Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principle calculation study of (CN)3VB defect in hexagonal boron nitride monolayer

Sun Zhi-Hai Huang Qiang Zhang Ying Huang Peng-Ru Zhi Hui-Yin Zou Yong-Jin Xu Fen Sun Li-Xian

Citation:

First-principle calculation study of (CN)3VB defect in hexagonal boron nitride monolayer

Sun Zhi-Hai, Huang Qiang, Zhang Ying, Huang Peng-Ru, Zhi Hui-Yin, Zou Yong-Jin, Xu Fen, Sun Li-Xian
PDF
HTML
Get Citation
  • The point defect of two-dimensional hexagonal boron nitride (hBN) has recently been discovered to achieve single photon emission at room temperature, and it has become a research hotspot. Despite its important fundamental and applied research significance, the origin of the atomic structure of luminescence defects in hBN is still controversial. In this paper, first-principle calculations based on density functional theory are used to study a defect (CN)3VB in the hexagonal boron nitride monolayer (hBN) where three N atoms near the B vacancy are replaced by C atoms. At the B vacancy of hBN, the three N atoms each carry an in-plane dangling bond and the corresponding unpaired electron, and the unpaired electron can be eliminated by C substitution. We systematically study the geometric structure, electronic structure and optical properties of (CN)3VB defects, analyze the thermodynamic stability of defects through the calculation of the atomic structure, formation energy, and charge state of the defect, and analyze the position in the band gap and its atomic orbital contribution of defect state through energy band structure and wave function. We also analyze its optical properties through dielectric function and absorption coefficient, and predict its luminous photon energy. The results show that the defect can change from a symmetric metastable state to an asymmetric ground state structure with three C atoms connected together through atomic structure relaxation. The formation energy of asymmetric (CN)3VB is 7.94 eV, which is 3.72 eV lower than that of symmetric one. The formation of defects introduces some local defect states contributed by defect dangling σ bonds and reconstructed π bonds in hBN. The defects have valence states between –2 and +2, and the thermodynamic transition energy level of asymmetric (CN)3VB is higher than that of symmetric (CN)3VB. In the transition from the metastable state to the ground state, these defect states can redshift the light absorption boundary of hBN, enhance the absorption intensity of visible light by hBN, and cause internal optical transitions. Among them, there is a visible light transition with an energy threshold around 2.58 eV in the asymmetry (CN)3VB defect. Single boron atom vacancy defect and (CN)3VB have optical transitions near infrared and ultraviolet energy, respectively. The present work will help to further understand the composition and optical properties of point defects in hBN, and provide a theoretical basis for experimentally exploring the origin and properties of the atomic structure of light-emitting point defects.
      Corresponding author: Huang Peng-Ru, pengruhuang@guet.edu.cn ; Sun Li-Xian, sunlx@guet.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2018YFB1502103, 2018YFB1502105), the National Natural Science Foundation of China (Grant Nos. 51801041, 551671062, 5187011196, 51971068), the Natural Science Foundation of Guangxi, China (Grant No. 2017JJB150085), and the Science and Technology Project of Guangxi, China (Grant Nos. 2018AD19052, AA19182014, AD17195073, AA17202030-1)
    [1]

    Lee S, Yeo J S, Ji Y, Cho C, Kim D Y, Na S I, Lee B H, Lee T 2012 Nanotechnology 23 344013Google Scholar

    [2]

    Abderrahmane A, Ko P J, Thu T V, Ishizawa S, Takamura T, Sandhu A 2014 Nanotechnology 25 365202Google Scholar

    [3]

    Li X, Yin J, Zhou J, Wang Q, Guo W 2014 Nanotechnology 25 105701Google Scholar

    [4]

    Abdi M, Degenfeld-Schonburg P, Sameti M, Navarrete-Benlloch C, Hartmann M J 2016 Phys. Rev. Lett. 116 233604Google Scholar

    [5]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [6]

    Clark G, Schaibley J R, Ross J, Taniguchi T, Watanabe K, Hendrickson J R, Mou S, Yao W, Xu X 2016 Nano Lett. 16 3944Google Scholar

    [7]

    Shiue R J, Efetov D K, Grosso G, Peng C, Fong K C, Englund D 2017 Nanophotonics 6 1329Google Scholar

    [8]

    Koenderink A F, Alu A, Polman A 2015 Science 348 516Google Scholar

    [9]

    Caldwell J D, Aharonovich I, Cassabois G, Edgar J H, Gil B, Basov D 2019 Nat. Rev. Mater. 4 552Google Scholar

    [10]

    Cai J, Retzker A, Jelezko F, Plenio M B 2013 Nat. Phys. 9 168Google Scholar

    [11]

    Pla J J, Tan K Y, Dehollain J P, Lim W H, Morton J J, Jamieson D N, Dzurak A S, Morello A 2012 Nature 489 541Google Scholar

    [12]

    Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [13]

    O’brien J L, Furusawa A, Vučković J 2009 Nat. Photonics 3 687Google Scholar

    [14]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photonics 8 595Google Scholar

    [15]

    Cheung J, Chunnilall C, Woolliams E, Fox N, Mountford J, Wang J, Thomas P 2007 J. Mod. Opt. 54 373Google Scholar

    [16]

    Rose B C, Huang D, Zhang Z H, Stevenson P, Tyryshkin A M, Sangtawesin S, Srinivasan S, Loudin L, Markham M L, Edmonds A M, Twitchen D J, Lyon S A, de Leon N P 2018 Science 361 60Google Scholar

    [17]

    Chen D, Zheludev N, Gao W B 2020 Adv. Quantum Technol. 3 1900069Google Scholar

    [18]

    Bradac C, Gao W, Forneris J, Trusheim M E, Aharonovich I 2019 Nat. Commun. 10 5625Google Scholar

    [19]

    Tran T T, Bray K, Ford M J, Toth M, Aharonovich I 2015 Nat. Nanotechnol. 11 37Google Scholar

    [20]

    Chakraborty C, Kinnischtzke L, Goodfellow K M, Beams R, Vamivakas A N 2015 Nat. Nanotechnol. 10 507Google Scholar

    [21]

    He Y M, Clark G, Schaibley J R, He Y, Chen M C, Wei Y J, Ding X, Zhang Q, Yao W, Xu X 2015 Nat. Nanotechnol. 10 497Google Scholar

    [22]

    Koperski M, Nogajewski K, Arora A, Cherkez V, Mallet P, Veuillen J Y, Marcus J, Kossacki P, Potemski M 2015 Nat. Nanotechnol. 10 503Google Scholar

    [23]

    Kumar S, Kaczmarczyk A, Gerardot B D 2015 Nano Lett. 15 7567Google Scholar

    [24]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoglu A 2015 Nat. Nanotechnol. 10 491Google Scholar

    [25]

    Tonndorf P, Schmidt R, Schneider R, Kern J, Buscema M, Steele G A, Castellanos-Gomez A, van der Zant H S, Vasconcellos S M, Bratschitsch R 2015 Optica 2 347Google Scholar

    [26]

    Kern J, Niehues I, Tonndorf P, Schmidt R, Wigger D, Schneider R, Stiehm T, de Vasconcellos M S, Reiter D E, Kuhn T, Bratschitsch R 2016 Adv. Mater. 28 7101Google Scholar

    [27]

    Liu X, Hersam M C 2019 Nat. Rev. Mater. 4 669Google Scholar

    [28]

    Chen X, Lu X, Dubey S, Yao Q, Liu S, Wang X, Xiong Q, Zhang L, Srivastava A 2019 Nat. Phys. 15 221Google Scholar

    [29]

    Ziegler J, Klaiss R, Blaikie A, Miller D, Horowitz V R, Alemán B J 2019 Nano Lett. 19 2121Google Scholar

    [30]

    Chejanovsky N, Kim Y, Zappe A, Stuhlhofer B, Taniguchi T, Watanabe K, Dasari D, Finkler A, Smet J H, Wrachtrup J 2017 Sci. Rep. 7 14758Google Scholar

    [31]

    Jungwirth N R, Calderon B, Ji Y, Spencer M G, Flatte M E, Fuchs G D 2016 Nano Lett. 16 6052Google Scholar

    [32]

    Tran T T, Elbadawi C, Totonjian D, Lobo C J, Grosso G, Moon H, Englund D R, Ford M J, Aharonovich I, Toth M 2016 ACS Nano 10 7331Google Scholar

    [33]

    Dietrich A, Burk M, Steiger E S, Antoniuk L, Tran T T, Nguyen M, Aharonovich I, Jelezko F, Kubanek A 2018 Phys. Rev. B 98 081414Google Scholar

    [34]

    Meyer J C, Chuvilin A, Algara-Siller G, Biskupek J, Kaiser U 2009 Nano Lett. 9 2683Google Scholar

    [35]

    Alem N, Erni R, Kisielowski C, Rossell M D, Gannett W, Zettl A 2009 Phys. Rev. B 80 155425Google Scholar

    [36]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [37]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932Google Scholar

    [38]

    Silly M, Jaffrennou P, Barjon J, Lauret J S, Ducastelle F, Loiseau A, Obraztsova E, Attal-Tretout B, Rosencher E 2007 Phys. Rev. B 75 085205Google Scholar

    [39]

    Museur L, Feldbach E, Kanaev A 2008 Phys. Rev. B 78 155204Google Scholar

    [40]

    Park H, Wadehra A, Wilkins J W, Castro Neto A H 2012 Appl. Phys. Lett. 100 253115Google Scholar

    [41]

    Weston L, Wickramaratne D, Mackoit M, Alkauskas A, van de Walle C G 2018 Phys. Rev. B 97 214104Google Scholar

    [42]

    Wang Y, Meng J, Tian Y, Chen Y, Wang G, Yin Z, Jin P, You J, Wu J, Zhang X 2020 ACS Appl. Mater. Interfaces 12 27361Google Scholar

    [43]

    Mendelson N, Chugh D, Reimers J R, Cheng T S, Gottscholl A, Long H, Mellor C J, Zettl A, Dyakonov V, Beton P H, Novikov S V, Jagadish C, Tan H H, Ford M J, Toth M, Bradac C, Aharonovich I 2020 Nat. Mater. DOI: 10.1038/s41563-020-00850-y

    [44]

    Koperski M, Vaclavkova D, Watanabe K, Taniguchi T, Novoselov K S, Potemski M 2020 PNAS 117 13214Google Scholar

    [45]

    Kresse G, Kurthmuler J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [46]

    Kresse G, Hafner J 1994 Phy. Rev. B 49 14251Google Scholar

    [47]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [48]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [49]

    Wei S H 2004 Comput. Mater. Sci. 30 337Google Scholar

    [50]

    Huang B, Lee H 2012 Phys. Rev. B 86 245406Google Scholar

    [51]

    Wickramaratne D, Shen J X, Dreyer C E, Alkauskas A, van de Walle C G 2019 Phys. Rev. B 99 205202Google Scholar

    [52]

    Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H, Juang Z Y, Dresselhaus M S, Li L J, Kong J 2010 Nano Lett. 10 4134Google Scholar

    [53]

    Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, Ajayan P M 2010 Nano Lett. 10 3209Google Scholar

  • 图 1  本征hBN单层 (a) hBN的俯视图和侧视图; (b) 模拟的hBN单层表面STM形貌, 加载电压为–2 V, 探针与原子表面的距离为0.479564 nm; (c) hBN的能带投影图

    Figure 1.  Intrinsic hBN monolayer: (a) Top view and side view of hBN; (b) the simulated hBN single-layer surface STM morphology, loading voltage is –2 V, the distance between probe and atomic surface is 0.479564 nm; (c) energy band projection view of hBN.

    图 2  VB和as-VB的电子结构 (a), (c)分别为VB和as-VB优化后的局部结构俯视图; (b), (d)分别为VB和as-VB的能带投影图; (e), (f)分别为VB和as-VB的缺陷能级在Γ点处波函数的俯视图和自旋电荷密度图

    Figure 2.  Electronic structure of VB and as-VB: (a), (c) The top views of the optimized partial structure of VB and as-VB, respectively; (b), (d) the energy band projection diagrams of VB and as-VB, respectively; (e), (f) the top view of the Γ-point wave functions of the defect levels and spin charge density of VB and as-VB, respectively.

    图 3  VB在不同价态的电子结构图 (a)−(c)分别为$ {\rm{V}}_{\rm{B}}^{-1} $, $ {\rm{V}}_{\rm{B}}^{-2} $, $ {\rm{V}}_{\rm{B}}^{-3} $优化后的局部结构俯视图; (d)−(f)分别为$ {\rm{V}}_{\rm{B}}^{-1} $, $ {\rm{V}}_{\rm{B}}^{-2} $, ${\rm{V}}_{\rm{B}}^{-3}$的能带投影图

    Figure 3.  Electronic structure diagrams of VB in different valence states: (a)−(c) The top views of the optimized partial structure diagrams of $ {\rm{V}}_{\rm{B}}^{-1} $, $ {\rm{V}}_{\rm{B}}^{-2} $, and $ {\rm{V}}_{\rm{B}}^{-3} $, respectively; (d)−(f) the energy band projection diagrams of $ {\rm{V}}_{\rm{B}}^{-1} $, $ {\rm{V}}_{\rm{B}}^{-2} $, and $ {\rm{V}}_{\rm{B}}^{-3} $, respectively.

    图 4  在富氮和贫氮条件下, 不同价态的VB形成能为费米能级的函数

    Figure 4.  Formation energies of VB with different valences as a function of Fermi level under the nitrogen-rich and nitrogen-poor conditions.

    图 5  (CN)3VB和as-(CN)3VB的电子结构 (a), (c)分别为(CN)3VB, as-(CN)3VB优化后局部结构的俯视图; (b), (d)分别为(CN)3VB, as-(CN)3VB的能带投影图; (e) (CN)3VB缺陷能级在Γ点处的波函数图和自旋电荷密度图; (f) as-(CN)3VB缺陷能级在Γ点处的波函数图

    Figure 5.  Electronic structure of (CN)3VB and as-(CN)3VB: (a), (c) The top views of the optimized partial structure of (CN)3VB and as-(CN)3VB; (b), (d) the energy band projection diagrams of (CN)3VB and as-(CN)3VB; (e) the top view of the Γ-point wave functions of the defect levels and spin charge density of (CN)3VB; (f) the top view of the Γ-point wave functions of the defect levels of as-(CN)3VB.

    图 6  (CN)3VB不同价态优化后的局部结构和能带投影图 (a)−(d)分别为(CN)3$ {\rm{V}}_{\rm{B}}^{-1} $, (CN)3$ {\rm{V}}_{\rm{B}}^{-2} $, (CN)3$ {\rm{V}}_{\rm{B}}^{+1} $, (CN)3$ {\rm{V}}_{\rm{B}}^{+2} $优化后的局部结构图; (e)−(h)分别为(CN)3$ {\rm{V}}_{\rm{B}}^{-1} $, (CN)3$ {\rm{V}}_{\rm{B}}^{-2} $, (CN)3$ {\rm{V}}_{\rm{B}}^{+1} $, (CN)3$ {\rm{V}}_{\rm{B}}^{+2} $的能带投影图

    Figure 6.  Local structure and energy band projection diagram of (CN)3VB after optimization of different valence states: (a)−(d) The top views of the optimized partial structure diagrams of (CN)3$ {\rm{V}}_{\rm{B}}^{-1} $, (CN)3$ {\rm{V}}_{\rm{B}}^{-2} $, (CN)3$ {\rm{V}}_{\rm{B}}^{+1} $, (CN)3$ {\rm{V}}_{\rm{B}}^{+2} $; (e)−(h) the energy band projection diagrams of (CN)3$ {\rm{V}}_{\rm{B}}^{-1} $, (CN)3$ {\rm{V}}_{\rm{B}}^{-2} $, (CN)3$ {\rm{V}}_{\rm{B}}^{+1} $, (CN)3$ {\rm{V}}_{\rm{B}}^{+2} $.

    图 7  as-(CN)3VB不同价态优化后的局部结构和能带投影图 (a)−(d)分别为as-(CN)3$ {\rm{V}}_{\rm{B}}^{-1} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{-2} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{+1} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{+2} $优化后的局部结构图; (e)−(h)分别为as-(CN)3$ {\rm{V}}_{\rm{B}}^{-1} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{-2} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{+1} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{+2} $的能带投影图

    Figure 7.  Electronic structure diagrams of as-(CN)3VB in different valence states: (a)−(d) The top views of the optimized partial structure diagrams of as-(CN)3$ {\rm{V}}_{\rm{B}}^{-1} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{-2} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{+1} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{+2} $; (e)−(h) the energy band projection diagrams of as-(CN)3$ {\rm{V}}_{\rm{B}}^{-1} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{-2} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{+1} $, as-(CN)3$ {\rm{V}}_{\rm{B}}^{+2} $.

    图 8  在富氮和贫氮条件下, 不同价态的(CN)3VB形成能为费米能级的函数

    Figure 8.  Formation energies of (CN)3VB with different valences as a function of Fermi level under the nitrogen-rich and nitrogen-poor conditions.

    图 9  在富氮和贫氮条件下, 不同价态的as-(CN)3VB形成能为费米能级的函数

    Figure 9.  Formation energies of as-(CN)3VB with different valences as a function of Fermi level under the nitrogen-rich and nitrogen-poor conditions.

    图 10  0 K和0 GPa时hBN, VB, as-VB, (CN)3VB, as-(CN)3VB的复介电函数

    Figure 10.  Complex dielectric functions of hBN, VB, as-VB, (CN)3VB, as-(CN)3VB at 0 K and 0 GPa.

    图 11  0 K和0 GPa时hBN, VB, as-VB, (CN)3VB, as-(CN)3VB的吸收系数

    Figure 11.  Absorption coefficients of hBN, VB, as-VB, (CN)3VB, as-(CN)3VB at 0 K and 0 GPa.

    图 12  0 K和0 GPa时hBN, VB, as-VB, (CN)3VB, as-(CN)3VB的损失函数

    Figure 12.  Loss function of hBN, VB, as-VB, (CN)3VB, as-(CN)3VB at 0 K and 0 GPa.

    图 13  hBN单层硼原子空位的模型图 (a), (d)分别为VB和as-VB优化后的局部结构图; (b), (e)分别为VB和as-VB的电子结构模拟图, 黑色箭头和灰色箭头分别代表占据态和未占据态; (c), (f)分别为VB和as-VB的介电虚部在XY方向张量

    Figure 13.  Model diagram of boron vacancies in hBN monolayer: (a), (d) The optimized local structure diagrams of VB and as-VB; (b), (e) simulated electronic structures diagrams of VB and as-VB, where black and grey arrows indicate occupied and unoccupied states; (c), (f) the tensors of the dielectric imaginary part of VB and as-VB in the X and Y directions.

    图 14  hBN单层碳掺杂的模型图 (a), (d) (CN)3VB和as-(CN)3VB优化后的局部结构图; (b), (e) (CN)3VB和as-(CN)3VB的电子结构模拟图, 黑色箭头和灰色箭头分别代表占据态和未占据态; (c), (f) (CN)3VB和as-(CN)3VB的介电虚部在XY方向张量

    Figure 14.  Model diagram of carbon doping in hBN monolayer: (a), (d) The optimized local structure diagrams of (CN)3VB and as-(CN)3VB; (b), (e) simulated electronic structures diagrams of (CN)3VB and as-(CN)3VB, where black and grey arrows indicate occupied and unoccupied states; (c), (f) the tensors of the dielectric imaginary part of (CN)3VB and as-(CN)3VB in the X and Y directions.

  • [1]

    Lee S, Yeo J S, Ji Y, Cho C, Kim D Y, Na S I, Lee B H, Lee T 2012 Nanotechnology 23 344013Google Scholar

    [2]

    Abderrahmane A, Ko P J, Thu T V, Ishizawa S, Takamura T, Sandhu A 2014 Nanotechnology 25 365202Google Scholar

    [3]

    Li X, Yin J, Zhou J, Wang Q, Guo W 2014 Nanotechnology 25 105701Google Scholar

    [4]

    Abdi M, Degenfeld-Schonburg P, Sameti M, Navarrete-Benlloch C, Hartmann M J 2016 Phys. Rev. Lett. 116 233604Google Scholar

    [5]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [6]

    Clark G, Schaibley J R, Ross J, Taniguchi T, Watanabe K, Hendrickson J R, Mou S, Yao W, Xu X 2016 Nano Lett. 16 3944Google Scholar

    [7]

    Shiue R J, Efetov D K, Grosso G, Peng C, Fong K C, Englund D 2017 Nanophotonics 6 1329Google Scholar

    [8]

    Koenderink A F, Alu A, Polman A 2015 Science 348 516Google Scholar

    [9]

    Caldwell J D, Aharonovich I, Cassabois G, Edgar J H, Gil B, Basov D 2019 Nat. Rev. Mater. 4 552Google Scholar

    [10]

    Cai J, Retzker A, Jelezko F, Plenio M B 2013 Nat. Phys. 9 168Google Scholar

    [11]

    Pla J J, Tan K Y, Dehollain J P, Lim W H, Morton J J, Jamieson D N, Dzurak A S, Morello A 2012 Nature 489 541Google Scholar

    [12]

    Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [13]

    O’brien J L, Furusawa A, Vučković J 2009 Nat. Photonics 3 687Google Scholar

    [14]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photonics 8 595Google Scholar

    [15]

    Cheung J, Chunnilall C, Woolliams E, Fox N, Mountford J, Wang J, Thomas P 2007 J. Mod. Opt. 54 373Google Scholar

    [16]

    Rose B C, Huang D, Zhang Z H, Stevenson P, Tyryshkin A M, Sangtawesin S, Srinivasan S, Loudin L, Markham M L, Edmonds A M, Twitchen D J, Lyon S A, de Leon N P 2018 Science 361 60Google Scholar

    [17]

    Chen D, Zheludev N, Gao W B 2020 Adv. Quantum Technol. 3 1900069Google Scholar

    [18]

    Bradac C, Gao W, Forneris J, Trusheim M E, Aharonovich I 2019 Nat. Commun. 10 5625Google Scholar

    [19]

    Tran T T, Bray K, Ford M J, Toth M, Aharonovich I 2015 Nat. Nanotechnol. 11 37Google Scholar

    [20]

    Chakraborty C, Kinnischtzke L, Goodfellow K M, Beams R, Vamivakas A N 2015 Nat. Nanotechnol. 10 507Google Scholar

    [21]

    He Y M, Clark G, Schaibley J R, He Y, Chen M C, Wei Y J, Ding X, Zhang Q, Yao W, Xu X 2015 Nat. Nanotechnol. 10 497Google Scholar

    [22]

    Koperski M, Nogajewski K, Arora A, Cherkez V, Mallet P, Veuillen J Y, Marcus J, Kossacki P, Potemski M 2015 Nat. Nanotechnol. 10 503Google Scholar

    [23]

    Kumar S, Kaczmarczyk A, Gerardot B D 2015 Nano Lett. 15 7567Google Scholar

    [24]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoglu A 2015 Nat. Nanotechnol. 10 491Google Scholar

    [25]

    Tonndorf P, Schmidt R, Schneider R, Kern J, Buscema M, Steele G A, Castellanos-Gomez A, van der Zant H S, Vasconcellos S M, Bratschitsch R 2015 Optica 2 347Google Scholar

    [26]

    Kern J, Niehues I, Tonndorf P, Schmidt R, Wigger D, Schneider R, Stiehm T, de Vasconcellos M S, Reiter D E, Kuhn T, Bratschitsch R 2016 Adv. Mater. 28 7101Google Scholar

    [27]

    Liu X, Hersam M C 2019 Nat. Rev. Mater. 4 669Google Scholar

    [28]

    Chen X, Lu X, Dubey S, Yao Q, Liu S, Wang X, Xiong Q, Zhang L, Srivastava A 2019 Nat. Phys. 15 221Google Scholar

    [29]

    Ziegler J, Klaiss R, Blaikie A, Miller D, Horowitz V R, Alemán B J 2019 Nano Lett. 19 2121Google Scholar

    [30]

    Chejanovsky N, Kim Y, Zappe A, Stuhlhofer B, Taniguchi T, Watanabe K, Dasari D, Finkler A, Smet J H, Wrachtrup J 2017 Sci. Rep. 7 14758Google Scholar

    [31]

    Jungwirth N R, Calderon B, Ji Y, Spencer M G, Flatte M E, Fuchs G D 2016 Nano Lett. 16 6052Google Scholar

    [32]

    Tran T T, Elbadawi C, Totonjian D, Lobo C J, Grosso G, Moon H, Englund D R, Ford M J, Aharonovich I, Toth M 2016 ACS Nano 10 7331Google Scholar

    [33]

    Dietrich A, Burk M, Steiger E S, Antoniuk L, Tran T T, Nguyen M, Aharonovich I, Jelezko F, Kubanek A 2018 Phys. Rev. B 98 081414Google Scholar

    [34]

    Meyer J C, Chuvilin A, Algara-Siller G, Biskupek J, Kaiser U 2009 Nano Lett. 9 2683Google Scholar

    [35]

    Alem N, Erni R, Kisielowski C, Rossell M D, Gannett W, Zettl A 2009 Phys. Rev. B 80 155425Google Scholar

    [36]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [37]

    Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932Google Scholar

    [38]

    Silly M, Jaffrennou P, Barjon J, Lauret J S, Ducastelle F, Loiseau A, Obraztsova E, Attal-Tretout B, Rosencher E 2007 Phys. Rev. B 75 085205Google Scholar

    [39]

    Museur L, Feldbach E, Kanaev A 2008 Phys. Rev. B 78 155204Google Scholar

    [40]

    Park H, Wadehra A, Wilkins J W, Castro Neto A H 2012 Appl. Phys. Lett. 100 253115Google Scholar

    [41]

    Weston L, Wickramaratne D, Mackoit M, Alkauskas A, van de Walle C G 2018 Phys. Rev. B 97 214104Google Scholar

    [42]

    Wang Y, Meng J, Tian Y, Chen Y, Wang G, Yin Z, Jin P, You J, Wu J, Zhang X 2020 ACS Appl. Mater. Interfaces 12 27361Google Scholar

    [43]

    Mendelson N, Chugh D, Reimers J R, Cheng T S, Gottscholl A, Long H, Mellor C J, Zettl A, Dyakonov V, Beton P H, Novikov S V, Jagadish C, Tan H H, Ford M J, Toth M, Bradac C, Aharonovich I 2020 Nat. Mater. DOI: 10.1038/s41563-020-00850-y

    [44]

    Koperski M, Vaclavkova D, Watanabe K, Taniguchi T, Novoselov K S, Potemski M 2020 PNAS 117 13214Google Scholar

    [45]

    Kresse G, Kurthmuler J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [46]

    Kresse G, Hafner J 1994 Phy. Rev. B 49 14251Google Scholar

    [47]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [48]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [49]

    Wei S H 2004 Comput. Mater. Sci. 30 337Google Scholar

    [50]

    Huang B, Lee H 2012 Phys. Rev. B 86 245406Google Scholar

    [51]

    Wickramaratne D, Shen J X, Dreyer C E, Alkauskas A, van de Walle C G 2019 Phys. Rev. B 99 205202Google Scholar

    [52]

    Shi Y, Hamsen C, Jia X, Kim K K, Reina A, Hofmann M, Hsu A L, Zhang K, Li H, Juang Z Y, Dresselhaus M S, Li L J, Kong J 2010 Nano Lett. 10 4134Google Scholar

    [53]

    Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I, Ajayan P M 2010 Nano Lett. 10 3209Google Scholar

  • [1] Jiang Cheng-Xin, Chen Ling-Xiu, Wang Hui-Shan, Wang Xiu-Jun, Chen Chen, Wang Hao-Min, Xie Xiao-Ming. Synthesis and pressure study of bubbles in hexagonal boron nitride interlayer. Acta Physica Sinica, 2021, 70(6): 069801. doi: 10.7498/aps.70.20201482
    [2] Lü Chang-Wei, Wang Chen-Ju, Gu Jian-Bing. First-principles study of structural, elastic, thermodynamic, electronic and optical properties of cubic boron nitride and hexagonal boron nitride at high temperature and high pressure. Acta Physica Sinica, 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [3] Chen Ling-Xiu, Wang Hui-Shan, Jiang Cheng-Xin, Chen Chen, Wang Hao-Min. Synthesis and characterization of graphene nanoribbons on hexagonal boron nitride. Acta Physica Sinica, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [4] Li Tian-Xin, Weng Qian-Chun, Lu Jian, Xia Hui, An Zheng-Hua, Chen Zhang-Hai, Chen Ping-Ping, Lu Wei. Single photon detection and circular polarized emission manipulated with individual quantum dot. Acta Physica Sinica, 2018, 67(22): 227301. doi: 10.7498/aps.67.20182049
    [5] Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang. First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Acta Physica Sinica, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [6] Zhang Zhi-Wei,  Zhao Cui-Lan,  Sun Bao-Quan. 1.3 μm single photon emission from InAs/GaAs quantum dots. Acta Physica Sinica, 2018, 67(23): 237802. doi: 10.7498/aps.67.20181592
    [7] Jiang Yan, Liu Gui-Li. Influences of shear deformation on electronic structure and optical properties of B, N doped carbon nanotube superlattices. Acta Physica Sinica, 2015, 64(14): 147304. doi: 10.7498/aps.64.147304
    [8] Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan. Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Acta Physica Sinica, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [9] Gao Tan-Hua, Wu Shun-Qing, Zhang Peng, Zhu Zi-Zhong. Structural and electronic properties of hydrogenated bilayer boron nitride. Acta Physica Sinica, 2014, 63(1): 016801. doi: 10.7498/aps.63.016801
    [10] Wei Zhe, Yuan Jian-Mei, Li Shun-Hui, Liao Jian, Mao Yu-Liang. Density functional study on the electronic and magnetic properties of two-dimensional hexagonal boron nitride containing vacancy. Acta Physica Sinica, 2013, 62(20): 203101. doi: 10.7498/aps.62.203101
    [11] Tan Xing-Yi, Chen Chang-Le, Jin Ke-Xin, Gao Yan-Jun. Electronic structure and magnetic properties in C-doped BaTiO3: A first-principles calculations. Acta Physica Sinica, 2012, 61(24): 247102. doi: 10.7498/aps.61.247102
    [12] Li Jin, Gui Gui, Sun Li-Zhong, Zhong Jian-Xin. Structure transition of two-dimensional hexagonal BN under large uniaxial strain. Acta Physica Sinica, 2010, 59(12): 8820-8828. doi: 10.7498/aps.59.8820
    [13] Yang Min, Wang Liu-Ding, Chen Guo-Dong, An Bo, Wang Yi-Jun, Liu Guang-Qing. First-principles study on field emission of C-doped capped single-walled BNNT. Acta Physica Sinica, 2009, 58(10): 7151-7155. doi: 10.7498/aps.58.7151
    [14] Chen Guo-Dong, Wang Liu-Ding, An Bo, Yang Min. First principles study of electron field emission from the system of BN nano tuber capped and doped with carbon atom. Acta Physica Sinica, 2009, 58(13): 254-S258. doi: 10.7498/aps.58.254
    [15] Xing Hai-Ying, Fan Guang-Han, Zhao De-Gang, He Miao, Zhang Yong, Zhou Tian-Ming. Electronic structure and optical properties of GaN with Mn-doping. Acta Physica Sinica, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [16] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [17] Simulative calculation of electronic structure of F-doped SnO2. Acta Physica Sinica, 2007, 56(12): 7195-7200. doi: 10.7498/aps.56.7195
    [18] He Kai-Hua, Zheng Guang, Lü Tao, Chen Gang, Ji Guang-Fu. Effect of high pressures on structural, electronic and optical properties of BN nanotube. Acta Physica Sinica, 2006, 55(6): 2908-2913. doi: 10.7498/aps.55.2908
    [19] Li Yao-Yi, Cheng Mu-Tian, Zhou Hui-Jun, Liu Shao-Ding, Wang Qu-Quan, Xue Qi-Kun. Efficiency of single photon emission in three-level system of semiconductor quantum dots with pulsed excitation. Acta Physica Sinica, 2006, 55(4): 1781-1786. doi: 10.7498/aps.55.1781
    [20] Zhou Hui-Jun, Cheng Mu-Tian, Liu Shao-Ding, Wang Qu-Quan, Zhan Ming-Sheng, Xue Qi-Kun. High polarization properties of single-photon emission from anisotropic InGaAs quantum dots. Acta Physica Sinica, 2005, 54(9): 4141-4145. doi: 10.7498/aps.54.4141
Metrics
  • Abstract views:  8342
  • PDF Downloads:  184
  • Cited By: 0
Publishing process
  • Received Date:  19 August 2020
  • Accepted Date:  10 September 2020
  • Available Online:  25 January 2021
  • Published Online:  05 February 2021

/

返回文章
返回