表2. 阴影区域表示不同观测结果的排除区域, 黄色区域是微波背景辐射的限制结果[11] (CMB); 红色区域是利用银河系外$\gamma $射线观测原初黑洞蒸发的限制结果[15] (${{{\rm{EG}}} _\gamma }$); 天蓝色区域是银河系中心511 keV $\gamma $射线的限制结果[16] (INTEGRAL); 橘色区域是白矮星爆发的限制结果[17] (WD); 绿色区域是源自Subaru HSC引力透镜事件的限制结果[18] (Subaru HSC); 蓝色区域是开普勒卫星的限制结果[19] (Kepler); 灰色区域是EROS/MACHO的限制结果[20] (EROS/MACHO); 紫色区域是2011年NANOGrav数据的限制结果[21] (NANOGrav)

    Fig. 2.  Primary black hole abundance of different models. Model parameters are the same as Table 1, and the abundance and quality corresponding to the peak are listed in Table 2. Shaded areas represent exclusion areas for different observations: the yellow area is the result of the restriction of microwave background radiation[11] (CMB); the red area is the result of the restriction of the primary black hole evaporation observed by the extragalactic ray[15] (${\rm{EG} _\gamma }$); the sky blue region is the result of 511 keV ray limitation at the center of the galaxy[16] (INTEGRAL); the orange area is the result of the limit of the white dwarf star explosion[17] (WD); the green area is the limiting result of the gravitational lens event from Subaru HSC[18] (Subaru HSC); the blue area is the limited result of Kepler satellite[19] (Kepler); the grey area is the result of the limitation of EROS/MACHO[20] (EROS/MACHO); the purple area is the result of the limitation of NANOGrav 2011-year data[21] (NANOGrav).

    图 3  次级引力波的能量密度. 模型参数同表1, 峰值对应的丰度和质量在表2列出. 橘色虚线表示EPTA的限制结果[6]; 天蓝色虚线表示SKA的限制结果[22]; 绿色虚线表示天琴的限制结果[9]; 紫色虚线表示太极的限制结果[8]; 棕色虚线表示LISA的限制结果[7]; 灰色虚线表示aLIGO的限制结果[23]

    Fig. 3.  Energy density of secondary gravitational waves, the model parameters are the same as Table 1, and the abundance and quality corresponding to the peak are listed in Table 2. The orange dotted line represents the limit result of EPTA[6]; the sky blue dotted line represents the limit result of SKA[22]; the green dotted line represents the limit result of Tianqin[9]; the purple dotted line represents the limit result of Taiji[8]; the brown dotted line represents the limit result of LISA[7]; the gray dotted line represents the limit result of aLIGO[23].

    表 1  模型参数及数值计算结果

    Table 1.  Model parameters and the numerical calculation results.

    模型h/1011w/10–11${\phi _{\text{p}}}$${\phi _ * }$N${n_{\text{s}}}$rkpeak/(105 Mpc–1)
    S15.901.02.1182.32551.850.9610.0452.65×107
    S25.821.02.1042.31351.250.9630.0451.81×104
    S35.831.02.0952.30851.160.9680.0433.55
    WS11831.02.1222.2466.590.9650.0403.57×107
    WS21401.02.1042.2460.130.9650.0409.99×103
    WS31231.02.0952.2458.890.9650.0401.88
    下载: 导出CSV

    表 2  模型的峰值功率谱、原初黑洞质量、丰度和峰值频率的数值

    Table 2.  Peak power spectrum of the model, the mass, abundance and peak frequency of the primary black hole.

    模型${P_{\varsigma ({\rm{peak}})}}$${M_{{{\rm{peak}}} }}/{M_ \odot }$$Y_{{\rm{PBH}}}^{{\rm{peak}}}$${f_{\text{c}}}/{{\rm{Hz}}} $
    S10.01285.23×10–130.6474.81×10–3
    S20.01371.13×10–63.51×10–33.02×10–6
    S30.018629.22.07×10–36.22×10–10
    WS10.01272.88×10–130.6874.95×10–3
    WS20.01323.69×10–66.15×10–41.35×10–6
    WS30.0185104.39.01×10–42.96×10–10
    下载: 导出CSV
  • [1]

    Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [2]

    Hawking S 1971 Mon. Not. Roy. Astron. Soc. 152 75Google Scholar

    [3]

    郜青, 龚云贵, 龙江 2021 中山大学学报(自然科学版) 60 86Google Scholar

    Gao Q, Gong Y G, Long J 2021 Acta Scientiarum Naturalium Universitatis Sunyatseni 60 86Google Scholar

    [4]

    Carr B, Kuhnel F 2020 Annu. Rev. Nucl. Part. Sci. 70 355Google Scholar

    [5]

    Scholtz J, Unwin J 2020 Phys. Rev. Lett. 125 051103Google Scholar

    [6]

    Inomata K, Nakama T 2019 Phys. Rev. D 99 043511Google Scholar

    [7]

    Danzmann K 1997 Class. Quantum Grav. 14 1399Google Scholar

    [8]

    Hu W R, Wu Y L 2017 Natl. Sci. Rev. 4 685Google Scholar

    [9]

    罗俊, 艾凌皓, 艾艳丽等 2021 中山大学学报(自然科学版) 60 1Google Scholar

    Luo J, Ai L H, Ai Y L, et al. 2021 Acta Scientiarum Naturalium Universitatis Sunyatseni 60 1Google Scholar

    [10]

    Lu Y Z, Gong Y G, Yi Z, et al. 2019 J. Cosmol. Astropart. Phys. 12 1Google Scholar

    [11]

    Akrami Y, Arroja F, Ashdown M, et al. 2020 Astron. Astrophys. 641 A10

    [12]

    Anchordoqui L A, Barger V, Goldberg H, et al. 2014 Phys. Lett. B 734 134Google Scholar

    [13]

    Inomata K, Kawasaki M, Tada Y 2016 Phys. Rev. D 94 043527Google Scholar

    [14]

    Fixsen D J, Cheng E S, Gales J M, et al. 1996 Astrophys. J. 473 576Google Scholar

    [15]

    Carr B J, Kohri K, Sendouda Y, et al. 2010 Phys. Rev. D 81 104019Google Scholar

    [16]

    Dasgupta B, Laha R, Ray A 2020 Phys. Rev. Lett. 125 101101Google Scholar

    [17]

    Graham P W, Rajendran S, Varela J 2015 Phys. Rev. D 92 063007Google Scholar

    [18]

    Niikura H, Takada M, Yasuda N, et al. 2019 Nature Astron. 3 524Google Scholar

    [19]

    Griest K, Cieplak M, Lehner M J 2013 Phys. Rev. Lett. 111 181302Google Scholar

    [20]

    Tisserand P, Guillou L L, Afonso C, et al. 2007 Astron. Astrophys. 469 387Google Scholar

    [21]

    Chen Z C, Chen Y, Huang Q G 2020 Phys. Rev. Lett. 124 251101Google Scholar

    [22]

    Moore C, Cole R, Berry C 2015 Class. Quantum Grav. 32 015014Google Scholar

    [23]

    Aasi J, Abbott B P 2015 Class. Quantum Grav. 32 074001Google Scholar

  • [1] 谭霞, 杨树政. Einstein-Bumblebee引力理论中的Kerr-Sen-like黑洞玻色子隧穿辐射. 物理学报, 2024, 73(4): 040401. doi: 10.7498/aps.73.20231463
    [2] 李慧玲, 黄雨萌, 杨承宇. 渐近安全引力下的黑洞阴影和光环. 物理学报, 2024, 73(1): 010401. doi: 10.7498/aps.73.20231233
    [3] 刘成周, 邓岳君, 骆叶成. 引力彩虹时空中Kerr黑洞的熵谱和面积谱. 物理学报, 2018, 67(6): 060401. doi: 10.7498/aps.67.20172374
    [4] 邵建舟, 王永久. 整体单极子黑洞引力场中的加速效应. 物理学报, 2012, 61(11): 110402. doi: 10.7498/aps.61.110402
    [5] 杨学军, 赵峥. 无截断薄膜模型与Dirac场的黑洞熵. 物理学报, 2011, 60(6): 060401. doi: 10.7498/aps.60.060401
    [6] 杨学军, 赵峥. 砖墙模型不能给出黑洞熵. 物理学报, 2011, 60(8): 080402. doi: 10.7498/aps.60.080402
    [7] 刘成周, 余国祥, 谢志堃. 用圈量子引力解除Schwarichild-de Sitter黑洞的时空奇点. 物理学报, 2010, 59(3): 1487-1493. doi: 10.7498/aps.59.1487
    [8] 孟庆苗, 蒋继建, 王帅. 静态球对称黑洞的热质点模型及辐射功率. 物理学报, 2009, 58(11): 7486-7490. doi: 10.7498/aps.58.7486
    [9] 钱江海, 韩定定. 基于预期流优化的空间网络引力模型. 物理学报, 2009, 58(5): 3028-3033. doi: 10.7498/aps.58.3028
    [10] 李传安, 苏九清. Kerr-Newman黑洞的谐振子模型及量子面积谱. 物理学报, 2006, 55(9): 4433-4436. doi: 10.7498/aps.55.4433
    [11] 孙学锋, 景 玲, 刘文彪. 黑洞熵无截断薄层模型的改进与推广. 物理学报, 2004, 53(11): 4002-4006. doi: 10.7498/aps.53.4002
    [12] 孙鸣超. 起源于引力场的Vaidya-Bonner-de Sitter黑洞的量子熵. 物理学报, 2003, 52(6): 1350-1353. doi: 10.7498/aps.52.1350
    [13] 陈菊华, 王永久. 极端荷电黑洞引力场中的轨道动力学. 物理学报, 2001, 50(10): 1833-1836. doi: 10.7498/aps.50.1833
    [14] 刘辽, 蒋元方, 黄超光, 钱振华. 宇宙创生于真空涨落的一个可能方案——原初暴涨宇宙模型. 物理学报, 1988, 37(3): 524-528. doi: 10.7498/aps.37.524
    [15] 陶福臻. 引力孤立波. 物理学报, 1987, 36(3): 350-356. doi: 10.7498/aps.36.350
    [16] 刘辽. 暴涨宇宙中原生黑洞的形成. 物理学报, 1986, 35(3): 375-378. doi: 10.7498/aps.35.375
    [17] 阎永廉, 秦荣先. 集中质量音叉式引力波天线的三自由度模型. 物理学报, 1983, 32(12): 1586-1588. doi: 10.7498/aps.32.1586
    [18] 徐步新, 秦荣先. 集中质量音叉式引力波天线与Vela星引力辐射探测的探讨. 物理学报, 1982, 31(8): 1097-1106. doi: 10.7498/aps.31.1097
    [19] 张元仲, 郭汉英. 关于矢量-张量引力相互作用模型. 物理学报, 1982, 31(11): 1554-1557. doi: 10.7498/aps.31.1554
    [20] 陆启铿, 刘煜奋, 邹振隆, 郭汉英. 标量-张量引力波. 物理学报, 1974, 23(2): 15-32. doi: 10.7498/aps.23.15
计量
  • 文章访问数:  3697
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-14
  • 修回日期:  2023-05-17
  • 上网日期:  2023-06-26
  • 刊出日期:  2023-08-20

/

返回文章
返回