Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Control of electric properties of silicene heterostructure by reversal of ferroelectric polarization

Ding Jun Wen Li-Wei Li Rui-Xue Zhang Ying

Citation:

Control of electric properties of silicene heterostructure by reversal of ferroelectric polarization

Ding Jun, Wen Li-Wei, Li Rui-Xue, Zhang Ying
PDF
HTML
Get Citation
  • Silicene is a kind of two-dimensional material composed of a honeycomb arrangement of silicon atoms. Compared with the structure of graphene, the buckled structure of silicene weakens the $\pi—\pi$ overlaps and turns the hybrid orbitals from $\rm sp^2$ to $\rm sp^3$, which enhances the spin-orbit coupling strength but still preserves the Dirac cone near K or K'. Owing to its buckled structure, silicene is susceptible to external parameters like electric field and substrate, which draws lots of attention both experimentally and theoretically. Recent progress of ferroelectricity in two-dimensional (2D) van der Waals materials found that the spontaneous ferroelectric polarization can be preserved even above room temperature, which inspires us to investigate how to tune the electric properties of silicene through the spontaneous polarization field of 2D ferroelectric substrate. ${\rm In_{2}}X_3$ (X = Se,S,Te) Family recently were found to have single ferroelectric monolayers with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations, and the lattice mismatch between silicene and $\rm In_{2}S_3$is negligible. Therefore, we investigate the stacking and electric properties of silicene and monolayer $\rm In_{2}S_3$ heterostructure by the first-principles calculations. The spontaneous polarization field of $\rm In_{2}S_3$ is calculated to be 1.26 $\rm μC {\cdot} cm^{-2}$, comparable to the experimental results of $\rm In_{2}Se_3$. We compare the different stacking order between silicene and $\rm In_{2}S_3$. The calculated results shown that the AB stacking is the ground state stacking order, and the reversal of the ferroelectric polarization could tune the band structure of heterostructure. When the polarization direction of $\rm In_{2}S_3$ is upward, the layer distance between silicene and $\rm In_{2}S_3$ is 3.93 Å, the polarization field and substrate interaction together break the AB sublattice symmetry and induce a 1.8 meV band gap near the Dirac point of K and K', while the Berry curvature around K and K' have opposite signs, corresponding to valley Hall effect. When the polarization is downward, the layer distance decreases to 3.62 Å and the band gap around K and K' both increase to 30.8 meV. At the same time a 0.04e charge transfer makes some bands move across the Fermi energy, corresponding to metal state. Our results pave the way for studying the ferroelectric tuning silicene heterostructures and their potential applications in information industry.
      Corresponding author: Ding Jun, dingjun@haue.edu.cn ; Zhang Ying, yingzhang@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604078, 11835003, 11347187).
    [1]

    Qiao Z, Tse W K, Jiang H, Yao Y, Niu Q 2011 Phys. Rev. Lett. 107 256801

    [2]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802Google Scholar

    [3]

    Zhao J, Liu H, Yu Z, Quhe R, Zhou S, Wang Y, Liu C C, Zhong H, Han N, Lu J, Yao Y, Wu K 2016 Prog. Mater. Sci. 83 24

    [4]

    Oostinga J B, Heersche H B, Liu X, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151Google Scholar

    [5]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820Google Scholar

    [6]

    Drummond N D, Zólyomi V, Fal'ko V I 2012 Phys. Rev. B 85 075423Google Scholar

    [7]

    Yu Z, Pan H, Yao, Y 2015 Phys. Rev. B 92 155419Google Scholar

    [8]

    Ezawa M 2012 Phys. Rev. Lett. 109 055502Google Scholar

    [9]

    Ezawa M 2013 Phys. Rev. Lett. 110 026603Google Scholar

    [10]

    Ezawa M 2012 New J. Phys. 14 033003Google Scholar

    [11]

    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227

    [12]

    Vali M, Dideban D, Moezi N 2016 J. Comput. Electron. 15 138

    [13]

    计青山, 郝鸿雁, 张存喜, 王瑞 2015 物理学报 64 087302Google Scholar

    Ji Q S, Hao H Y, Zhang C X, Wang R 2015 Acta Phys. Sin. 64 087302Google Scholar

    [14]

    侯海燕, 姚慧, 李志坚, 聂一行 2018 物理学报 67 086801Google Scholar

    Hou H Y, Yao H, Li Z J, Nie Y X 2018 Acta Phys. Sin. 67 086801Google Scholar

    [15]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [16]

    Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K 2012 Nano Lett. 12 3507Google Scholar

    [17]

    Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, Fanciulli M, Houssa M, Molle A 2014 Adv. Mater. 26 2096Google Scholar

    [18]

    Li G, Zhang L, Xu W, Pan J, Song S, Zhang Y, Zhou H, Wang Y, Bao L, Zhang Y Y, Du S, Ouyang M, Pantelides S T, Gao H J 2018 Adv. Mater. 30 1804650Google Scholar

    [19]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 6298

    [20]

    Liu Y, Zhang S, He J, Wang Z M, Liu Z 2019 Nano-Micro Lett. 11 13Google Scholar

    [21]

    Zheng Y, Ni G X, Toh C T, Tan C Y, Yao K, Özyilmaz B 2010 Phys. Rev. Lett. 105 166602Google Scholar

    [22]

    Ding J, Wen L W, Li H D, Zhang Y 2017 Phys. Lett. A 381 1749Google Scholar

    [23]

    Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X, Cobden D H 2018 Nature 560 336Google Scholar

    [24]

    Zhang J J, Zhu D, Yakobson B I 2021 Nano Lett. 21 785Google Scholar

    [25]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [26]

    Ye Q, Shen Y, Duan C 2021 Chin. Phys. Lett. 38 087702Google Scholar

    [27]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [28]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [29]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956Google Scholar

    [30]

    Ding J, Wen L W, Wang Z P, Zhang Y 2021 Mater. Today Commun. 27 102452Google Scholar

    [31]

    Ding J, Wen L W, Chai W W, Liu S C, Li R X, Li H D, Zhang Y 2021 Appl. Surf. Sci. 567 150871Google Scholar

    [32]

    宋蕊, 王必利, 冯凯, 王黎, 梁丹丹 2022 物理学报 71 037101Google Scholar

    Song R, Wang B L, Feng K, Wang L, Liang D D 2022 Acta Phys. Sin. 71 037101Google Scholar

    [33]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [35]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [36]

    Ding J, Shao D F, Li M, Wen L W, Tsymbal E Y 2021 Phys. Rev. Lett. 126 057601Google Scholar

    [37]

    Wan S, Li Y, Li W, Mao X, Wang C, Chen C, Dong J, Nie A, Xiang J, Liu Z, Zhu W, Zeng H 2019 Adv. Funct. Mater. 29 1808606Google Scholar

    [38]

    Sivadas N, Okamoto S, Xu X, Fennie C J, Xiao D 2018 Nano Lett. 18 7658Google Scholar

    [39]

    Chen M X, Zhong Z, Weinert M 2016 Phys. Rev. B 94 075409Google Scholar

    [40]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809Google Scholar

    [41]

    Pan H, Li Z, Liu C C, Zhu G, Qiao Z, Yao Y 2014 Phys. Rev. Lett. 112 106802

    [42]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [43]

    Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E, Niu Q 2004 Phys. Rev. Lett. 92 037204Google Scholar

  • 图 1  硅烯与${\rm{In}}_{2}{\rm{S}}_3$异质结的结构图 (a), (b) AA堆垛的俯视图和侧视图; (c), (d) AB堆垛的俯视图和侧视图

    Figure 1.  The structure of Silicene/${\rm{In}}_{2}{\rm{S}}_3$ heterostructure: (a), (b) the top and side view of AA stacking; (c), (d) the top and side view of AB stacking

    图 2  沿晶体表面不同方向横向平移时堆垛能变化情况. 图中给出沿[100](红色虚线)和[110](黑色实线)方向平移时堆垛能变化情况, AB堆垛在平面内平移[2/3, 2/3]即可得到AA堆垛

    Figure 2.  Stacking energy as a function of lateral shift with respect AB stacking. The stacking energy are shown both for [100] (dotted red line) and [110] (solid black line) directions. AB stacking corresponding to a fractional lateral shift of [2/3, 2/3] of the top layer compared to AA stacking

    图 3  硅烯/${\rm{In}}_{2}{\rm{S}}_3$异质结能带图 (a)和(b)分别对应${\rm{In}}_{2}{\rm{S}}_3$极化方向向上和向下

    Figure 3.  Band structure of silicene/${\rm{In}}_{2}{\rm{S}}_3$ heterostructure: (a) and (b) corresponding to the polarization of ${\rm{In}}_{2}{\rm{S}}_3$ upward and downward, respectively

    图 4  硅烯/${\rm{In}}_{2}{\rm{S}}_3$异质结能带在KK' 附近放大图 (a), (c)没有考虑自旋轨道耦合; (b), (d)考虑自旋轨道耦合, 红色虚线对应贝利曲率

    Figure 4.  Enlarged band structure of Silicene/$\rm In_{2}S_3$ heterostructure around K and K': (a), (c) Calculations without spin orbit coupling; (b), (d) with spin orbit coupling, the red dotted line is the Berry curvature

    图 5  硅烯/${\rm{In}}_{2}{\rm{S}}_3$异质结垂直于界面方向局域势函数的平均值

    Figure 5.  Plane-averaged local potential of silicene/${\rm{In}}_{2}{\rm{S}}_3$ heterostructure

    表 1  ${\rm{In}}_{2}{\rm{S}}_3$极化方向改变时总能量, 结合能以及层间距和能隙变化情况. 能隙单位为meV, SOC指考虑自旋轨道耦合后数值

    Table 1.  Total energy, adhesion energy, layer distance and energy gap with the polarization of ${\rm{In}}_{2}{\rm{S}}_3$ upward and downward. SOC refers to the energy gap (meV) calculated with spin-orbit coupling

    $E_{{\rm{tot}}}$/meV $E_{{\rm{ad}}}$/meV d $E_{\rm{g}}$ (SOC)
    ${\rm{P} }_{ {\rm{In} }_2{\rm{S} }_3}$-up 22.87 12.51 3.93 13.6 (1.8)
    ${\rm{P} }_{ {\rm{In} }_2{\rm{S} }_3}$-down 0 37.16 3.62 33.3 (30.8)
    DownLoad: CSV
  • [1]

    Qiao Z, Tse W K, Jiang H, Yao Y, Niu Q 2011 Phys. Rev. Lett. 107 256801

    [2]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802Google Scholar

    [3]

    Zhao J, Liu H, Yu Z, Quhe R, Zhou S, Wang Y, Liu C C, Zhong H, Han N, Lu J, Yao Y, Wu K 2016 Prog. Mater. Sci. 83 24

    [4]

    Oostinga J B, Heersche H B, Liu X, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151Google Scholar

    [5]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820Google Scholar

    [6]

    Drummond N D, Zólyomi V, Fal'ko V I 2012 Phys. Rev. B 85 075423Google Scholar

    [7]

    Yu Z, Pan H, Yao, Y 2015 Phys. Rev. B 92 155419Google Scholar

    [8]

    Ezawa M 2012 Phys. Rev. Lett. 109 055502Google Scholar

    [9]

    Ezawa M 2013 Phys. Rev. Lett. 110 026603Google Scholar

    [10]

    Ezawa M 2012 New J. Phys. 14 033003Google Scholar

    [11]

    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227

    [12]

    Vali M, Dideban D, Moezi N 2016 J. Comput. Electron. 15 138

    [13]

    计青山, 郝鸿雁, 张存喜, 王瑞 2015 物理学报 64 087302Google Scholar

    Ji Q S, Hao H Y, Zhang C X, Wang R 2015 Acta Phys. Sin. 64 087302Google Scholar

    [14]

    侯海燕, 姚慧, 李志坚, 聂一行 2018 物理学报 67 086801Google Scholar

    Hou H Y, Yao H, Li Z J, Nie Y X 2018 Acta Phys. Sin. 67 086801Google Scholar

    [15]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [16]

    Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K 2012 Nano Lett. 12 3507Google Scholar

    [17]

    Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, Fanciulli M, Houssa M, Molle A 2014 Adv. Mater. 26 2096Google Scholar

    [18]

    Li G, Zhang L, Xu W, Pan J, Song S, Zhang Y, Zhou H, Wang Y, Bao L, Zhang Y Y, Du S, Ouyang M, Pantelides S T, Gao H J 2018 Adv. Mater. 30 1804650Google Scholar

    [19]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 6298

    [20]

    Liu Y, Zhang S, He J, Wang Z M, Liu Z 2019 Nano-Micro Lett. 11 13Google Scholar

    [21]

    Zheng Y, Ni G X, Toh C T, Tan C Y, Yao K, Özyilmaz B 2010 Phys. Rev. Lett. 105 166602Google Scholar

    [22]

    Ding J, Wen L W, Li H D, Zhang Y 2017 Phys. Lett. A 381 1749Google Scholar

    [23]

    Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X, Cobden D H 2018 Nature 560 336Google Scholar

    [24]

    Zhang J J, Zhu D, Yakobson B I 2021 Nano Lett. 21 785Google Scholar

    [25]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [26]

    Ye Q, Shen Y, Duan C 2021 Chin. Phys. Lett. 38 087702Google Scholar

    [27]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [28]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar

    [29]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956Google Scholar

    [30]

    Ding J, Wen L W, Wang Z P, Zhang Y 2021 Mater. Today Commun. 27 102452Google Scholar

    [31]

    Ding J, Wen L W, Chai W W, Liu S C, Li R X, Li H D, Zhang Y 2021 Appl. Surf. Sci. 567 150871Google Scholar

    [32]

    宋蕊, 王必利, 冯凯, 王黎, 梁丹丹 2022 物理学报 71 037101Google Scholar

    Song R, Wang B L, Feng K, Wang L, Liang D D 2022 Acta Phys. Sin. 71 037101Google Scholar

    [33]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [35]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [36]

    Ding J, Shao D F, Li M, Wen L W, Tsymbal E Y 2021 Phys. Rev. Lett. 126 057601Google Scholar

    [37]

    Wan S, Li Y, Li W, Mao X, Wang C, Chen C, Dong J, Nie A, Xiang J, Liu Z, Zhu W, Zeng H 2019 Adv. Funct. Mater. 29 1808606Google Scholar

    [38]

    Sivadas N, Okamoto S, Xu X, Fennie C J, Xiao D 2018 Nano Lett. 18 7658Google Scholar

    [39]

    Chen M X, Zhong Z, Weinert M 2016 Phys. Rev. B 94 075409Google Scholar

    [40]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809Google Scholar

    [41]

    Pan H, Li Z, Liu C C, Zhu G, Qiao Z, Yao Y 2014 Phys. Rev. Lett. 112 106802

    [42]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [43]

    Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E, Niu Q 2004 Phys. Rev. Lett. 92 037204Google Scholar

  • [1] Jiang Zhou, Jiang Xue, Zhao Ji-Jun. Electronic properties of two-dimensional kagome lattice based on transition metal phthalocyanine heterojunctions. Acta Physica Sinica, 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [2] Chen Jian, Xiong Kang-Lin, Feng Jia-Gui. Adsorption of CoPc molecules on silicene surface. Acta Physica Sinica, 2022, 71(4): 040501. doi: 10.7498/aps.71.20211607
    [3] Hao Guo-Qiang, Zhang Rui, Zhang Wen-Jing, Chen Na, Ye Xiao-Jun, Li Hong-Bo. Regulation and control of Schottky barrier in graphene/MoSe2 heteojuinction by asymmetric oxygen doping. Acta Physica Sinica, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [4] Jia Yan-Wei, He Jian, He Meng, Zhu Xiao-Hua, Zhao Shang-Man, Liu Jin-Long, Chen Liang-Xian, Wei Jun-Jun, Li Cheng-Ming. Synthesis of h-BN/diamond heterojunctions and its electrical characteristics. Acta Physica Sinica, 2022, 71(22): 228101. doi: 10.7498/aps.71.20220995
    [5] Ma Hao-Hao, Zhang Xian-Bin, Wei Xu-Yan, Cao Jia-Meng. Theoretical study on Schottky regulation of WSe2/graphene heterostructure doped with nonmetallic elements. Acta Physica Sinica, 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [6] Liu Chuan-Chuan, Hao Fei-Xiang, Yin Yue-Wei, Li Xiao-Guang. Photovoltaic effect and photo-assisted diode behavior in Pt/BiFeO3/Nb-doped SrTiO3 heterojunction. Acta Physica Sinica, 2020, 69(12): 127301. doi: 10.7498/aps.69.20200280
    [7] Guo Li-Juan, Hu Ji-Song, Ma Xin-Guo, Xiang Ju. Interfacial interaction and Schottky contact of two-dimensional WS2/graphene heterostructure. Acta Physica Sinica, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [8] Zuo Yi-Fan, Li Pei-Li, Luan Kai-Zhi, Wang Lei. Heterojunction polarization beam splitter based on self-collimation in photonic crystal. Acta Physica Sinica, 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [9] Yang Shuo, Cheng Peng, Chen Lan, Wu Ke-Hui. Chemical functionalization of silicene. Acta Physica Sinica, 2017, 66(21): 216805. doi: 10.7498/aps.66.216805
    [10] Wei Ji-Zhou, Zhang Ming, Deng Hao-Liang, Chu Shang-Jie, Du Min-Yong, Yan Hui. Preparation and exchange bias effects of Bi0.8Ba0.2FeO3/La0.7Sr0.3MnO3 heterostructures. Acta Physica Sinica, 2015, 64(8): 088101. doi: 10.7498/aps.64.088101
    [11] Zhang Xian, Guo Zhi-Xin, Cao Jue-Xian, Xiao Si-Guo, Ding Jian-Wen. Atomic and electronic structures of silicene and germanene on GaAs(111). Acta Physica Sinica, 2015, 64(18): 186101. doi: 10.7498/aps.64.186101
    [12] An Xing-Tao, Diao Shu-Meng. Transport properties in a gate controlled silicene quantum wire. Acta Physica Sinica, 2014, 63(18): 187304. doi: 10.7498/aps.63.187304
    [13] Xue Yuan, Gao Chao-Jun, Gu Jin-Hua, Feng Ya-Yang, Yang Shi-E, Lu Jing-Xiao, Huang Qiang, Feng Zhi-Qiang. Study on the properties and optical emission spectroscopy of the intrinsic silicon thin film in silicon heterojunction solar cells. Acta Physica Sinica, 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [14] Zhao Geng, Cheng Xiao-Man, Tian Hai-Jun, Du Bo-Qun, Liang Xiao-Yu, Wu Feng. The influence of modified electrodes by V2O5 film on the performance of ambipolar organic field-effect transistors based on C60/Pentacene. Acta Physica Sinica, 2012, 61(21): 218502. doi: 10.7498/aps.61.218502
    [15] Zhang Xin, Zhang Xiao-Zhong, Tan Xin-Yu, Yu Yi, Wan Cai-Hua. Enhancing photovoltaic effect of Co2-C98/Al2O3/Si heterostructures by Al2O3. Acta Physica Sinica, 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [16] Ding Wen-Ge, Sang Yun-Gang, Yu Wei, Yang Yan-Bin, Teng Xiao-Yun, Fu Guang-Sheng. Current transport mechanism in silicon-rich silicon nitride/c-Si heterojunction. Acta Physica Sinica, 2012, 61(24): 247304. doi: 10.7498/aps.61.247304
    [17] Wu Li-Hua, Zhang Xiao-Zhong, Yu Yi, Wan Cai-Hua, Tan Xin-Yu. Photovoltaic effect of a-C: Fe/AlOx /Si based heterostructures. Acta Physica Sinica, 2011, 60(3): 037807. doi: 10.7498/aps.60.037807
    [18] Li Yan-Wu, Liu Peng-Yi, Hou Lin-Tao, Wu Bing. Heterojunction organic solar cells with Rubrene as electron transporting layer. Acta Physica Sinica, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [19] Liu Hong, Chen Jiang-Wei. The structure and electronic properties of carbon nanotube heterojunction. Acta Physica Sinica, 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
    [20] LI SHU-PING, WANG REN-ZHI, ZHENG YONG-MEI, CAI SHU-HUI, HE GUO-MIN. APPLLICATIONS OF AVERAGE-BOND-ENERGY METHOD IN STRAINED-LAYER HETEROJUNCTION BAND OFFSET. Acta Physica Sinica, 2000, 49(8): 1441-1446. doi: 10.7498/aps.49.1441
Metrics
  • Abstract views:  4350
  • PDF Downloads:  103
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2022
  • Accepted Date:  21 May 2022
  • Available Online:  15 August 2022
  • Published Online:  05 September 2022

/

返回文章
返回