Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis of h-BN/diamond heterojunctions and its electrical characteristics

Jia Yan-Wei He Jian He Meng Zhu Xiao-Hua Zhao Shang-Man Liu Jin-Long Chen Liang-Xian Wei Jun-Jun Li Cheng-Ming

Citation:

Synthesis of h-BN/diamond heterojunctions and its electrical characteristics

Jia Yan-Wei, He Jian, He Meng, Zhu Xiao-Hua, Zhao Shang-Man, Liu Jin-Long, Chen Liang-Xian, Wei Jun-Jun, Li Cheng-Ming
PDF
HTML
Get Citation
  • Conductive channel on the surface of hydrogen terminated diamond with two-dimensional h-BN passivation exhibits high hole mobility. However, the current h-BN passivated diamond mainly uses the method of mechanical peeling, which cannot achieve a large-size conductive channel and is difficult to meet the actual application requirements. In this study, the effect of classical transfer h-BN on the conductive channel on the surface of hydrogen terminated diamond is studied. High-quality single crystal diamond is epitaxially grown by microwave chemical vapor deposition (MPCVD) and the hydrogen terminated diamond is obtained by surface hydrogenation treatment. H-BN/H-diamond heterojunctions with different layers of h-BN are prepared by wetting transfer, and the characteristics of channel carrier transport are systematically studied. The results show that the channel conductivity is significantly enhanced after h-BN transfer, and with the increase of h-BN thickness, the enhancement effect of channel conductivity tends to be stable. The transfer of multilayer h-BN can increase the carrier density on the surface of hydrogen terminated diamond by nearly 2 times, and the square resistance is reduced to 50%. The current results show that the h-BN/H-diamond heterojunction may have a transfer doping effect, resulting in a significant increase in carrier density. With the increase of the channel carrier density, the channel mobility on the surface of the h-BN passivated diamond remains stable. The H-BN absorbs on the surface of the diamond, so that the negative charge originally on the surface of the hydrogen termination moves to the surface of h-BN, and the distance of action increases, weakening the coupling of the negative charge of the hole with the negative charge of the dielectric layer in the conductive channel of the hydrogen terminated diamond, which makes the mobility stable.
      Corresponding author: Liu Jin-Long, liujinlong@ustb.edu.cn ; Li Cheng-Ming, chengmli@mater.ustb.edu.cn
    • Funds: Project supported by the National MCF Energy R & D Program, Cnina(Grant No. 2019YFE03100200), the Natural Science Foundation of Beijing, China (Grant No. 4192038), and the Nuclear Science Foundation of National Key Laboratory of Nuclear Detection and Nuclear Electronics of China (Grant No. SKLPDE-KF-202202).
    [1]

    Stenger I, Pinault Thaury M A, Kociniewski T, Lusson A, Chikoidze E, Jomard F, Dumont Y, Chevallier J, Barjon J 2013 J. Appl. Phys. 114 073711Google Scholar

    [2]

    李成明, 任飞桐, 邵思武, 牟恋希, 张钦睿, 何健, 郑宇亭, 刘金龙, 魏俊俊, 陈良贤, 吕反修 2022 人工晶体学报 51 759Google Scholar

    Li C M, Ren F T, Shao S W, Mou L X, Zhang Q R, He J, Zheng Y T, Liu J L, Wei J J, Chen L X, Lü F X 2022 J. Synth. Cryst. 51 759Google Scholar

    [3]

    姜荣超, 雷雨, 李超群, 刘谷成, 周晓丹 2008 金刚石与磨料磨具工程 20 42Google Scholar

    Jiang R C, Li C Q, Liu G C, Zhou X D 2008 Diamond Abras. Eng. 20 42Google Scholar

    [4]

    Kubovic M, Kasu M, Kageshima H, Maeda F 2010 Diamond Relat. Mater. 19 889Google Scholar

    [5]

    Geis M W, Fedynyshyn T H, Plaut M E, Wade T C, Wuorio C H, Vitale S A, Varghese J O, Grotjohn T A, Nemanich R J, Hollis M A 2018 Diamond Relat. Mater. 84 86Google Scholar

    [6]

    Saha N C, Takahashi K, Imamura M, Kasu M 2020 J. Appl. Phys. 128 135702Google Scholar

    [7]

    Sato H, Kasu M 2012 Diamond Relat. Mater. 24 99Google Scholar

    [8]

    Daicho A, Saito T, Kurihara S, Hiraiwa A, Kawarada H 2014 J. Appl. Phys. 115 223711Google Scholar

    [9]

    Geis M W, Varghese J O, Hollis M A, Nemanich R J, Zhang X, Turner G W, Warnock S M, Vitale S A, Osadchy T, Zhang B 2020 Diamond Relat. Mater. 106 107819Google Scholar

    [10]

    Russell S A O, Cao L, Qi D, Tallaire A, Crawford K G, Wee A T S, Moran D A 2013 Appl. Phys. Lett. 103 202112Google Scholar

    [11]

    Tordjman M, Saguy C, Bolker A, Kalish R 2014 Adv. Mater. 1 1300155Google Scholar

    [12]

    Verona C, Ciccognani W, Colangeli S, Limiti E, Marco Marinelli G, Verona R 2016 J. Appl. Phys. 120 025104Google Scholar

    [13]

    Tordjman M, Weinfeld K, Kalish R 2017 Appl. Phys. Lett. 111 111601Google Scholar

    [14]

    Kevin G, Crawford, Liang C, Dongchen Q, Alexandre T, Limiti E, Verona C, Andrew T S W, David A J M 2016 Appl. Phys. Lett. 108 042103Google Scholar

    [15]

    Hussain J, Abbasi H N, Wang W, Wang Y F, Wang H X 2020 AIP Adv. 10 035327Google Scholar

    [16]

    邢雨菲, 任泽阳, 张金风, 苏凯, 丁森川, 何琦, 张进成, 张春福, 郝跃 2022 物理学报 71 088102Google Scholar

    Xing Y F, Ren Z Y, Zhang J F, Su K, Ding S C, He Q, Zhang J C, Zhang C F, Hao Y 2022 Acta Phys. Sin. 71 088102Google Scholar

    [17]

    Ren Z, Zhang J, Zhang J, Zhang C, Chen D, Quan R, Yang J, Lin Z, Hao Y 2017 AIP Adv. 7 125302Google Scholar

    [18]

    Imura, M, Banal R G, Liao M, Liu J, Aizawa T, Tanaka A 2017 J. Appl. Phys. 121 025702Google Scholar

    [19]

    Liu J L, Zheng Y T, Lin L Z, Zhao Y, Chen L X, Wei J J 2018 J. Mater. Sci. 53 13030Google Scholar

    [20]

    Liu J L, Yu H, Shao S W, Tu J P, Zhu X H, Yuan X L, Wei J J, Chen L X, Ye H T, Li C M 2020 Diamond Relat. Mater. 104 107750Google Scholar

    [21]

    Sasama Y, Komatsu K, Moriyama S, Imura M, Takahide Y 2018 APL Mater. 6 111105Google Scholar

    [22]

    Sasama Y, Kageura T, Imura M, Watanabe K, Taniguchi T, Uchihashi T, Takahide Y 2022 Nat. Eletronics 5 37

    [23]

    Su J, Li Y, Li X, Yao P, Tang W 2014 Diamond Relat. Mater. 42 28Google Scholar

    [24]

    安康, 刘金龙, 林亮珍, 张博弈, 赵云, 郭彦召, Tomasz O, 陈良贤, 魏俊俊, 李成明 2018 表面技术 47 11

    An K, Liu J L, Lin L Z, Zhang B Y, Zhao Y, Guo Y Z, Tomasz O, Chen L X, Wei J J, Li C M 2018 Surf. Technol. 47 11

    [25]

    Lindblom J 2005 Am. Mineral 90 428Google Scholar

    [26]

    Crawford, Kevin G, Tallaire, Alexandre X, Macdonald, David A, Dongchen M, David A J 2018 Diamond Relat. Mater. 84 48Google Scholar

    [27]

    Geis M W, Varghese J O, Vardi A, Kedzierski J, Zhang B 2021 Diamond Relat. Mater. 118 108518Google Scholar

    [28]

    Tang S, Liu H, Tian Y, Chen D, Zhou J 2021 Spectrochim. Acta, Part A 262 120092Google Scholar

    [29]

    Xing K, Xiang Y, Jiang, M, Creedon, D L, Qi D C 2020 Appl. Surf. Sci. 509 144890Google Scholar

    [30]

    Verona C, Arciprete F, Foffi M, Limiti E, Marinelli M, Placidi E 2018 Appl. Phys. Lett. 112 180602Google Scholar

    [31]

    Ogawa S, Yamada T, Kadowaki R, Taniguchi T, Abukawa T, Takakuwa Y 2019 J. Appl. Phys. 125 144303Google Scholar

    [32]

    Mirabedini P S, Debnath B, Neupane M R, Greaney P A, Ivanov T G 2020 Appl. Phys. Lett. 117 121901Google Scholar

    [33]

    Gorbachev R V, Riaz I, Nair R, Jalil R, Britnell L, Belle B D, Hill E W, Novoselov K S, Watanabe K, Taniguchi T, Geim A K, Blake P 2011 Small 7 465Google Scholar

    [34]

    Verona C, Ciccognani W, Colangeli S, Limiti E, Marinelli M, Verona R G 2016 J. Appl. Phy. 120 025104

    [35]

    Li Y, Zhang J, Liu G, Ren Z, Zhang J, Hao Y 2018 Phys. Status Solidi RRL. 12 1700401Google Scholar

  • 图 1  (a) 生长前衬底拉曼光谱图; (b) 生长后外延层拉曼光谱图; (c) 生长前衬底摇摆曲线; (d) 生长后外延层摇摆曲线; (e) 生长前衬底PL光谱; (f) 生长后外延层PL光谱

    Figure 1.  (a) Raman spectra of the substrate before growth; (b) raman spectra of the epitaxial layer after growth; (c) rocking curve of pre-growth substrate; (d) rocking curve of postgrowth epitaxial layer; (e) PL spectra of pre-growth substrate; (f) PL spectra of postgrowth epitaxial layer.

    图 2  (a) 表面氢化处理前金刚石精密抛光表面形貌; (b) 金刚石氢化处理后表面形貌

    Figure 2.  (a) Surface morphology of precision-polishing diamond before surface hydrogenation; (b) surface morphology of diamond after hydrogenation treatment.

    图 3  氢终端金刚石导电性能随时间的变化 (a)方阻随时间的变化; (b)载流子密度随时间变化; (c)迁移率随时间变化

    Figure 3.  The conductivity of hydrogen terminated diamond changes over time: (a) The change of the square resistance over time; (b) carrier concentration over time; (c) mobility over time.

    图 4  (a) h-BN/Si拉曼图谱; (b) 转移前后氢终端表面的XPS

    Figure 4.  (a) Raman spectra of h-BN/Si; (b) XPS of the hydrogen terminated surface before and after h-BN transfer.

    图 5  不同厚度的h-BN转移后氢终端金刚石电学性能

    Figure 5.  Electrical properties of hydrogen terminated diamond after different-thickness h-BN transfer.

    图 6  氢终端金刚石以及不同固体介质材料的电子亲和势

    Figure 6.  Schematic diagram of hydrogen terminated diamond and metal oxide.

    图 7  (a) h-BN/H-diamond的界面结构; (b) diamond晶体结构; (c) h-BN/H-diamond异质结示意图

    Figure 7.  (a) Interface structure of h-BN/H-diamond; (b) diamond crystal structure; (c) schematic diagram of h-BN/H-diamond heterojunction.

    表 1  生长、氢化预处理、表面氢化工艺参数

    Table 1.  Growth, cleaning, and hydrogenation parameters.

    工艺参数温度/℃功率/W腔压/kPa甲烷流量/%氧气流量/%
    生长800—8503800—390017—2050.3
    氢化预处理8001500—200010—12
    表面氢化700—7501400—16003—5
    DownLoad: CSV

    表 2  多层h-BN转移前后(100)氢终端金刚石的电学性能(YW-0为PMMA空白对照试验; YW-1, YW-2, YW-3为多层h-BN转移前后的结果)

    Table 2.  Electrical properties of hydrogen terminated diamond before and after multilayer h-BN transfer (YW-0 is a PMMA blank control test; YW-1, YW-2, YW-3 are multilayer Results before and after h-BN transfer).

    编号方阻
    /(103 Ω·□–1)
    迁移率
    /(cm2·V–1·s–1)
    载流子密度
    /(1012 cm–2)
    YW-0转移前10.8203.92.84
    转移后10.6198.52.96
    YW-1转移前12.0246.62.11
    转移后5.98248.44.20
    YW-2转移前10.1246.02.50
    转移后5.48195.65.83
    YW-3转移前10.2161.93.75
    转移后4.88145.18.81
    DownLoad: CSV
  • [1]

    Stenger I, Pinault Thaury M A, Kociniewski T, Lusson A, Chikoidze E, Jomard F, Dumont Y, Chevallier J, Barjon J 2013 J. Appl. Phys. 114 073711Google Scholar

    [2]

    李成明, 任飞桐, 邵思武, 牟恋希, 张钦睿, 何健, 郑宇亭, 刘金龙, 魏俊俊, 陈良贤, 吕反修 2022 人工晶体学报 51 759Google Scholar

    Li C M, Ren F T, Shao S W, Mou L X, Zhang Q R, He J, Zheng Y T, Liu J L, Wei J J, Chen L X, Lü F X 2022 J. Synth. Cryst. 51 759Google Scholar

    [3]

    姜荣超, 雷雨, 李超群, 刘谷成, 周晓丹 2008 金刚石与磨料磨具工程 20 42Google Scholar

    Jiang R C, Li C Q, Liu G C, Zhou X D 2008 Diamond Abras. Eng. 20 42Google Scholar

    [4]

    Kubovic M, Kasu M, Kageshima H, Maeda F 2010 Diamond Relat. Mater. 19 889Google Scholar

    [5]

    Geis M W, Fedynyshyn T H, Plaut M E, Wade T C, Wuorio C H, Vitale S A, Varghese J O, Grotjohn T A, Nemanich R J, Hollis M A 2018 Diamond Relat. Mater. 84 86Google Scholar

    [6]

    Saha N C, Takahashi K, Imamura M, Kasu M 2020 J. Appl. Phys. 128 135702Google Scholar

    [7]

    Sato H, Kasu M 2012 Diamond Relat. Mater. 24 99Google Scholar

    [8]

    Daicho A, Saito T, Kurihara S, Hiraiwa A, Kawarada H 2014 J. Appl. Phys. 115 223711Google Scholar

    [9]

    Geis M W, Varghese J O, Hollis M A, Nemanich R J, Zhang X, Turner G W, Warnock S M, Vitale S A, Osadchy T, Zhang B 2020 Diamond Relat. Mater. 106 107819Google Scholar

    [10]

    Russell S A O, Cao L, Qi D, Tallaire A, Crawford K G, Wee A T S, Moran D A 2013 Appl. Phys. Lett. 103 202112Google Scholar

    [11]

    Tordjman M, Saguy C, Bolker A, Kalish R 2014 Adv. Mater. 1 1300155Google Scholar

    [12]

    Verona C, Ciccognani W, Colangeli S, Limiti E, Marco Marinelli G, Verona R 2016 J. Appl. Phys. 120 025104Google Scholar

    [13]

    Tordjman M, Weinfeld K, Kalish R 2017 Appl. Phys. Lett. 111 111601Google Scholar

    [14]

    Kevin G, Crawford, Liang C, Dongchen Q, Alexandre T, Limiti E, Verona C, Andrew T S W, David A J M 2016 Appl. Phys. Lett. 108 042103Google Scholar

    [15]

    Hussain J, Abbasi H N, Wang W, Wang Y F, Wang H X 2020 AIP Adv. 10 035327Google Scholar

    [16]

    邢雨菲, 任泽阳, 张金风, 苏凯, 丁森川, 何琦, 张进成, 张春福, 郝跃 2022 物理学报 71 088102Google Scholar

    Xing Y F, Ren Z Y, Zhang J F, Su K, Ding S C, He Q, Zhang J C, Zhang C F, Hao Y 2022 Acta Phys. Sin. 71 088102Google Scholar

    [17]

    Ren Z, Zhang J, Zhang J, Zhang C, Chen D, Quan R, Yang J, Lin Z, Hao Y 2017 AIP Adv. 7 125302Google Scholar

    [18]

    Imura, M, Banal R G, Liao M, Liu J, Aizawa T, Tanaka A 2017 J. Appl. Phys. 121 025702Google Scholar

    [19]

    Liu J L, Zheng Y T, Lin L Z, Zhao Y, Chen L X, Wei J J 2018 J. Mater. Sci. 53 13030Google Scholar

    [20]

    Liu J L, Yu H, Shao S W, Tu J P, Zhu X H, Yuan X L, Wei J J, Chen L X, Ye H T, Li C M 2020 Diamond Relat. Mater. 104 107750Google Scholar

    [21]

    Sasama Y, Komatsu K, Moriyama S, Imura M, Takahide Y 2018 APL Mater. 6 111105Google Scholar

    [22]

    Sasama Y, Kageura T, Imura M, Watanabe K, Taniguchi T, Uchihashi T, Takahide Y 2022 Nat. Eletronics 5 37

    [23]

    Su J, Li Y, Li X, Yao P, Tang W 2014 Diamond Relat. Mater. 42 28Google Scholar

    [24]

    安康, 刘金龙, 林亮珍, 张博弈, 赵云, 郭彦召, Tomasz O, 陈良贤, 魏俊俊, 李成明 2018 表面技术 47 11

    An K, Liu J L, Lin L Z, Zhang B Y, Zhao Y, Guo Y Z, Tomasz O, Chen L X, Wei J J, Li C M 2018 Surf. Technol. 47 11

    [25]

    Lindblom J 2005 Am. Mineral 90 428Google Scholar

    [26]

    Crawford, Kevin G, Tallaire, Alexandre X, Macdonald, David A, Dongchen M, David A J 2018 Diamond Relat. Mater. 84 48Google Scholar

    [27]

    Geis M W, Varghese J O, Vardi A, Kedzierski J, Zhang B 2021 Diamond Relat. Mater. 118 108518Google Scholar

    [28]

    Tang S, Liu H, Tian Y, Chen D, Zhou J 2021 Spectrochim. Acta, Part A 262 120092Google Scholar

    [29]

    Xing K, Xiang Y, Jiang, M, Creedon, D L, Qi D C 2020 Appl. Surf. Sci. 509 144890Google Scholar

    [30]

    Verona C, Arciprete F, Foffi M, Limiti E, Marinelli M, Placidi E 2018 Appl. Phys. Lett. 112 180602Google Scholar

    [31]

    Ogawa S, Yamada T, Kadowaki R, Taniguchi T, Abukawa T, Takakuwa Y 2019 J. Appl. Phys. 125 144303Google Scholar

    [32]

    Mirabedini P S, Debnath B, Neupane M R, Greaney P A, Ivanov T G 2020 Appl. Phys. Lett. 117 121901Google Scholar

    [33]

    Gorbachev R V, Riaz I, Nair R, Jalil R, Britnell L, Belle B D, Hill E W, Novoselov K S, Watanabe K, Taniguchi T, Geim A K, Blake P 2011 Small 7 465Google Scholar

    [34]

    Verona C, Ciccognani W, Colangeli S, Limiti E, Marinelli M, Verona R G 2016 J. Appl. Phy. 120 025104

    [35]

    Li Y, Zhang J, Liu G, Ren Z, Zhang J, Hao Y 2018 Phys. Status Solidi RRL. 12 1700401Google Scholar

  • [1] Liu Jun-Ling, Bai Yu-Jie, Xu Ning, Zhang Qin-Fang. First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure. Acta Physica Sinica, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] Ma Meng-Yu, Yu Cui, He Ze-Zhao, Guo Jian-Chao, Liu Qing-Bin, Feng Zhi-Hong. Growth and surface structrue of hydrogen terminal diamond thin films. Acta Physica Sinica, 2024, 73(8): 088101. doi: 10.7498/aps.73.20240053
    [3] Ding Jun, Wen Li-Wei, Li Rui-Xue, Zhang Ying. Control of electric properties of silicene heterostructure by reversal of ferroelectric polarization. Acta Physica Sinica, 2022, 71(17): 177303. doi: 10.7498/aps.71.20220815
    [4] Bai Liang, Zhao Qi-Xu, Shen Jian-Wei, Yang Yan, Yuan Qing-Hong, Zhong Cheng, Sun Hai-Tao, Sun Zhen-Rong. Computational screening of photocathodes based on layered MXene coated Cs3Sb heterostructures. Acta Physica Sinica, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [5] Sun Zhi-Hai, Huang Qiang, Zhang Ying, Huang Peng-Ru, Zhi Hui-Yin, Zou Yong-Jin, Xu Fen, Sun Li-Xian. First-principle calculation study of (CN)3VB defect in hexagonal boron nitride monolayer. Acta Physica Sinica, 2021, 70(3): 033102. doi: 10.7498/aps.70.20201364
    [6] Jiang Cheng-Xin, Chen Ling-Xiu, Wang Hui-Shan, Wang Xiu-Jun, Chen Chen, Wang Hao-Min, Xie Xiao-Ming. Synthesis and pressure study of bubbles in hexagonal boron nitride interlayer. Acta Physica Sinica, 2021, 70(6): 069801. doi: 10.7498/aps.70.20201482
    [7] Chen Ling-Xiu, Wang Hui-Shan, Jiang Cheng-Xin, Chen Chen, Wang Hao-Min. Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride. Acta Physica Sinica, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [8] Han Dian-Rong, Wang Lu, Luo Cheng-Lin, Zhu Xing-Feng, Dai Ya-Fei. Torsional mechanical properties of (n, n)-(2n, 0) carbon nanotubes heterojunction. Acta Physica Sinica, 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [9] Wen Jia-Le, Xu Zhi-Cheng, Gu Yu, Zheng Dong-Qin, Zhong Wei-Rong. Thermal rectification of heterojunction nanotubes. Acta Physica Sinica, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [10] Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan. Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Acta Physica Sinica, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [11] Cao Ning-Tong, Zhang Lei, Lü Lu, Xie Hai-Peng, Huang Han, Niu Dong-Mei, Gao Yong-Li. van der Waals heterostructure about CuPc/MoS2(0001). Acta Physica Sinica, 2014, 63(16): 167903. doi: 10.7498/aps.63.167903
    [12] Ding Wen-Ge, Sang Yun-Gang, Yu Wei, Yang Yan-Bin, Teng Xiao-Yun, Fu Guang-Sheng. Current transport mechanism in silicon-rich silicon nitride/c-Si heterojunction. Acta Physica Sinica, 2012, 61(24): 247304. doi: 10.7498/aps.61.247304
    [13] Wu Li-Hua, Zhang Xiao-Zhong, Yu Yi, Wan Cai-Hua, Tan Xin-Yu. Photovoltaic effect of a-C: Fe/AlOx /Si based heterostructures. Acta Physica Sinica, 2011, 60(3): 037807. doi: 10.7498/aps.60.037807
    [14] Li Yan-Wu, Liu Peng-Yi, Hou Lin-Tao, Wu Bing. Heterojunction organic solar cells with Rubrene as electron transporting layer. Acta Physica Sinica, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [15] Zhang Wei-Ying, Wu Xiao-Peng, Sun Li-Jie, Lin Bi-Xia, Fu Zhu-Xi. Study on the photovoltaic conversion of ZnO/Si heterojunction. Acta Physica Sinica, 2008, 57(7): 4471-4475. doi: 10.7498/aps.57.4471
    [16] Wu Kai-Shun, Long Xing-Teng, Dong Jian-Wen, Chen Di-Hu, Wang He-Zhou. Phase properties of photonic crystal heterostructure and its applications. Acta Physica Sinica, 2008, 57(10): 6381-6385. doi: 10.7498/aps.57.6381
    [17] Guan Chun-Ying, Yuan Li-Bo. Analysis of band gap in honeycomb photonic crystal heterostructure. Acta Physica Sinica, 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [18] Liu Jiang-Tao, Zhou Yun-Song, Wang Fu-He, Gu Ben-Yuan. Guide modes at interface of photonic crystal heterostructures composed of different lattices. Acta Physica Sinica, 2004, 53(6): 1845-1849. doi: 10.7498/aps.53.1845
    [19] Liu Hong, Chen Jiang-Wei. The structure and electronic properties of carbon nanotube heterojunction. Acta Physica Sinica, 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
    [20] LI GUO-HUI, ZHOU SHI-PING, XU DE-MING. RESEARCH ON THE DYNAMICAL BEHAVIORS OF GaAs/AlGaAs HETEROSTRUCTURES. Acta Physica Sinica, 2001, 50(8): 1567-1573. doi: 10.7498/aps.50.1567
Metrics
  • Abstract views:  5262
  • PDF Downloads:  217
  • Cited By: 0
Publishing process
  • Received Date:  19 May 2022
  • Accepted Date:  11 July 2022
  • Available Online:  04 November 2022
  • Published Online:  20 November 2022

/

返回文章
返回