Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on surface plasmon and hot carrier transport properties of Au(111) films

Zhang Cai-Xia Ma Xiang-Chao Zhang Jian-Qi

Citation:

Theoretical study on surface plasmon and hot carrier transport properties of Au(111) films

Zhang Cai-Xia, Ma Xiang-Chao, Zhang Jian-Qi
PDF
HTML
Get Citation
  • Metal films with a thickness as low as atomic layer have superior light absorption capabilities and conductive properties, especially the surface plasmons excited at the interface between metal film and dielectric can well capture photons and generate hot carriers, making them more efficient in improving the photoelectric conversion efficiency of solar cells, designing photodetectors in the near-infrared band, and sensors based on surface plasmon. However, there is still a lack of systematic theoretical studies on the surface plasmon and hot carrier properties of metal thin films. Based on the many-body first-principles calculation method, in this paper studied systematically are the surface plasmon properties of Au(111) films with thickness in a range from monolayer to 5 monolayers, and the energy distribution and transport properties of hot carriers generated by surface plasmons. The study results show that Au(111) films have low-loss surface plasmon properties. Meanwhile, the surface plasmons excited at the interface between the Au(111) film and the dielectric are strongly confined, which can enhance the local electric field, thus being crucial in nanophotonics applications. In addition, Au(111) film has a high efficiency generating hot carriers , and the generated hot electrons and hot holes are high in energy, and excellent in mean free path and mean free time. Unexpectedly, the direct current conductivity of Au(111) film is significantly better than that of bulk Au. These results provide new ideas and theoretical basis for the design and fabrication of Au(111) films in optoelectronic devices and energy conversion devices.
      Corresponding author: Ma Xiang-Chao, xcma@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704298, 61904138), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2022JZ-04), and the Special Scientific Research Program of Education Department of Shaanxi Provincial, China (Grant No. 20JK0928).
    [1]

    Moskovits M 2015 Nat. Nanotechnol. 10 6Google Scholar

    [2]

    Kulkarni A P, Noone K M, Munechika K, Guyer S R, Ginger D S 2010 Nano Lett. 10 1501Google Scholar

    [3]

    Maier S A 2007 Plasmonics: fundamentals and applications (Bath: Springer) pp177–191

    [4]

    Mukherjee S, Libisch F, Large N, Neumann O, Brown L V, Cheng J, Lassiter J B, Carter E A, Nordlander P, Halas N J 2013 Nano Lett. 13 240Google Scholar

    [5]

    Robatjazi H, Bahauddin S M, Doiron C, Thomann I 2015 Nano Lett. 15 6155Google Scholar

    [6]

    Christopher P, Xin H L, Linic S 2011 Nat. Chem. 3 467Google Scholar

    [7]

    Babicheva V E, Zhukovsky S V, Ikhsanov R S, Protsenko I E, Smetanin I V, Uskov A 2015 ACS Photonics 2 1039Google Scholar

    [8]

    Zheng B Y, Zhao H Q, Manjavacas A, McClain M, Nordlander P, Halas N J 2015 Nat. Commun. 6 7797Google Scholar

    [9]

    Leenheer A J, Narang P, Lewis N S, Atwater H A 2014 J. Appl. Phys. 115 134301Google Scholar

    [10]

    Maniyara R A, Rodrigo D, Yu R, Canet-Ferrer J, Ghosh D S R, Yongsunthon R, Baker D E, Rezikyan A, de Abajo F J G, Pruneri V 2019 Nat. Photonics 13 328Google Scholar

    [11]

    Xue X T, Fan Y H, Segal E, Wang W P, Yang F, Wang Y F, Zhao F T, Fu W Y, Ling Y H, Salomon A, Zhang Z 2021 Mater. Today 46 54Google Scholar

    [12]

    Mandal P, Sharma S 2016 Renewable Sustainable Energy Rev. 65 537Google Scholar

    [13]

    Zhang C, Guney D O, Pearce J M 2016 Mater. Res. Express 3 105034Google Scholar

    [14]

    Li Z J, Lü W, Zhang C, Qin J W, Wei W, Shao J J, Wang D W, Li B H, Kang F Y, Yang Q H 2014 Nanoscale 6 9554Google Scholar

    [15]

    Shahjamali M M, Salvador M, Bosman M, Ginger D S, Xue C 2014 J. Phys. Chem. C 118 12459Google Scholar

    [16]

    Tsysar K M, Andreev V G, Vdovin V A 2016 International Conference on Micro- and Nano-Electronics 2016 Zvenigorod, Russia, October 3-7, 2016 pp40–45

    [17]

    Shipway A N, Katz E, Willner I 2000 ChemPhysChem 1 18Google Scholar

    [18]

    初凤红, 蔡海文, 瞿荣辉, 方祖捷 2009 激光与光电子进展 46 58

    Chu F H, Cai H W, Qu R H, Fang Z J 2009 Laser Optoelectron. Prog. 46 58

    [19]

    Zhu Q, Hong Y, Cao G, Zhang Y, Wang J W 2020 ACS Nano 14 17091Google Scholar

    [20]

    Forti S, Link S, Sthr A, Niu Y, Zakharov A A, Coletti C, Starke U 2020 Nat. Commun. 11 2236Google Scholar

    [21]

    Sundararaman R, Letchworth-Weaver K, Schwarz K A, Gunceler D, Ozhabes Y, Arias T A 2017 Softwarex 6 278Google Scholar

    [22]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L, Burke K 2009 Phys. Rev. Lett. 102 136406Google Scholar

    [23]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [24]

    Brown A M, Sundararaman R, Narang P, Goddard W A, Atwater H A 2016 ACS Nano 10 957Google Scholar

    [25]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847Google Scholar

    [26]

    Giustino F, Cohen M L, Louie S G 2007 Phys. Rev. B 76 165108Google Scholar

    [27]

    Sundararaman R, Christensen T, Ping Y, Rivera N, Joannopoulos J D, Soljacic M, Narang P 2020 Phys. Rev. Mater. 4 074011Google Scholar

    [28]

    Jian C C, Ma X C, Zhang J Q, Jiang J L 2022 Nanophotonics 11 531Google Scholar

    [29]

    Habib A, Florio F, Sundararaman R 2018 J. Opt. 20 064001Google Scholar

    [30]

    Shore K, Chan D 1990 Electron. Lett. 26 1206Google Scholar

    [31]

    Kolwas K, Derkachova A 2020 Nanomaterials 10 1411Google Scholar

    [32]

    Laref S, Cao J, Asaduzzaman A, Runge K, Deymier P, Ziolkowski R W, Miyawaki M, Muralidharan K 2013 Opt. Express 21 11827Google Scholar

    [33]

    Jian C C, Ma X C, Zhang J Q, Yong X 2021 J. Phys. Chem. C 125 15185Google Scholar

    [34]

    Bernardi M, Vigil-Fowler D, Lischner J, Neaton J B, Louie S G 2014 Phys. Rev. Lett. 112 257402Google Scholar

    [35]

    Bernardi M, Vigil-Fowler D, Ong C S, Neaton J B, Louie S G 2015 Proc. Natl. Acad. Sci. U. S. A. 112 5291Google Scholar

    [36]

    Bernardi M, Mustafa J, Neaton J B, Louie S G 2015 Nat. Commun. 6 7044Google Scholar

    [37]

    Bauer R, Schmid A, Pavone P, Strauch D 1998 Phys. Rev. B 57 11276Google Scholar

    [38]

    Giri A, Gaskins J T, Li L Q, Wang Y S, Prezhdo O V, Hopkins P E 2019 Phys. Rev. B 99 165139Google Scholar

    [39]

    Allen P 1971 Phys. Rev. B 3 305Google Scholar

    [40]

    Rangel T, Kecik D, Trevisanutto P E, Rignanese G M, Van Swygenhoven H, Olevano V 2012 Phys. Rev. B 86 125125Google Scholar

    [41]

    Xu M, Yang J Y, Zhang S Y, Liu L H 2017 Phys. Rev. B 96 115154Google Scholar

    [42]

    Ma X C, Sun H, Wang Y C, Wu X, Zhang J Q 2018 Nano Energy 53 932Google Scholar

    [43]

    Wang Y, Chen L Y, Xu B, Zheng W M, Zhang R J, Qian D L, Zhou S M, Zheng Y X, Dai N, Yang Y M, Ding K B, Zhang X M 1998 Thin Solid Films 313 232

    [44]

    Zhang Z Y, Wang H Y, Du J L, Zhang X L, Hao Y W, Chen Q D, Sun H B 2015 IEEE Photonics Technol. Lett. 27 821Google Scholar

    [45]

    Jablan M, Soljacic M, Buljan H 2013 Proc. IEEE 101 1689Google Scholar

    [46]

    Jian C C, Zhang J Q, He W M, Ma X C 2021 Nano Energy 82 105763Google Scholar

    [47]

    Khurgin J B 2015 Nat. Nanotechnol. 10 2Google Scholar

    [48]

    Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotechnol. 10 25Google Scholar

    [49]

    Bernardi M, Mustafa J, Neaton J B, Louie S G 2015 Nature Communications 6 7044

    [50]

    Gladskikh I A, Leonov N B, Przhibel'skii S G, Vartanyan T A 2014 J. Opt. Technol. 81 280Google Scholar

    [51]

    Antonets I V, Kotov L N, Nekipelov S V, Golubev Y A 2004 Tech. Phys. 49 306Google Scholar

    [52]

    Robert C W, Melvin J A, William H B 2003 CRC Handbook of Chemistry and Physics (84th Ed.) (Florida: Boca Raton) pp13–14

  • 图 1  (a) Au面心立方结构; (b) 计算块体Au电子结构使用的原胞; (c) 块体Au的第一布里渊区, 其能带结构和声子谱沿$k$点路径W-L-G-X-W-K计算; (d) Au(111)薄膜按照“膜按照“方式堆积示意图; (e) Au(111)薄膜的第一布里渊区, 其能带结构和声子谱沿$k$点路径G-M-K-G计算

    Figure 1.  (a) Face-centered cubic structure of Au; (b) the primitive cell used to calculate the electronic structure of bulk Au; (c) the first Brillouin zone of bulk Au, and the irreducible k-point path W-L-G-X-W-K is used for calculating its band structure and phonon spectra; (d) Au(111) films stacked in "ABC" manner; (e) the first Brillouin zone of Au(111) films, the irreducible k-point path G-M-K-G is used for calculating its band structure and phonon spectra.

    图 2  能带结构 (a)块体Au; (b)—(f) 1—5层Au(111)薄膜

    Figure 2.  Energy band structure of (a) bulk Au and (b)–(f) Au(111) films with thickness from 1 to 5 atomic layers.

    图 3  声子谱 (a) 块体Au; (b)—(f) 1—5层Au(111)薄膜

    Figure 3.  Phonon structure of (a) bulk Au and (b–(f) Au(111) films with thickness from 1 to 5 atomic layers .

    图 4  介电函数虚部 (a) 块体Au的Johnson实验测量结果和DFT理论计算结果; (b) 块体Au和1—5层Au(111)薄膜

    Figure 4.  (a) The imaginary part of the dielectric function of Johnson experimental measurement result and DFT theoretical calculation result of bulk Au; (b) the imaginary part of the dielectric function of bulk Au and Au(111) films with thickness from 1 to 5 atomic layers.

    图 5  (a) 块体Au的介电函数实部; (b) 1—5层Au(111)薄膜的介电函数实部

    Figure 5.  The real part of the dielectric function of (a) bulk Au and (b) Au(111) films with thickness from 1 to 5 atomic layers.

    图 6  块体Au和Au(111)薄膜与空气界面激发的SPP色散关系

    Figure 6.  Dispersion relation of SPP excited at the interface of Bulk Au and Au(111) films with air.

    图 7  块体Au和Au(111)薄膜与SiO2界面激发的SPP色散关系

    Figure 7.  Dispersion relation of SPP excited at the interface of bulk Au and Au(111) films with SiO2.

    图 8  块体Au和Au(111)薄膜与介质界面激发的SPP有效传播长度

    Figure 8.  SPP effective propagation length at the interface of bulk Au and Au(111) films.

    图 9  块体Au和Au(111)薄膜与电介质界面激发的SPP约束比

    Figure 9.  SPP confinement ratio at the interface of bulk Au and Au(111) films with dielectrics.

    图 10  热载流子的能量分布 (a) 块体Au; (b)—(f) 1—5层Au(111)薄膜

    Figure 10.  The energy distribution of hot carriers generated by direct interband electronic transitions for (a) bulk Au and (b)—(f) Au(111) films with thickness from 1 to 5 atomic layers.

    图 11  块体Au和Au(111)薄膜中热载流子的平均自由时间

    Figure 11.  Mean free times of hot carriers in bulk Au and Au(111) films with thickness from 1 to 5 atomic layers .

    图 12  块体Au和Au(111)薄膜热载流子的平均自由程

    Figure 12.  Mean free paths of hot carriers in bulk Au and Au(111) films with thickness from 1 to 5 atomic layers.

    图 13  (a) 块体Au和1—5层Au(111)薄膜在0—500 K温度范围内的直流电导率; (b) 块体Au和(c) 1—5层Au(111)薄膜加权传输Eliashberg谱函数$ \alpha _v^2 F\left( \omega \right) $

    Figure 13.  (a) DC conductivity of bulk Au and Au(111) films with thickness from 1 to 5 atomic layers in the temperature range of 0–500 K, the transport-weighted Eliashberg spectral function of (b) bulk Au and (c) Au(111) films with thickness from 1 to 5 atomic layers.

    表 1  传输常数$\lambda $

    Table 1.  The transport constant $\lambda $.

    块体Au1层2层3层4层5层
    $\lambda $629.5210.2418.278.857.756.39
    DownLoad: CSV

    表 2  费米速度${\nu _{\rm{F}}}$

    Table 2.  The Fermi velocity ${\nu _{\rm{F}}}$.

    块体Au1层2层3层4层5层
    ${\nu _F}$0.620.680.510.500.490.48
    DownLoad: CSV
  • [1]

    Moskovits M 2015 Nat. Nanotechnol. 10 6Google Scholar

    [2]

    Kulkarni A P, Noone K M, Munechika K, Guyer S R, Ginger D S 2010 Nano Lett. 10 1501Google Scholar

    [3]

    Maier S A 2007 Plasmonics: fundamentals and applications (Bath: Springer) pp177–191

    [4]

    Mukherjee S, Libisch F, Large N, Neumann O, Brown L V, Cheng J, Lassiter J B, Carter E A, Nordlander P, Halas N J 2013 Nano Lett. 13 240Google Scholar

    [5]

    Robatjazi H, Bahauddin S M, Doiron C, Thomann I 2015 Nano Lett. 15 6155Google Scholar

    [6]

    Christopher P, Xin H L, Linic S 2011 Nat. Chem. 3 467Google Scholar

    [7]

    Babicheva V E, Zhukovsky S V, Ikhsanov R S, Protsenko I E, Smetanin I V, Uskov A 2015 ACS Photonics 2 1039Google Scholar

    [8]

    Zheng B Y, Zhao H Q, Manjavacas A, McClain M, Nordlander P, Halas N J 2015 Nat. Commun. 6 7797Google Scholar

    [9]

    Leenheer A J, Narang P, Lewis N S, Atwater H A 2014 J. Appl. Phys. 115 134301Google Scholar

    [10]

    Maniyara R A, Rodrigo D, Yu R, Canet-Ferrer J, Ghosh D S R, Yongsunthon R, Baker D E, Rezikyan A, de Abajo F J G, Pruneri V 2019 Nat. Photonics 13 328Google Scholar

    [11]

    Xue X T, Fan Y H, Segal E, Wang W P, Yang F, Wang Y F, Zhao F T, Fu W Y, Ling Y H, Salomon A, Zhang Z 2021 Mater. Today 46 54Google Scholar

    [12]

    Mandal P, Sharma S 2016 Renewable Sustainable Energy Rev. 65 537Google Scholar

    [13]

    Zhang C, Guney D O, Pearce J M 2016 Mater. Res. Express 3 105034Google Scholar

    [14]

    Li Z J, Lü W, Zhang C, Qin J W, Wei W, Shao J J, Wang D W, Li B H, Kang F Y, Yang Q H 2014 Nanoscale 6 9554Google Scholar

    [15]

    Shahjamali M M, Salvador M, Bosman M, Ginger D S, Xue C 2014 J. Phys. Chem. C 118 12459Google Scholar

    [16]

    Tsysar K M, Andreev V G, Vdovin V A 2016 International Conference on Micro- and Nano-Electronics 2016 Zvenigorod, Russia, October 3-7, 2016 pp40–45

    [17]

    Shipway A N, Katz E, Willner I 2000 ChemPhysChem 1 18Google Scholar

    [18]

    初凤红, 蔡海文, 瞿荣辉, 方祖捷 2009 激光与光电子进展 46 58

    Chu F H, Cai H W, Qu R H, Fang Z J 2009 Laser Optoelectron. Prog. 46 58

    [19]

    Zhu Q, Hong Y, Cao G, Zhang Y, Wang J W 2020 ACS Nano 14 17091Google Scholar

    [20]

    Forti S, Link S, Sthr A, Niu Y, Zakharov A A, Coletti C, Starke U 2020 Nat. Commun. 11 2236Google Scholar

    [21]

    Sundararaman R, Letchworth-Weaver K, Schwarz K A, Gunceler D, Ozhabes Y, Arias T A 2017 Softwarex 6 278Google Scholar

    [22]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L, Burke K 2009 Phys. Rev. Lett. 102 136406Google Scholar

    [23]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [24]

    Brown A M, Sundararaman R, Narang P, Goddard W A, Atwater H A 2016 ACS Nano 10 957Google Scholar

    [25]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847Google Scholar

    [26]

    Giustino F, Cohen M L, Louie S G 2007 Phys. Rev. B 76 165108Google Scholar

    [27]

    Sundararaman R, Christensen T, Ping Y, Rivera N, Joannopoulos J D, Soljacic M, Narang P 2020 Phys. Rev. Mater. 4 074011Google Scholar

    [28]

    Jian C C, Ma X C, Zhang J Q, Jiang J L 2022 Nanophotonics 11 531Google Scholar

    [29]

    Habib A, Florio F, Sundararaman R 2018 J. Opt. 20 064001Google Scholar

    [30]

    Shore K, Chan D 1990 Electron. Lett. 26 1206Google Scholar

    [31]

    Kolwas K, Derkachova A 2020 Nanomaterials 10 1411Google Scholar

    [32]

    Laref S, Cao J, Asaduzzaman A, Runge K, Deymier P, Ziolkowski R W, Miyawaki M, Muralidharan K 2013 Opt. Express 21 11827Google Scholar

    [33]

    Jian C C, Ma X C, Zhang J Q, Yong X 2021 J. Phys. Chem. C 125 15185Google Scholar

    [34]

    Bernardi M, Vigil-Fowler D, Lischner J, Neaton J B, Louie S G 2014 Phys. Rev. Lett. 112 257402Google Scholar

    [35]

    Bernardi M, Vigil-Fowler D, Ong C S, Neaton J B, Louie S G 2015 Proc. Natl. Acad. Sci. U. S. A. 112 5291Google Scholar

    [36]

    Bernardi M, Mustafa J, Neaton J B, Louie S G 2015 Nat. Commun. 6 7044Google Scholar

    [37]

    Bauer R, Schmid A, Pavone P, Strauch D 1998 Phys. Rev. B 57 11276Google Scholar

    [38]

    Giri A, Gaskins J T, Li L Q, Wang Y S, Prezhdo O V, Hopkins P E 2019 Phys. Rev. B 99 165139Google Scholar

    [39]

    Allen P 1971 Phys. Rev. B 3 305Google Scholar

    [40]

    Rangel T, Kecik D, Trevisanutto P E, Rignanese G M, Van Swygenhoven H, Olevano V 2012 Phys. Rev. B 86 125125Google Scholar

    [41]

    Xu M, Yang J Y, Zhang S Y, Liu L H 2017 Phys. Rev. B 96 115154Google Scholar

    [42]

    Ma X C, Sun H, Wang Y C, Wu X, Zhang J Q 2018 Nano Energy 53 932Google Scholar

    [43]

    Wang Y, Chen L Y, Xu B, Zheng W M, Zhang R J, Qian D L, Zhou S M, Zheng Y X, Dai N, Yang Y M, Ding K B, Zhang X M 1998 Thin Solid Films 313 232

    [44]

    Zhang Z Y, Wang H Y, Du J L, Zhang X L, Hao Y W, Chen Q D, Sun H B 2015 IEEE Photonics Technol. Lett. 27 821Google Scholar

    [45]

    Jablan M, Soljacic M, Buljan H 2013 Proc. IEEE 101 1689Google Scholar

    [46]

    Jian C C, Zhang J Q, He W M, Ma X C 2021 Nano Energy 82 105763Google Scholar

    [47]

    Khurgin J B 2015 Nat. Nanotechnol. 10 2Google Scholar

    [48]

    Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotechnol. 10 25Google Scholar

    [49]

    Bernardi M, Mustafa J, Neaton J B, Louie S G 2015 Nature Communications 6 7044

    [50]

    Gladskikh I A, Leonov N B, Przhibel'skii S G, Vartanyan T A 2014 J. Opt. Technol. 81 280Google Scholar

    [51]

    Antonets I V, Kotov L N, Nekipelov S V, Golubev Y A 2004 Tech. Phys. 49 306Google Scholar

    [52]

    Robert C W, Melvin J A, William H B 2003 CRC Handbook of Chemistry and Physics (84th Ed.) (Florida: Boca Raton) pp13–14

  • [1] Jian Chao-Chao, Ma Xiang-Chao, Zhao Zi-Han, Zhang Jian-Qi. Temperature dependence of MXenes plasmons induced hot carrier generation and transport. Acta Physica Sinica, 2024, 73(11): 117801. doi: 10.7498/aps.73.20231924
    [2] Chu Pei-Xin, Zhang Yu-Bin, Chen Jun-Xue. Surface plasmon induced transparency in coupled microcavities assisted by slits. Acta Physica Sinica, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [3] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [4] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [5] Wu Li-Xiang, Li Xin, Yang Yuan-Jie. Generation of surface plasmon vortices based on double-layer Archimedes spirals. Acta Physica Sinica, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [6] Yu Hua-Kang, Liu Bo-Dong, Wu Wan-Ling, Li Zhi-Yuan. Surface plasmaons enhanced light-matter interactions. Acta Physica Sinica, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [7] Zhang Bao-Bao, Zhang Cheng-Yun, Zhang Zheng-Long, Zheng Hai-Rong. Surface plasmon mediated chemical reaction. Acta Physica Sinica, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [8] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [9] Zhang Wen-Jun, Gao Long, Wei Hong, Xu Hong-Xing. Modulation of propagating surface plasmons. Acta Physica Sinica, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [10] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [11] Li Ming, Chen Yang, Guo Guang-Can, Ren Xi-Feng. Recent progress of the application of surface plasmon polariton in quantum information processing. Acta Physica Sinica, 2017, 66(14): 144202. doi: 10.7498/aps.66.144202
    [12] Jiang Mei-Ling, Zheng Li-Heng, Chi Cheng, Zhu Xing, Fang Zhe-Yu. Research progress of plasmonic cathodoluminesecence characterization. Acta Physica Sinica, 2017, 66(14): 144201. doi: 10.7498/aps.66.144201
    [13] Zhu Meng-Yao, Lu Jun, Ma Jia-Lin, Li Li-Xia, Wang Hai-Long, Pan Dong, Zhao Jian-Hua. Molecular-beam epitaxy of high-quality diluted magnetic semiconductor (Ga, Mn)Sb single-crystalline films. Acta Physica Sinica, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [14] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [15] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [16] Lü Yi, Zhang He-Ming, Hu Hui-Yong, Yang Jin-Yong. A model of hot carrier gate current for uniaxially strained Si NMOSFET. Acta Physica Sinica, 2014, 63(19): 197103. doi: 10.7498/aps.63.197103
    [17] Hu Meng-Zhu, Zhou Si-Yang, Han Qin, Sun Hua, Zhou Li-Ping, Zeng Chun-Mei, Wu Zhao-Feng, Wu Xue-Mei. Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulator-metal waveguides. Acta Physica Sinica, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [18] Han Qing-Yao, Tang Jun-Chao, Zhang Chao, Wang Chuan, Ma Hai-Qiang, Yu Li, Jiao Rong-Zhen. The effects of local density of states on surface plasmon polaritons. Acta Physica Sinica, 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [19] You Hai-Long, Lan Jian-Chun, Fan Ju-Ping, Jia Xin-Zhang, Zha Wei. Research on characteristics degradation of n-metal-oxide-semiconductor field-effect transistor induced by hot carrier effect due to high power microwave. Acta Physica Sinica, 2012, 61(10): 108501. doi: 10.7498/aps.61.108501
    [20] Liu Yu-An, Du Lei, Bao Jun-Lin. Research on correlation of 1/fγ noise and hot carrier degradation in metal oxide semiconductor field effect transistor. Acta Physica Sinica, 2008, 57(4): 2468-2475. doi: 10.7498/aps.57.2468
Metrics
  • Abstract views:  5157
  • PDF Downloads:  140
  • Cited By: 0
Publishing process
  • Received Date:  13 June 2022
  • Accepted Date:  13 July 2022
  • Available Online:  11 November 2022
  • Published Online:  20 November 2022

/

返回文章
返回