Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures

Liu Meng-Xi Zhang Yan-Feng Liu Zhong-Fan

Citation:

Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures

Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In-plane heterostructure of hexagonal boron nitride and graphene (h-BN-G) has become a research focus of graphene due to its predicted fascinating properties such as bandgap opening and magnetism, which hence has ignited the attempt of experimentally growing such in-plane two-dimensional (2D) hybrid materials. Many previous researches demonstrated the synthesis of such heterostructures on Cu foils via chemical vapor deposition (CVD) process. The obtained 2D hybrid materials would offer a possibility for fabricating atomically thin electronic devices. However, many fundamental issues are still unclear, including the in-plane atomic continuity, the edge type, and the electronic properties at the boundary of hybridized h-BN and graphene domain. To clarify these issues, we report the syntheses of h-BN-G monolayer heterostructures on strongly coupled Rh(111) substrate and weakly coupled Ir(111) substrate via a two-step growth process in an ultrahigh vacuum (UHV) system, respectively. With the aid of scanning tunneling microscopy (STM), it is revealed that graphene and h-BN could be linked together seamlessly on an atomic scale at the linking boundaries. More importantly, we find that the atomically sharp zigzag-type boundaries dominate the patching interface between graphene and h-BN as demonstrated by atomic-scale STM images. To understand the physical origin of the atomic linking of the h-BN-G heterostructures, we also perform density functional theory (DFT) calculations, including geometry optimizations and binding energy calculations for different kinds of linking interfaces. The calculated results reconfirm that graphene prefers to grow on the h-BN domain edges and form zigzag linking boundaries. Besides the atomic structures on the linking interfaces, the electronic characteristics are also of particular importance. It is worth noting that the substrates coupled strongly with graphene by π-d orbital hybridization (such as Rh(111) and Ru(0001)), lead to downward shift of graphene π-bands away from the Fermi level, or decay of the intrinsic electronic structure of graphene. In this regard, the influence of h-BN on the electronic property of graphene is hard to identify on such h-BN-G heterostructures. The weakly coupled Ir(111) is chosen to be a perfect substrate to investigate the interface electronic properties of h-BN-G heterostructure due to the absence of substrate electronic doping effect. Scanning tunneling spectroscopy studies indicate that the graphene and h-BN tend to exhibit their own intrinsic electronic features near the linking boundaries on Ir(111). Therefore, the present work offers a deep insight into the h-BN-G boundary structures and the effect of adlayer-substrate coupling both geometrically and electronically.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51222201, 51290272, 11304053, 51121091), and the Ministry of Science and Technology of China (Grant Nos. 2011CB921903, 2012CB921404, 2012CB933404, 2011CB93300, 2013CB932603).
    [1]

    Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A 2004 Science 306 666

    [2]

    Novoselov K, Geim A K, Morozov S, Jiang D, Grigorieva M K I, Dubonos S, Firsov A 2005 Nature 438 197

    [3]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [4]

    da Rocha Martins J, Chacham H 2010 ACS Nano 5 385

    [5]

    Shinde P P, Kumar V 2011 Phys. Rev. B 84 125401

    [6]

    Zhao R, Wang J, Yang M, Liu Z, Liu Z 2012 J. Phys. Chem. C 116 21098

    [7]

    Ramasubramaniam A, Naveh D 2011 Phys. Rev. B 84 075405

    [8]

    Bhowmick S, Singh A K, Yakobson B I 2011 J. Phys. Chem. C 115 9889

    [9]

    Jiang J W, Wang J S, Wang B S 2011 Appl. Phys. Lett. 99 043109

    [10]

    Pruneda J 2010 Phys. Rev. B 81 161409

    [11]

    Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z, Storr K, Balicas L 2010 Nat. Mater. 9 430

    [12]

    Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P 2013 Nat. Nanotechn. 8 119

    [13]

    Levendorf M P, Kim C J, Brown L, Huang P Y, Havener R W, Mller D A, Park J 2012 Nature 488 627

    [14]

    Sutter P, Cortes R, Lahiri J, Sutter E 2012 Nano Lett. 12 4869

    [15]

    Gao Y, Zhang Y, Chen P, Li Y, Liu M, Gao T, Ma D, Chen Y, Cheng Z, Qiu X, Duan W, Liu Z 2013 Nano Lett. 13 3439

    [16]

    Lu J, Zhang K, Liu X F, Zhang H, Sum T C, Neto A H C, Loh K P 2013 Nat. Commun. 4 2681

    [17]

    Liu M, Li Y, Chen P, Sun J, Ma D, Li Q, Gao T, Gao Y, Cheng Z, Qiu X, Fang Y, Liu Z 2014 Nano Lett. 14 6342

    [18]

    Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J 2004 Science 303 217

    [19]

    Dong G, Fourre é B, Tabak F C, Frenken J W 2010 Phys. Rev. Lett. 104 096102

    [20]

    Voloshina E N, Dedkov Y S, Torbrgge S, Thissen A, Fonin M 2012 Appl. Phys. Lett. 100 241606

    [21]

    Liu M, Gao Y, Zhang Y, Zhang Y, Ma D, Ji Q, Gao T, Chen Y, Liu Z 2013 Small 9 1359

    [22]

    Sicot M, Leicht P, Zusan A, Bouvron S, Zander O, Weser M, Dedkov Y S, Horn K, Fonin M 2012 ACS Nano 6 151

    [23]

    Zheng F, Zhou G, Liu Z, Wu J, Duan W, Gu B-L, Zhang S 2008 Phys. Rev. B 78 205415

    [24]

    Nakamura J, Nitta T, Natori A 2005 Phys. Rev. B 72 205429

    [25]

    Liu Y, Bhowmick S, Yakobson B I 2011 Nano Lett. 11 3113

    [26]

    Sánchez-Barriga J, Varykhalov A, Scholz M, Rader O, Marchenko D, Rybkin A, Shikin A, Vescovo E 2010 Diam. Relat. Mater. 19 734

    [27]

    Sutter P, Sadowski J T, Sutter E A 2010 J. Am. Chem. Soc. 132 8175

    [28]

    Usachov D, Fedorov A, Vilkov O, Adamchuk V, Yashina L, Bondarenko L, Saranin A, Grneis A, Vyalikh D 2012 Phys. Rev. B 86 155151

    [29]

    Martoccia D, Willmott P, Brugger T, Björck M, Gnther S, Schleptz C, Cervellino A, Pauli S, Patterson B, Marchini S 2008 Phys. Rev. Lett. 101 126102

    [30]

    Ma T, Ren W, Zhang X, Liu Z, Gao Y, Yin L C, Ma X L, Ding F, Cheng H M 2013 Proc. Natl. Acad. Sci. 110 20386

    [31]

    Shu H, Chen X, Tao X, Ding F 2012 ACS Nano 6 3243

    [32]

    Phark S-h, Borme J, Vanegas A L, Corbetta M, Sander D, Kirschner J 2012 Nanoscale Res. Lett. 7 1

    [33]

    Drost R, Uppstu A, Schulz F, Hämäläinen S K, Ervasti M, Harju A, Liljeroth P 2014 Nano Lett. 14 5128

  • [1]

    Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A 2004 Science 306 666

    [2]

    Novoselov K, Geim A K, Morozov S, Jiang D, Grigorieva M K I, Dubonos S, Firsov A 2005 Nature 438 197

    [3]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [4]

    da Rocha Martins J, Chacham H 2010 ACS Nano 5 385

    [5]

    Shinde P P, Kumar V 2011 Phys. Rev. B 84 125401

    [6]

    Zhao R, Wang J, Yang M, Liu Z, Liu Z 2012 J. Phys. Chem. C 116 21098

    [7]

    Ramasubramaniam A, Naveh D 2011 Phys. Rev. B 84 075405

    [8]

    Bhowmick S, Singh A K, Yakobson B I 2011 J. Phys. Chem. C 115 9889

    [9]

    Jiang J W, Wang J S, Wang B S 2011 Appl. Phys. Lett. 99 043109

    [10]

    Pruneda J 2010 Phys. Rev. B 81 161409

    [11]

    Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z, Storr K, Balicas L 2010 Nat. Mater. 9 430

    [12]

    Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P 2013 Nat. Nanotechn. 8 119

    [13]

    Levendorf M P, Kim C J, Brown L, Huang P Y, Havener R W, Mller D A, Park J 2012 Nature 488 627

    [14]

    Sutter P, Cortes R, Lahiri J, Sutter E 2012 Nano Lett. 12 4869

    [15]

    Gao Y, Zhang Y, Chen P, Li Y, Liu M, Gao T, Ma D, Chen Y, Cheng Z, Qiu X, Duan W, Liu Z 2013 Nano Lett. 13 3439

    [16]

    Lu J, Zhang K, Liu X F, Zhang H, Sum T C, Neto A H C, Loh K P 2013 Nat. Commun. 4 2681

    [17]

    Liu M, Li Y, Chen P, Sun J, Ma D, Li Q, Gao T, Gao Y, Cheng Z, Qiu X, Fang Y, Liu Z 2014 Nano Lett. 14 6342

    [18]

    Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J 2004 Science 303 217

    [19]

    Dong G, Fourre é B, Tabak F C, Frenken J W 2010 Phys. Rev. Lett. 104 096102

    [20]

    Voloshina E N, Dedkov Y S, Torbrgge S, Thissen A, Fonin M 2012 Appl. Phys. Lett. 100 241606

    [21]

    Liu M, Gao Y, Zhang Y, Zhang Y, Ma D, Ji Q, Gao T, Chen Y, Liu Z 2013 Small 9 1359

    [22]

    Sicot M, Leicht P, Zusan A, Bouvron S, Zander O, Weser M, Dedkov Y S, Horn K, Fonin M 2012 ACS Nano 6 151

    [23]

    Zheng F, Zhou G, Liu Z, Wu J, Duan W, Gu B-L, Zhang S 2008 Phys. Rev. B 78 205415

    [24]

    Nakamura J, Nitta T, Natori A 2005 Phys. Rev. B 72 205429

    [25]

    Liu Y, Bhowmick S, Yakobson B I 2011 Nano Lett. 11 3113

    [26]

    Sánchez-Barriga J, Varykhalov A, Scholz M, Rader O, Marchenko D, Rybkin A, Shikin A, Vescovo E 2010 Diam. Relat. Mater. 19 734

    [27]

    Sutter P, Sadowski J T, Sutter E A 2010 J. Am. Chem. Soc. 132 8175

    [28]

    Usachov D, Fedorov A, Vilkov O, Adamchuk V, Yashina L, Bondarenko L, Saranin A, Grneis A, Vyalikh D 2012 Phys. Rev. B 86 155151

    [29]

    Martoccia D, Willmott P, Brugger T, Björck M, Gnther S, Schleptz C, Cervellino A, Pauli S, Patterson B, Marchini S 2008 Phys. Rev. Lett. 101 126102

    [30]

    Ma T, Ren W, Zhang X, Liu Z, Gao Y, Yin L C, Ma X L, Ding F, Cheng H M 2013 Proc. Natl. Acad. Sci. 110 20386

    [31]

    Shu H, Chen X, Tao X, Ding F 2012 ACS Nano 6 3243

    [32]

    Phark S-h, Borme J, Vanegas A L, Corbetta M, Sander D, Kirschner J 2012 Nanoscale Res. Lett. 7 1

    [33]

    Drost R, Uppstu A, Schulz F, Hämäläinen S K, Ervasti M, Harju A, Liljeroth P 2014 Nano Lett. 14 5128

  • [1] Tang Hai-Tao, Mi Zhuang, Wang Wen-Yu, Tang Xiang-Qian, Ye Xia, Shan Xin-Yan, Lu Xing-Hua. Low-noise preamplifier for scanning tunneling microscope. Acta Physica Sinica, 2024, 73(13): 130702. doi: 10.7498/aps.73.20240560
    [2] Jia Yan-Wei, He Jian, He Meng, Zhu Xiao-Hua, Zhao Shang-Man, Liu Jin-Long, Chen Liang-Xian, Wei Jun-Jun, Li Cheng-Ming. Synthesis of h-BN/diamond heterojunctions and its electrical characteristics. Acta Physica Sinica, 2022, 71(22): 228101. doi: 10.7498/aps.71.20220995
    [3] Li Wen-Hui, Chen Lan, Wu Ke-Hui. Experimental synthesis of borophene. Acta Physica Sinica, 2022, 71(10): 108104. doi: 10.7498/aps.71.20220155
    [4] Huang De-Rao, Song Jun-Jie, He Pi-Mo, Huang Kai-Kai, Zhang Han-Jie. Adsorption behavior of 9,9′-Dixanthylidene and moiré superstructure on Ru(0001). Acta Physica Sinica, 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [5] De-Rao Huang,  Jun-Jie Song,  Pi-Mo He,  Kai-Kai Huang,  Han-Jie Zhang. Adsorption Behavior of 9,9'-Dixanthylidene and Moiré Superstructure on Ru(0001). Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221057
    [6] Sun Zhi-Hai, Huang Qiang, Zhang Ying, Huang Peng-Ru, Zhi Hui-Yin, Zou Yong-Jin, Xu Fen, Sun Li-Xian. First-principle calculation study of (CN)3VB defect in hexagonal boron nitride monolayer. Acta Physica Sinica, 2021, 70(3): 033102. doi: 10.7498/aps.70.20201364
    [7] Jiang Cheng-Xin, Chen Ling-Xiu, Wang Hui-Shan, Wang Xiu-Jun, Chen Chen, Wang Hao-Min, Xie Xiao-Ming. Synthesis and pressure study of bubbles in hexagonal boron nitride interlayer. Acta Physica Sinica, 2021, 70(6): 069801. doi: 10.7498/aps.70.20201482
    [8] Zhang Zhi-Mo, Zhang Wen-Hao, Fu Ying-Shuang. Scanning tunneling microscopy study on two-dimensional topological insulators. Acta Physica Sinica, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [9] Chen Ling-Xiu, Wang Hui-Shan, Jiang Cheng-Xin, Chen Chen, Wang Hao-Min. Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride. Acta Physica Sinica, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [10] Chen Cai-Yun, Liu Jin-Xing, Zhang Xiao-Min, Li Jin-Long, Ren Ling-Ling, Dong Guo-Cai. Coverage measurement of graphene film on metallic substrate using scanning electron microscopy. Acta Physica Sinica, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [11] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [12] Guo Hui, Lu Hong-Liang, Huang Li, Wang Xue-Yan, Lin Xiao, Wang Ye-Liang, Du Shi-Xuan, Gao Hong-Jun. Intercalation and its mechanism of high quality large area graphene on metal substrate. Acta Physica Sinica, 2017, 66(21): 216803. doi: 10.7498/aps.66.216803
    [13] Xu Dan, Yin Jun, Sun Hao-Hua, Wang Guan-Yong, Qian Dong, Guan Dan-Dan, Li Yao-Yi, Guo Wan-Lin, Liu Can-Hua, Jia Jin-Feng. Scanning tunneling microscopy study of h-BN thin films grown on Cu foils. Acta Physica Sinica, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [14] Huang Xiang-Qian, Lin Chen-Fang, Yin Xiu-Li, Zhao Ru-Guang, Wang En-Ge, Hu Zong-Hai. Hydrogen adsorption on one-dimensional graphene superlattices. Acta Physica Sinica, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [15] Yang Jing-Jing, Du Wen-Han. Scanning tunnelling microscope investigation of the TiSi2 nano-islands on Sr/Si(100) surface. Acta Physica Sinica, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [16] Huang Ren-Zhong, Liu Liu, Yang Wen-Jing. STM tip-induced atomic motion on the top of film supported by a metal substrate. Acta Physica Sinica, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [17] Wang Qi, Zhao Hua-Bo, Zhang Zhao-Hui. Conductance enhancement phenomenon of graphene ribbons on highly oriented pyrolytic graphite surfaces studied by scanning probe microscopy. Acta Physica Sinica, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [18] Ge Si-Ping, Zhu Xing, Yang Wei-Sheng. The manipulation of Cu subsurface interstitial atoms with scanning tunneling microscope. Acta Physica Sinica, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [19] Chen Yong-Jun, Zhao Ru-Guang, Yang Wei-Sheng. Scanning tunneling microscopy studies of alkane and alkanol adsorbed on graphite. Acta Physica Sinica, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [20] WANG HAO, ZHAO XUE-YING, YANG WEI-SHENG. ADSORPTION OF ASPARTIC ACID ON Cu(001) STUDIED BY SCANNING TUNNELING MICROSCOPY. Acta Physica Sinica, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
Metrics
  • Abstract views:  8723
  • PDF Downloads:  859
  • Cited By: 0
Publishing process
  • Received Date:  12 January 2015
  • Accepted Date:  13 February 2015
  • Published Online:  05 April 2015

/

返回文章
返回