Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coverage measurement of graphene film on metallic substrate using scanning electron microscopy

Chen Cai-Yun Liu Jin-Xing Zhang Xiao-Min Li Jin-Long Ren Ling-Ling Dong Guo-Cai

Citation:

Coverage measurement of graphene film on metallic substrate using scanning electron microscopy

Chen Cai-Yun, Liu Jin-Xing, Zhang Xiao-Min, Li Jin-Long, Ren Ling-Ling, Dong Guo-Cai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene films grown on metallic substrates by chemical vapor deposition have wide potential applications, such as serving as transparent electrodes, transistors, sensors, etc. The coverage of graphene on metal surface can influence many performance parameters, such as square resistance and transparence, after it has been transferred to other substrates. As most of the performance parameters cannot be measured while graphene is still on the metal, it is very useful to evaluate the coverage of graphene before further actions. In this paper, we present a method to measure the coverage of graphene on metal by using scanning electron microscopy and image processing software. We also calculate and measure the uncertainty of the measured coverage. There are two main factors, namely the determination of the boundary between the covered areas and the uncovered areas, and the number of the graphene islands or vacancy islands in view, which can bring uncertainty to the coverage. The former factor raises the uncertainty of the coverage while the number of graphene (vacancy) islands in view is higher, because the more the islands in view, the smaller the islands are, therefore the total boundaries become more. The latter factor reduces uncertainty with the number of islands increasing, because of the quantum fluctuation. The uncertainty of the latter factor is proportional to 1/√N, where N is the number of islands in view. As we can see, the number of islands in view is the key parameter to balance the two factors. We measure the graphene coverage with different graphene islands in view, and also measure the uncertainty by using the statistics knowledge. Meanwhile, we also build a model to calculate the uncertainty under different numbers of islands in view. The experiments and the calculations accord with each other reasonably well. By these carefully modeling and experimentations, we optimize and balance the two faces and suggest the number of islands in view to reduce the uncertainty of the measured coverage to a lowest value. The use of these measured data can ensure the accuracy of the graphene coverage measurement with minimal time cost.
      Corresponding author: Ren Ling-Ling, renll@nim.ac.cn;dongguocai@gcinno.com ; Dong Guo-Cai, renll@nim.ac.cn;dongguocai@gcinno.com
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFE0125200, 2016YFF0204300), the National Natural Science Foundation of China (Grant No. 51402026), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130236).
    [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [2]

    Geim A K 2009 Science 324 1530

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z Y, De S, McGovern I T, Holland B, Byrne M, Gun’ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N 2008 Nat. Nanotechnol. 3 563

    [5]

    Park S, Ruoff R S 2009 Nat. Nanotechnol. 4 217

    [6]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [7]

    Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Rohrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B, Seyller T 2009 Nat. Mater. 8 203

    [8]

    Yu Q, Lian J, Siriponglert S, Li H, Chen Y P, Pei S S 2008 Appl. Phys. Lett. 93 113103

    [9]

    Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 3087

    [10]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406

    [11]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [12]

    Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [13]

    Levendorf M P, Ruiz-Vargas C S, Garg S, Park J 2009 Nano Lett. 9 4479

    [14]

    Lee Y, Bae S, Jang H, Jang S, Zhu S E, Sim S H, Song Y I, Hong B H, Ahn J H 2010 Nano Lett. 10 490

    [15]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [16]

    Wang X, Zhi L, Mllen K 2008 Nano Lett. 8 323

    [17]

    Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K, Novoselov K S 2008 Nano Lett. 8 1704

    [18]

    Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H 2008 Nature Nanotechnol. 3 538

    [19]

    Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y 2008 ACS Nano 2 463

    [20]

    Huang P Y, Ruiz-Vargas C S, Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, Muller D A 2011 Nature 469 389

    [21]

    Tsen A W, Brown L, Levendorf M P, Ghahari F, Huang P Y, Havener R W, Ruiz-Vargas C S, Muller D A, Kim P, Park J 2012 Science 336 1143

    [22]

    Li X S, Zhu Y W, Cai W W, Borysiak M, Han B, Chen D, Piner R D, Colombo L, Ruoff R S 2009 Nano Lett. 9 4359

    [23]

    Zhao Z J, Shan Z F, Zhang C K, Li Q Y, Tian B, Huang Z Y, Lin W Y, Chen X P, Ji H X, Zhang W F, Cai W W 2015 Small 11 1418

    [24]

    Hao Y F, Bharathi M S, Wang L, Liu Y Y, Chen H, Nie S, Wang X H, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S 2013 Science 342 720

    [25]

    Wang H, Wang G Z, Bao P F, Yang S L, Zhu W, Xie X, Zhang W J 2012 J. Am. Chem. Soc. 134 3627

    [26]

    Dong G C, Frenken J W M 2013 ACS Nano 7 7028

  • [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [2]

    Geim A K 2009 Science 324 1530

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z Y, De S, McGovern I T, Holland B, Byrne M, Gun’ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N 2008 Nat. Nanotechnol. 3 563

    [5]

    Park S, Ruoff R S 2009 Nat. Nanotechnol. 4 217

    [6]

    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [7]

    Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Rohrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B, Seyller T 2009 Nat. Mater. 8 203

    [8]

    Yu Q, Lian J, Siriponglert S, Li H, Chen Y P, Pei S S 2008 Appl. Phys. Lett. 93 113103

    [9]

    Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 3087

    [10]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406

    [11]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [12]

    Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [13]

    Levendorf M P, Ruiz-Vargas C S, Garg S, Park J 2009 Nano Lett. 9 4479

    [14]

    Lee Y, Bae S, Jang H, Jang S, Zhu S E, Sim S H, Song Y I, Hong B H, Ahn J H 2010 Nano Lett. 10 490

    [15]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308

    [16]

    Wang X, Zhi L, Mllen K 2008 Nano Lett. 8 323

    [17]

    Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Geim A K, Novoselov K S 2008 Nano Lett. 8 1704

    [18]

    Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H 2008 Nature Nanotechnol. 3 538

    [19]

    Becerril H A, Mao J, Liu Z, Stoltenberg R M, Bao Z, Chen Y 2008 ACS Nano 2 463

    [20]

    Huang P Y, Ruiz-Vargas C S, Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, Muller D A 2011 Nature 469 389

    [21]

    Tsen A W, Brown L, Levendorf M P, Ghahari F, Huang P Y, Havener R W, Ruiz-Vargas C S, Muller D A, Kim P, Park J 2012 Science 336 1143

    [22]

    Li X S, Zhu Y W, Cai W W, Borysiak M, Han B, Chen D, Piner R D, Colombo L, Ruoff R S 2009 Nano Lett. 9 4359

    [23]

    Zhao Z J, Shan Z F, Zhang C K, Li Q Y, Tian B, Huang Z Y, Lin W Y, Chen X P, Ji H X, Zhang W F, Cai W W 2015 Small 11 1418

    [24]

    Hao Y F, Bharathi M S, Wang L, Liu Y Y, Chen H, Nie S, Wang X H, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S 2013 Science 342 720

    [25]

    Wang H, Wang G Z, Bao P F, Yang S L, Zhu W, Xie X, Zhang W J 2012 J. Am. Chem. Soc. 134 3627

    [26]

    Dong G C, Frenken J W M 2013 ACS Nano 7 7028

  • [1] Cui Yang, Li Jing, Zhang Lin. Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Acta Physica Sinica, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [2] Liao Tian-Jun, Yang Zhi-Min, Lin Bi-Hong. Performance optimization of graphene thermionicdevices based on charge and heat transport. Acta Physica Sinica, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [3] Zhang Yu-Xiang, Peng Yi-Tian, Lang Hao-Jie. Controllable nano-friction of graphene surface by fabricating nanoscale patterning based on atomic force microscopy. Acta Physica Sinica, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [4] Wang Xiao, Huang Sheng-Xiang, Luo Heng, Deng Lian-Wen, Wu Hao, Xu Yun-Chao, He Jun, He Long-Hui. First-principles study of electronic structure and optical properties of nickel-doped multilayer graphene. Acta Physica Sinica, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [5] Qin Zhi-Hui. Recent progress of graphene-like germanene. Acta Physica Sinica, 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [6] Lu Xiao-Bo, Zhang Guang-Yu. Graphene/h-BN Moiré superlattice. Acta Physica Sinica, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [7] Chen Dong-Hai, Yang Mou, Duan Hou-Jian, Wang Rui-Qiang. Electronic transport properties of graphene pn junctions with spin-orbit coupling. Acta Physica Sinica, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [8] Liu Meng-Xi, Zhang Yan-Feng, Liu Zhong-Fan. Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures. Acta Physica Sinica, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [9] Li Xiao-Na, Zheng Yue-Hong, Li Zhen, Wang Miao, Zhang Kun, Dong Chuang. High temperature oxidation resistance of cluster model designed alloys Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe). Acta Physica Sinica, 2014, 63(2): 028102. doi: 10.7498/aps.63.028102
    [10] Zhang Yu-Ping, Liu Ling-Yu, Chen Qi, Feng Zhi-Hong, Wang Jun-Long, Zhang Xiao, Zhang Hong-Yan, Zhang Hui-Yun. Effect of cooling of electron-hole plasma in electrically pumped graphene layer structures with split gates. Acta Physica Sinica, 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [11] Deng Wei-Yin, Zhu Rui, Deng Wen-Ji. Electronic state of the limited graphene. Acta Physica Sinica, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [12] Ran Run-Xin, Fan Xiao-Li, Yang Yong-Liang, Fang Xiao-Liang. Theoretical study of adsorption of propanethiol on Au(111) surface at different coverages. Acta Physica Sinica, 2013, 62(22): 223101. doi: 10.7498/aps.62.223101
    [13] Liu Jiang-Tao, Huang Jie-Hui, Xiao Wen-Bo, Hu Ai-Rong, Wang Jian-Hui. The influence of gate voltage on electron transport in the graphene field-effect transistor under strong laser field. Acta Physica Sinica, 2012, 61(17): 177202. doi: 10.7498/aps.61.177202
    [14] Yao Zhi-Dong, Li Wei, Gao Xian-Long. Electronic properties on the point vacancy of armchair edged graphene quantum dots. Acta Physica Sinica, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [15] Li Li-Min, Pan Hai-Bin, Yan Wen-Sheng, Xu Peng-Shou, Wei Shi-Qiang, Chen Xiu-Fang, Xu Xian-Gang, Kang Chao-Yang, Tang Jun. Preparation of graphene on different-polarity 6H-SiC substrates and the study of their electronic structures. Acta Physica Sinica, 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
    [16] Wang Yong-Long, Pan Hong-Zhe, Xu Ming, Chen Li, Sun Yuan-Yuan. Electronic structure and magnetism of single-layer trigonal graphene quantum dots with zigzag edges. Acta Physica Sinica, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [17] Luo Chuan-Wen. The mathematical description of uniformity and its relationship with chaos. Acta Physica Sinica, 2009, 58(6): 3788-3792. doi: 10.7498/aps.58.3788
    [18] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [19] Li Hai-Jun, Gu Chang-Zhi, Dou Yan, Li Jun-Jie. Field emission from individual vertically carbon nanofibers. Acta Physica Sinica, 2004, 53(7): 2258-2262. doi: 10.7498/aps.53.2258
    [20] Feng Qian, Hao Yue, Zhang Xiao-Ju, Liu Yu-Long. Characterization of Mg-doped GaN. Acta Physica Sinica, 2004, 53(2): 626-630. doi: 10.7498/aps.53.626
Metrics
  • Abstract views:  6881
  • PDF Downloads:  152
  • Cited By: 0
Publishing process
  • Received Date:  14 December 2017
  • Accepted Date:  19 January 2018
  • Published Online:  05 April 2018

/

返回文章
返回