-
Under the background of rapid advancements in photovoltaic technology, crystalline silicon (c-Si) solar cells, as the mainstream photovoltaic devices, have gained significant research attention for their excellent performances. In particular, silicon heterojunction (SHJ) solar cells, TOPCon (Tunnel Oxide Passivated Contact), and PERC (Passivated Emitter and Rear Cell) represent the cutting-edge technologies in c-Si solar cells. The surface passivation layer of crystalline silicon solar cells, as one of the key factors to improve cell performances, has been closely linked to the development of crystalline silicon solar cells. Due to the complex mechanism of passivation layer and the high demand of experimental research, it is challenging to achieve high quality surface passivation. This paper comprehensively reviews the key issues and research progress in interface passivation technologies for SHJ, TOPCon, and PERC solar cells. Firstly, the research progress of key technology breakthrough of SHJ solar cell is reviewed systematically, and the influences of growth conditions and doping layer on the passivation performances of SHJ solar cell are discussed in detail. Secondly, the important strategies and research achievements for improving the passivation performances of TOPCon and PERC solar cells in the past five years are systematically described. Finally, the development trend of passivation layer technology is prospected. This review offers valuable insights for future technological improvements and performance enhancements in c-Si solar cells.
-
Keywords:
- Crystalline silicon solar cell /
- passivation layer /
- heterojunction /
- amorphous silicon /
- silicon oxide layer /
- minority carrier lifetime /
- photoelectric performances
-
[1] Renewables 2023 Analysis and forecasts to 2028, Yasmina A, Ana A B, Piotr B https://www.iea.org/reports/renewables-2023 [2024-9-5]
[2] Renewables 2022, Yasmina A, Heymi B, Trevor C https://www.iea.org/reports/renewables-2022 [2024-9-5]
[3] Singh G K 2013 Energy 53 1
[4] Shen W Z, Zhao Y X, Liu F 2022 Front. Energy 16 1
[5] Breaking through 24%, Chang J https://www.hengdian.com/zh-cn/news/detail-10754 [2024-9-5]
[6] Allen T G, Bullock J, Yang X B, Javey A, De Wolf S 2019 Nat. Energy 4 914
[7] Dullweber T, Schmidt J 2016 IEEE J. Photovolt. 6 1366
[8] Rise to 26.89%, jinkosolar https://www.jinkosolar.com/site/newsdetail/1748 [2024-9-5]
[9] Ma S, Du D X, Ding D, Gao C, Li Z P, Wu X Y, Zou S, Su X, Kong X Y, Liao B, Shen W Z 2024 Sol. Energ. Mat. Sol. C. 275 113024
[10] Ullah H, Czapp S, Szultka S, Tariq H, Qasim U B, Imran H 2023 Energies 16 715
[11] Schmidt J, Peibst R, Brendel R 2018 Sol Energ. Mat. Sol. C. 187 39
[12] Global News At 26.81%, LONGi https://www.longi.com/en/news/propelling-the-transformation/ [2024-9-5]
[13] Taguchi M, Yano, A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovolt. 4 96
[14] Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 IEEE J. Photovolt. 4 1433
[15] Adachi D, Hernández J L, Yamamoto K 2015 Appl. Phys. Lett. 107 233506
[16] Chen J H, Yang J, Shen Y J, Li F, Chen J W, Liu H X, Xu Y, Mai Y H 2015 Acta Phys. Sin. 64 198801 (in Chinese) [陈剑辉, 杨静, 沈艳娇,李锋,陈静伟,刘海旭,许 颖,麦耀华 2015 物理学报 64 198801]
[17] Schuttauf J W A, van der Werf K H M, Kielen I M, Kielen I M, van Sark W G J H M, Rath J K, Schropp R E I 2011 Appl. Phys. Lett. 98 153514
[18] Xiao Y P, Wang T, Wei X Q, Zhou L 2017 Acta Phys. Sin. 66 108801 (in Chinese) [肖有鹏,王涛,魏秀琴,周浪 2017 物理学报 66 108801]
[19] Haschke J, Dupré O, Boccard M, Ballif C 2018 Sol. Energ. Mat. Sol. C. 187 140
[20] Nagel H, Berge C, Aberle A G 1999 J. Appl. Phys. 86 6218
[21] Kerr M J, Cuevas A, Sinton R A 2002 J. Appl. Phys. 91 399
[22] Panigrahi J, Komarala V K 2021 J. Non-Cryst. Solids 574 121166
[23] Shi C, Shi J, Guan Z, Ge J 2023 materials 16 3144
[24] Tanaka M, Taguchi M, Matsuyama T, Sawada T, Tsuda S, NakanoS, Hanafusa H, Kuwano Y 1992 Jpn. J. Appl. Phys. 31 3518
[25] De Wolf S, Kondo M 2007 Appl. Phys. Lett. 90 042111
[26] Chu Y H, Lee C C, Chang T H, Chang S Y, Chang J Y, Li T, Chen I C 2014 Thin Solid Films 570 591
[27] Sriraman S, Agarwal S, Aydil E S, Maroudas D 2002 Nature 418 62
[28] Liu W, Zhang L, Chen R, Meng F, Guo W, Bao J, Liu Z 2016 J. Appl. Phys. 120 175301
[29] Wronski C R, Collins R W, Pearce J M, Koval R J, Ferlauto A S, Ferreira G M, Chen C 2002 NREL/SR 520 32692
[30] Wang T H, Iwaniczko E, Page M R, Levi D H, Yan Y, Branz H M, Wang Q 2006 Thin Solid Films 501 284
[31] Ruan T Y, Qub M H, Qu X L, Ru X N, Wang J Q, He Y C, Zheng K, Lin B H H F, Xu X X, Zhang Y Z, Yan H 2020 Thin Solid Films 711 138305
[32] Lee K S, Yeon C B, Yun S J, Jung K H, Lima J W 2014 ECS Solid State Letters 3 33
[33] Jiang K, Yang Y H, Yan Z, Huang S L, Li X D, Li Z F, Zhou Y N, Zhang L P, Meng F Y, Liu Z X, Liu W Z 2022 Sol. Energ. Mat. Sol. C. 243 111801
[34] Soman A, Das U K, Hegedus S S 2023 ACS Appl. Electron. Mater. 5 803
[35] Zeng Q G, Li L W, Meng H C, Wu X Y, Wei X Q, Zhou L 2024 J Mater. Sci: Mater. Electron. 35 476
[36] Morales-Vilches A B, Wang E C, Henschel T, Kubicki M, Cruz A, Janke S, Korte L, Schlatmann R, Stannowski B 2020 Phys. Status. Solidi. A 217 1900518
[37] Ru X N, Qu M H, Wang J Q, Ruan T Y, Yang M, Peng F G, Long W, Zheng K, Yan H, Xu X X 2020 Sol. Energ. Mat. Sol. C. 215 110643
[38] Peng C W, He C R, Wu H F, Huang S, Yu C, Su X D, Zou S 2024 Sol. Energ. Mat. Sol. C. 273 112952
[39] Liu C S, Wu C Y, Chen I W, Lee H C, Hong L S 2013 Prog. Photovolt: Res. Appl. 21 326
[40] Page M R, Iwaniczko E, Xu Y Q, Roybal L, Hasoon F, Wang Q, Crandall R S 2011 Thin Solid Films 519 4527
[41] He J, Li W, Wang Y, Mu J L, An K, Chou X J 2015 Mater. Lett. 161 175
[42] Pandey A, Bhattacharya S, Panigrahi J, Mandal S, Komarala V K 2022 Phys. Status Solidi A 219 2200183
[43] Nunomura1 S, Sakata I, Misawa T, Kawai S, Kamataki K, Koga K, Shiratani M 2023 Jpn. J. Appl. Phys. 62 SL1027
[44] Macco B, Melskens J, Podraza N J, Arts K, Pugh C, Thomas O, Kessels W M M 2017 J. Appl. Phys 122 035302
[45] Wu Z P, Zhang L P, Chen R F, Liu W Z, Li Z F, Meng F Y, Liu Z X 2019 Appl. Surf. Sci. 475 504
[46] Tomasil A, Sahli F, Fannil L, Seif J P, de Nicolas S M, Holm N, Geissblihler J, Paviet-Salomon B, Loper P, Nicolay S, De Wolf S, Ballif C 2016 IEEE. J. Photovolt. 6 17
[47] Morell G, Katiyar R S, Weisz S Z, Jia H, Shinar J, Balberg I 1995 J. Appl. Phys. 78 5120
[48] Iqbal Z, Veprek S 1982 J. Phys. C: Solid State Phys. 15 377
[49] De Wolf S, Kondo M 2007 Appl. Phys. Lett. 91 112109
[50] Biegelsen D K, Street R A, Tsai CC, Knights J C 1979 Phys. Rev. B 20 4839
[51] Beyer W, Wagner H 1983 J. Non-Cryst. Solids 59 161
[52] Yabumoto N, Saito K, Morita M, Ohmi T 1991 Jpn. J. Appl. Phys. 30 L419
[53] Beyer W, Wagner H, Chevallier J, Reichelt K 1982 Thin Solid Films 90 145
[54] Beyer W 1991 Phys. Rev. B Condens. Matter 170 105
[55] Beyer W, Wagner H, Mell H 1981 Solid State. Commun. 39 375
[56] Street R A, Tsai CC, Kakalios J, Jackson W B 1987 Philos. Mag. B 56 305
[57] Nasuno Y, Kondo M, Matsuda A, Fukuhori H, Kanemitsu Y 2002 Appl. Phys. Lett. 81 3155
[58] Dreon J, Jeangros Q, Cattin J, Haschke J, Antognini L, Ballif C, Boccard M 2020 Nano Energy 70 104495
[59] Holman Z C, Descoeudres A, Barraud L, Fernandez F Z, Sei J P, De Wolf S, Ballif C 2012 IEEE J. Photovolt. 2 7
[60] Ding K N, Aeberhard U, Finger F, Rau U 2013 J. Appl. Phys. 113 134501
[61] Boccard M, Holman Z C 2015 J. Appl. Phys. 118 065704
[62] Jiang K, Liu W Z, Yang Y H, Yan Z, Huang S L, Li Z F, Li X D, Zhang L P, Liu Z X 2022 J. Mater. Sci.: Mater. Electron. 33 416
[63] Fujiwara H, Kaneko T, Kondo M 2007 Appl. Phys. Lett. 91 133508
[64] Mews M, Liebhaber M, Rech B, Korte L 2015 Appl. Phys. Lett. 107 013902
[65] Wu Z P, Zhang L P, Liu W Z,Chen R F, Li Z F, Meng F Y, Liu Z X 2020 J. MATER. SCI-MATER. EL. 31 9468
[66] Wen L L, Zhao L, Wang G H, Jia X J, Xu X H, Qu S Y, Li X T, Zhang X Y, Xin K, Xiao J H, Wang W J 2023 Sol. Energ. Mat. Sol. C. 258 112429
[67] Wu X Y, Wang X T, Lv R R, Song H, Yu Y J, Sen C D, Cheng Y H, Khan M U, Ciesla A, Xu T, Zhang G C, Hoex B 2025 Sol. Energ. Mat. Sol. C. 282 113325
[68] Sinha A, Qian J D, Moffitt S L, Hurst K, Terwilliger K, Miller D C, Schelhas L T, Hacke P 2023 Prog. Photovoltaics 31 36
[69] Yang L, Hu Z C, He Q Y, Liu Z K, Zeng Y H, Yang L F, Yu X G, Yang D R 2024 Sol. Energ. Mat. Sol. C. 275 113022
[70] Yang J L, Tang Y H, Zhou C L, Chen S N, Cheng S Z, Wang L C, Zhou S, Jia X J, Wang W J, Xu X H, Xiao J H, Wei W W 2024 Sol. Energ. Mat. Sol. C. 276 113062
[71] Feldmann F, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Sol. Energ. Mat. Sol. C. 120 270
[72] Padi S P, Khokhar M Q, Chowdhury S, Cho E C, Yi J 2021 Trans. Electr. Electro. 22 557
[73] Wang Q Q, Wu W P, Yuan N Y, Li Y L, Zhang Y, Ding J N 2020 Sol. Energ. Mat. Sol. C. 208 110423
[74] Huang J B, Zhao Z C, Li M, Chen J, Zhou X R, Deng X X, Li B, Shen K L, Cheng Q Y, Cai X W 2023 Sol. Energ. Mat. Sol. C. 260 112489
[75] Xing H Y, Liu Z K, Yang Z H, Liao M D, Wu Q Q, Lin N, Liu W, Ding C F, Zeng Y H, Yan B J, Ye J C 2023 Sol. Energ. Mat. Sol. C. 257 112354
[76] Yang L, Ou Y L, Lv X, Lin N, Zeng Y H, Hu Z C, Yuan S, Ye J C, Yu X G, Yang D R 2024 Energy Environ. Mater. 0 e12795
[77] Qian J Z, Zuo K X, Wang A, Du D Y, Fan J X, Gao J F 2023 Solar Energy 353 9 (in Chinese) [钱金忠,左克祥,王安,杜东亚,凡金星,高纪凡 2023太阳能 353 9]
[78] Ghosh D K, Das G, Bose S, Mukhopadhyay S, Sengupta A 2024 Energy Technol. 12 2400238
[79] Richter A, Benick J, Feldmann F, Fell A, Hermle M, Glunz S W 2017Sol. Energ. Mat. Sol. C. 173 96
[80] Yan D, Cuevas A, Phang S P, Wan Y, Macdonald D 2018 Appl. Phys. Lett. 113 061603
[81] Richter A, Benick J, Müller R, Feldmann F, Reichel C, Hermle M, Glunz S W 2018 Prog. Photovolt. Res. Appl. 26 579
[82] Richter A , Müller R, BenickJ, Feldmann F, Steinhauser B, Reichel C, Fell A, Bivour M, Hermle M, Glunz S W 2021 Nat. Energy 6 429
[83] Yu H L, Liu W, Du H J, Liu Z K, Liao M D, Song N, Yang Z H, Zeng Y H, Ye J C 2024 Nano Energy 125 109556
[84] Ma D, Liu W, Xiao M J, Yang Z H, Liu Z K, Liao M D, Han Q L, Cheng H, Xing H Y, Ding Z T, Yan B J, Wang Y D, Zeng Y H, Ye J C 2022 Sol. Energy 242 1
[85] Du H J, Lin Y R, Wang Z X, Liao M D, Liu Z K, Luo X J, Cao Y H, Fu L M, Liu W, Yan B J, Yang Z H, Yuan Z Z, Zeng Y H, Ye J C 2024 Mat Sci Semicon Proc. 170 107969
[86] Li W K, Zhou R, Wang Y K, Su Q F, Yang J, Xi M, Liu Y S 2024 Appl. Surf. Sci. 673 160835
[87] Wang Q Q, Gu S W, Guo K Y, Peng H, Wu W P, Ding J N 2024 Sol. Energ. Mat. Sol. C. 273 112959
[88] Blakers A W, Wang A, Milne A M, Zhao J, Green M A 1989 Appl. Phys. Lett. 55 1363
[89] Saint-Cast P, Benick J, Kania D, Weiss L, Hofmann M, Rentsch J, Preu R, Glunz S W 2010 IEEE Electron. Device Lett. 31 695
[90] Töfflingera J A, Laadesb A, Leendertza C, Montañeza L M, Kortea L, Stürzebecher U, Sperlichc H P, Recha B 2014 Energy Procedia 55 845
[91] Gatz S, Hannebauer H, Hesse R, Werner F, Schmidt A, Dullweber T, Schmidt J, Bothe K, Brendel R 2011 Phys. Status Solidi Rapid Res. Lett. 5 147
[92] Kim J, Ju M, Kim Y, Yi J 2022 Mat Sci Semicon Proc. 148 106833
[93] Tong R, Zhang S C, Liu D M, Zhang W P, Wang Y T, Liu X F 2021 Sol. Energ. Mat. Sol. C. 231 111319
[94] Liu P K, Cheng Y L, Wang L K 2020 Int. J. Photoenergy 2020 6686797
[95] Kashyap S, Madan J, Pandey R, Ramanujam J 2022 Opt. Mater. 128 112399
[96] Mouri T K, Upadhyaya A, Rohatgi A, Ok Y W, Hua A, Hauschild D, Weinhardt L, Heske C, Upadhyaya V, Rounsaville B, Shafarman WN, Das U K 2023 IEEE 50th Photovoltaic Specialists Conference (PVSC) San Juan, PR, USA, June, 11-16, 2023
[97] Jang J S, Kim H S, Karade V C, Park S W, Kim C W, Kim J H 2024 J. Alloys Compd. 970 172691
[98] Wei P F, Tong R, Liu X F, Wei Y, Zhang Y A, Liu X, Dai J, Yin H P, Liu D M 2024 Mat Sci Semicon Proc. 170 107947
Metrics
- Abstract views: 116
- PDF Downloads: 5
- Cited By: 0