Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modulation of propagating surface plasmons

Zhang Wen-Jun Gao Long Wei Hong Xu Hong-Xing

Citation:

Modulation of propagating surface plasmons

Zhang Wen-Jun, Gao Long, Wei Hong, Xu Hong-Xing
PDF
HTML
Get Citation
  • The diffraction limit of light greatly limits the development of conventional optical devices, which are difficult to be miniaturized and integrated with high density. Surface plasmons, electromagnetic modes at the metal-dielectric interface, can concentrate light into deep subwavelength dimensions, enabling the manipulation of light at the nanometer scale. Surface plasmons can be used as information carrier to transmit and process optical signals beyond the diffraction limit. Therefore, nanodevices based on surface plasmons have received much attention. By modulating surface plasmons, the modulation of optical signals at nanoscale can be realized, which is important for the development of on-chip integrated nanophotonic circuits and optical information technology. In this article, we review the modulations of propagating surface plasmons and their applications in nano-optical modulators. The wave vector of propagating surface plasmons is very sensitive to the dielectric function of the metal and the environment. By tuning the dielectric function of the metal and/or the surrounding medium, both the real and imaginary part of the wave vector of surface plasmons can be modified, leading to the modulation of the phase and propagation length of surface plasmons and thereby modulating the intensity of optical signals. We first introduce the basic principles of different types of modulations, including all-optical modulation, thermal modulation, electrical modulation, and magnetic modulation. The all-optical modulation can be achieved by modulating the polarization and phase of input light, pumping optical materials, changing the dielectric function of metal by control light, and manipulating a nanoparticle by optical force to modulate the scattering of surface plasmons. The modulation based on thermal effect depends on thermo-optic materials and phase-change materials, and the temperature change can be triggered by photothermal effect or electrical heating. For electrically controlled modulation, Pockels electro-optic effect and Kerr electro-optic effect can be employed. Electrical modulation can also be realized by controlling the carrier concentration of semiconductors or graphene, using electrochromatic materials, and nanoelectromechanical control of the waveguide. The modulation of surface plasmons by magnetic field relies on magneto-optic materials. We review recent research progresses of modulating propagating surface plasmons by these methods, and analyze the performances of different types of plasmonic modulators, including operation wavelength, modulation depth or extinction ratio, response time or modulation frequency, and insertion loss. Finally, a brief conclusion and outlook is presented.
      Corresponding author: Wei Hong, weihong@iphy.ac.cn
    • Funds: Project supported by the Ministry of Science and Technology of China (Grant No. 2015CB932400) and the National Natural Science Foundation of China (Grant Nos. 11774413, 11674256, 91850207).
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [2]

    Ozbay E 2006 Science 311 189Google Scholar

    [3]

    Schuller J A, Barnard E S, Cai W S, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193Google Scholar

    [4]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83Google Scholar

    [5]

    Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Wang W H, Xu H X 2018 Chem. Rev. 118 2882Google Scholar

    [6]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp1–223

    [7]

    Sorger V J, Oulton R F, Ma R M, Zhang X 2012 MRS Bull. 37 728Google Scholar

    [8]

    Mayer K M, Hafner J H 2011 Chem. Rev. 111 3828Google Scholar

    [9]

    Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [10]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318Google Scholar

    [11]

    Linic S, Christopher P, Ingram D B 2011 Nat. Mater. 10 911Google Scholar

    [12]

    Yao Y, Kats M A, Genevet P, Yu N F, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257Google Scholar

    [13]

    Hsiao V K S, Zheng Y B, Juluri B K, Huang T J 2008 Adv. Mater. 20 3528Google Scholar

    [14]

    Guo P J, Schaller R D, Ketterson J B, Chang R P H 2016 Nat. Photon. 10 267Google Scholar

    [15]

    Stockhausen V, Martin P, Ghilane J, Leroux Y, Randriamahazaka H, Grand J, Felidj N, Lacroix J C 2010 J. Am. Chem. Soc. 132 10224Google Scholar

    [16]

    Jiang N N, Shao L, Wang J F 2014 Adv. Mater. 26 3282Google Scholar

    [17]

    Weeber J C, Krenn J R, Dereux A, Lamprecht B, Lacroute Y, Goudonnet J P 2001 Phys. Rev. B 64 045411Google Scholar

    [18]

    Dionne J A, Sweatlock L A, Atwater H A, Polman A 2006 Phys. Rev. B 73 035407Google Scholar

    [19]

    Briggs R M, Grandidier J, Burgos S P, Feigenbaum E, Atwater H A 2010 Nano Lett. 10 4851Google Scholar

    [20]

    Pan D, Wei H, Jia Z L, Xu H X 2014 Sci. Rep. 4 4993

    [21]

    Zhang S P, Wei H, Bao K, Håkanson U, Halas N J, Nordlander P, Xu H X 2011 Phys. Rev. Lett. 107 096801Google Scholar

    [22]

    Fang Y R, Li Z P, Huang Y Z, Zhang S P, Nordlander P, Halas N J, Xu H X 2010 Nano Lett. 10 1950Google Scholar

    [23]

    Wei H, Pan D, Xu H X 2015 Nanoscale 7 19053Google Scholar

    [24]

    Gao L, Chen L, Wei H, Xu H X 2018 Nanoscale 10 11923Google Scholar

    [25]

    Pan D, Wei H, Gao L, Xu H X 2016 Phys. Rev. Lett. 117 166803Google Scholar

    [26]

    Wei H, Li Z P, Tian X R, Wang Z X, Cong F Z, Liu N, Zhang S P, Nordlander P, Halas N J, Xu H X 2011 Nano Lett. 11 471Google Scholar

    [27]

    Li Z P, Zhang S P, Halas N J, Nordlander P, Xu H X 2011 Small 7 593Google Scholar

    [28]

    Pan D, Wei H, Xu H X 2013 Opt. Express 21 9556Google Scholar

    [29]

    Fu Y L, Hu X Y, Lu C C, Yue S, Yang H, Gong Q H 2012 Nano Lett. 12 5784Google Scholar

    [30]

    Wang Y L, Li T, Wang L, He H, Li L, Wang Q J, Zhu S N 2014 Laser Photon. Rev. 8 L47Google Scholar

    [31]

    Wei H, Wang Z X, Tian X R, Käll M, Xu H X 2011 Nat. Commum. 2 387Google Scholar

    [32]

    Wei H, Ratchford D, Li X Q, Xu H X, Shih C K 2009 Nano Lett. 9 4168Google Scholar

    [33]

    Li Q, Wei H, Xu H X 2014 Chin. Phys. B 23 097302Google Scholar

    [34]

    Pacifici D, Lezec H J, Atwater H A 2007 Nat. Photon. 1 402Google Scholar

    [35]

    Grandidier J, des Francs G C, Massenot S, Bouhelier A, Markey L, Weeber J C, Finot C, Dereux A 2009 Nano Lett. 9 2935Google Scholar

    [36]

    Liu N, Wei H, Li J, Wang Z X, Tian X R, Pan A L, Xu H X 2013 Sci. Rep. 3 1967Google Scholar

    [37]

    Ambati M, Nam S H, Ulin Avila E, Genov D A, Bartal G, Zhang X 2008 Nano Lett. 8 3998Google Scholar

    [38]

    de Leon I, Berini P 2010 Nat. Photon. 4 382Google Scholar

    [39]

    Krasavin A V, Vo T P, Dickson W, Bolger P M, Zayats A V 2011 Nano Lett. 11 2231Google Scholar

    [40]

    Tao J, Wang Q J, Huang X G 2011 Plasmonics 6 753Google Scholar

    [41]

    Lu H, Liu X M, Wang L R, Gong Y K, Mao D 2011 Opt. Express 19 2910Google Scholar

    [42]

    Pu M B, Yao N, Hu C G, Xin X C, Zhao Z Y, Wang C T, Luo X G 2010 Opt. Express 18 21030Google Scholar

    [43]

    Marder S R, Kippelen B, Jen A K Y, Peyghambarian N 1997 Nature 388 845Google Scholar

    [44]

    Chen J J, Li Z, Yue S, Gong Q H 2011 Nano Lett. 11 2933Google Scholar

    [45]

    Zhang L, Shi J, Yang Z, Huang M M, Chen Z J, Gong Q H, Cao S K 2008 Polymer 49 2107Google Scholar

    [46]

    Irie M, Fukaminato T, Matsuda K, Kobatake S 2014 Chem. Rev. 114 12174Google Scholar

    [47]

    Zhang C, Yan Y L, Zhao Y S, Yao J N 2014 Acc. Chem. Res. 47 3448Google Scholar

    [48]

    Pala R A, Shimizu K T, Melosh N A, Brongersma M L 2008 Nano Lett. 8 1506Google Scholar

    [49]

    Großmann M, Klick A, Lemke C, Falke J, Black M, Fiutowski J, Goszczak A J, Sobolewska E, Zillohu A U, Hedayati M K, Rubahn H G, Faupel F, Elbahri M, Bauer M 2015 ACS Photon. 2 1327Google Scholar

    [50]

    MacDonald K F, Sámson Z L, Stockman M I, Zheludev N I 2009 Nat. Photon. 3 55

    [51]

    Li Z P, Käll M, Xu H X 2008 Phys. Rev. B 77 085412Google Scholar

    [52]

    Svedberg F, Li Z P, Xu H X, Käll M 2006 Nano Lett. 6 2639Google Scholar

    [53]

    Shalin A S, Ginzburg P, Belov P A, Kivshar Y S, Zayats A V 2014 Laser Photon. Rev. 8 131Google Scholar

    [54]

    Okamoto T, Kamiyama T, Yamaguchi I 1993 Opt. Lett. 18 1570Google Scholar

    [55]

    Gosciniak J, Bozhevolnyi S I 2013 Sci. Rep. 3 1803Google Scholar

    [56]

    Zhang Z Y, Zhao P, Lin P, Sun F G 2006 Polymer 47 4893Google Scholar

    [57]

    Weeber J C, Hassan K, Saviot L, Dereux A, Boissière C, Durupthy O, Chaneac C, Burov E, Pastouret A 2012 Opt. Express 20 27636Google Scholar

    [58]

    Padmaraju K, Logan D F, Zhu X L, Ackert J J, Knights A P, Bergman K 2013 Opt. Express 21 14342Google Scholar

    [59]

    Nikolajsen T, Leosson K, Bozhevolnyi S I 2004 Appl. Phys. Lett. 85 5833Google Scholar

    [60]

    Gosciniak J, Markey L, Dereux A, Bozhevolnyi S I 2012 Opt. Express 20 16300Google Scholar

    [61]

    Gosciniak J, Bozhevolnyi S I, Andersen T B, Volkov V S, Kjelstrup Hansen J, Markey L, Dereux A 2010 Opt. Express 18 1207Google Scholar

    [62]

    Gagnon G, Lahoud N, Mattiussi G A, Berini P 2006 J. Lightw. Technol. 24 4391Google Scholar

    [63]

    Gosciniak J, Markey L, Dereux A, Bozhevolnyi S I 2012 Nanotechnology 23 444008Google Scholar

    [64]

    Tang J, Liu Y R, Zhang L J, Fu X C, Xue X M, Qian G, Zhao N, Zhang T 2018 Micromachines 9 369Google Scholar

    [65]

    Lereu A L, Passian A, Goudonnet J P, Thundat T, Ferrell T L 2005 Appl. Phys. Lett. 86 154101Google Scholar

    [66]

    Kaya S, Weeber J C, Zacharatos F, Hassan K, Bernardin T, Cluzel B, Fatome J, Finot C 2013 Opt. Express 21 22269Google Scholar

    [67]

    Weeber J C, Bernardin T, Nielsen M G, Hassan K, Kaya S, Fatome J, Finot C, Dereux A, Pleros N 2013 Opt. Express 21 27291Google Scholar

    [68]

    Li Q, Chen L, Xu H X, Liu Z W, Wei H 2019 ACS Photon. http://dx.doi.org/10.1021/acsphotonics.9b00711

    [69]

    Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M 2008 Nat. Mater. 7 972Google Scholar

    [70]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824Google Scholar

    [71]

    Zalba B, Marı́n J M, Cabeza L F, Mehling H 2003 Appl. Therm. Eng. 23 251Google Scholar

    [72]

    Krasavin A V, Zheludev N I 2004 Appl. Phys. Lett. 84 1416Google Scholar

    [73]

    Markov P, Appavoo K, Haglund R F, Weiss S M 2015 Opt. Express 23 6878Google Scholar

    [74]

    Jostmeier T, Mangold M, Zimmer J, Karl H, Krenner H J, Ruppert C, Betz M 2016 Opt. Express 24 17321Google Scholar

    [75]

    Sweatlock L A, Diest K 2012 Opt. Express 20 8700Google Scholar

    [76]

    Rudé M, Simpson R E, Quidant R, Pruneri V, Renger J 2015 ACS Photon. 2 669Google Scholar

    [77]

    Cai W S, White J S, Brongersma M L 2009 Nano Lett. 9 4403Google Scholar

    [78]

    Didomenico M, Wemple S H 1969 J. Appl. Phys. 40 720Google Scholar

    [79]

    Clark N A, Lagerwall S T 1980 Appl. Phys. Lett. 36 899Google Scholar

    [80]

    Soref R A, Bennett B R 1987 IEEE J. Quantum Electron. 23 123Google Scholar

    [81]

    Schildkraut J S 1988 Appl. Opt. 27 4587Google Scholar

    [82]

    Jung C, Yee S, Kuhn K 1995 Appl. Opt. 34 946Google Scholar

    [83]

    Jiang Y, Cao Z Q, Chen G, Dou X M, Chen Y L 2001 Opt. Laser Technol. 33 417Google Scholar

    [84]

    Randhawa S, Lachèze S, Renger J, Bouhelier A, de Lamaestre R E, Dereux A, Quidant R 2012 Opt. Express 20 2354Google Scholar

    [85]

    Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler P C, Li J, Palmer R, Korn D, Muehlbrandt S, van Thourhout D, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J 2014 Nat. Photon. 8 229Google Scholar

    [86]

    Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder D L, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton L R, Hafner C, Leuthold J 2015 Nat. Photon. 9 525Google Scholar

    [87]

    Ayata M, Fedoryshyn Y, Heni W, Baeuerle B, Josten A, Zahner M, Koch U, Salamin Y, Hoessbacher C, Haffner C, Elder D L, Dalton L R, Leuthold J 2017 Science 358 630Google Scholar

    [88]

    Hoessbacher C, Josten A, Baeuerle B, Fedoryshyn Y, Hettrich H, Salamin Y, Heni W, Haffner C, Kaiser C, Schmid R, Elder D L, Hillerkuss D, Möller M, Dalton L R, Leuthold J 2017 Opt. Express 25 1762Google Scholar

    [89]

    Haffner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B, Heni W, Watanabe T, Cui T, Cheng B J, Saha S, Elder D L, Dalton L R, Boltasseva A, Shalaev V M, Kinsey N, Leuthold J 2018 Nature 556 483Google Scholar

    [90]

    Smalley J S T, Zhao Y H, Nawaz A A, Hao Q Z, Ma Y, Khoo I C, Huang T J 2011 Opt. Express 19 15265Google Scholar

    [91]

    Babicheva V E, Zhukovsky S V, Lavrinenko A V 2014 Opt. Express 22 28890Google Scholar

    [92]

    Dicken M J, Sweatlock L A, Pacifici D, Lezec H J, Bhattacharya K, Atwater H A 2008 Nano Lett. 8 4048Google Scholar

    [93]

    Stolz A, Ko S M, Patriarche G, Dogheche E, Cho Y H, Decoster D 2013 Appl. Phys. Lett. 102 021905Google Scholar

    [94]

    Dionne J A, Diest K, Sweatlock L A, Atwater H A 2009 Nano Lett. 9 897Google Scholar

    [95]

    Zhu S Y, Lo G Q, Kwong D L 2013 Opt. Express 21 8320Google Scholar

    [96]

    Feigenbaum E, Diest K, Atwater H A 2010 Nano Lett. 10 2111Google Scholar

    [97]

    Sorger V J, Lanzillotti-Kimura N D, Ma R M, Zhang X 2012 Nanophotonics 1 17

    [98]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [99]

    Qian H L, Ma Y G, Yang Q, Chen B G, Liu Y, Guo X, Lin S S, Ruan J L, Liu X, Tong L M, Wang Z L 2014 ACS Nano 8 2584Google Scholar

    [100]

    Ansell D, Radko I P, Han Z, Rodriguez F J, Bozhevolnyi S I, Grigorenko A N 2015 Nat. Commum. 6 8846Google Scholar

    [101]

    Ding Y, Guan X, Zhu X, Hu H, Bozhevolnyi S I, Oxenløwe L K, Jin K J, Mortensen N A, Xiao S 2017 Nanoscale 9 15576Google Scholar

    [102]

    Wang Y L, Li T, Zhu S N 2017 Opt. Lett. 42 2247Google Scholar

    [103]

    Agrawal A, Susut C, Stafford G, Bertocci U, McMorran B, Lezec H J, Talin A A 2011 Nano Lett. 11 2774Google Scholar

    [104]

    Dennis B S, Haftel M I, Czaplewski D A, Lopez D, Blumberg G, Aksyuk V A 2015 Nat. Photon. 9 267Google Scholar

    [105]

    Armelles G, Cebollada A, García Martín A, González M U 2013 Adv. Opt. Mater. 1 10Google Scholar

    [106]

    Temnov V V, Armelles G, Woggon U, Guzatov D, Cebollada A, Garcia Martin A, Garcia Martin J M, Thomay T, Leitenstorfer A, Bratschitsch R 2010 Nat. Photon. 4 107Google Scholar

    [107]

    Firby C J, Elezzabi A Y 2015 Optica 2 598Google Scholar

    [108]

    Firby C J, Elezzabi A Y 2016 Appl. Phys. Lett. 109 011101Google Scholar

    [109]

    Pae J S, Im S J, Ho K S, Ri C S, Ro S B, Herrmann J 2018 Phys. Rev. B 98 041406Google Scholar

    [110]

    Razdolski I, Makarov D, Schmidt O G, Kirilyuk A, Rasing T, Temnov V V 2016 ACS Photon. 3 179Google Scholar

    [111]

    Firby C J, Chang P, Helmy A S, Elezzabi A Y 2016 ACS Photon. 3 2344Google Scholar

    [112]

    Belyaev V K, Murzin D V, Perova N N, Grunin A A, Fedyanin A A, Rodionova V V 2019 J. Magn. Magn. Mater. 482 292Google Scholar

  • 图 1  基于干涉的表面等离激元传播调制 (a)银纳米线网络结构中实现等离激元干涉调制[26]; (b)槽状银纳米波导结构中实现等离激元干涉调制[28]; (c)带状银波导结构中实现等离激元干涉调制[30]

    Figure 1.  Modulation of propagating surface plasmons based on interference: (a) Interferometric modulation of surface plasmons in silver nanowire network[26]; (b) interferometric modulation of surface plasmons in nanoslot waveguide network in silver film[28]; (c) interferometric modulation of surface plasmons in silver strip waveguides[30].

    图 2  基于光学材料的表面等离激元传播的全光调制 (a)基于量子点的表面等离激元调制[34]; (b)利用Er3+离子实现表面等离激元的调制[39]; (c)基于非线性光学材料的表面等离激元调制[41]; (d)基于光折变聚合物的表面等离激元调制[44]; (e)基于光致变色分子的表面等离激元调制[48]

    Figure 2.  All-optical modulation of propagating surface plasmons based on optical materials: (a) Modulating surface plasmons by CdSe quantum dots[34]; (b) modulating surface plasmons via stimulated emission of copropagating surface plasmons on a Er3+-doped glass substrate[39]; (c) modulating surface plasmons based on nonlinear optical material[41]; (d) modulating surface plasmons based on photorefractive polymer film[44]; (e) modulating surface plasmons by photochromic molecules[48].

    图 3  (a)通过改变铝介电函数实现对表面等离激元的超快调制[50]; (b)利用光学力操控纳米颗粒的位置实现对表面等离激元的调制[53]

    Figure 3.  (a) Ultrafast optical modulation of surface plasmons by changing the dielectric function of aluminum[50]; (b) optical modulation of surface plasmons by controlling the position of a nanoparticle through optical force[53].

    图 4  基于热光效应的表面等离激元传播调制 (a)利用掺杂染料分子的聚合物层的热光效应实现表面等离激元调制[54]; (b)利用掺杂金纳米颗粒的聚合物的热光效应实现介质加载型等离激元波导中的表面等离激元调制[57]; (c)基于电阻加热控制的聚合物热光效应实现条状金等离激元波导中的表面等离激元调制[59]; (d)基于电阻加热控制的聚合物热光效应实现介质加载型等离激元波导中的表面等离激元调制[61]; (e)基于电阻加热控制的聚合物热光效应实现柔性带状银波导中的表面等离激元调制[64]; (f)利用银和丙三醇的热光效应实现银纳米线波导中的表面等离激元调制[68]

    Figure 4.  Modulation of propagating surface plasmons based on thermo-optic effect: (a) Modulating surface plasmons based on thermo-optic effect of dye-doped polymer film[54]; (b) modulating surface plasmons on dielectric-loaded plasmonic waveguides based on thermo-optic effect of gold nanoparticle-doped polymer[57]; (c) modulating surface plasmons by thermo-optic effect of electrically heated polymer surrounding gold stripe waveguides[59]; (d) modulating surface plasmons by thermo-optic effect of the electrically heated polymer in dielectric-loaded plasmonic waveguides[61]; (e) modulating surface plasmons by thermo-optic effect of electrically heated polymer surrounding flexible silver stripe waveguides[64]; (f) modulating surface plasmons on silver nanowires based on thermo-optic effect of silver and glycerol[68].

    图 5  基于相变材料的表面等离激元传播调制 (a)利用镓的相变特性实现对表面等离激元的调制[72]; (b)利用Ge2Sb2Te5合金的相变特性实现对表面等离激元的调制[76]

    Figure 5.  Modulation of propagating surface plasmons based on phase change materials: (a) Modulating surface plasmons by the phase change of gallium[72]; (b) modulating surface plasmons by the phase change of Ge2Sb2Te5[76].

    图 6  基于电光效应的表面等离激元传播调制 (a)基于聚合物材料的线性电光效应的表面等离激元调制[85]; (b)基于DLD-164的线性电光效应的MZI型表面等离激元调制器[86]; (c)基于液晶的二次电光效应的表面等离激元调制[90]; (d)基于钛酸钡的二次电光效应的表面等离激元调制[92]

    Figure 6.  Modulation of propagating surface plasmons based on electro-optic effect: (a) Modulating surface plasmons based on the Pockels electro-optic effect of polymer[85]; (b) plasmonic MZI modulator based on the Pockels electro-optic effect of DLD-164[86]; (c) modulating surface plasmons based on the Kerr effect of liquid crystal[90]; (d) modulating surface plasmons based on the Kerr effect of barium titanate film[92].

    图 7  基于载流子浓度调控的等离激元调制器 (a)在MOS结构中调制硅载流子浓度实现等离激元调制器[94]; (b)在金属-介质-硅-介质-金属结构中调制硅芯层载流子浓度实现等离激元调制器[95]; (c)通过调控ITO载流子浓度实现等离激元调制器[97]

    Figure 7.  Plasmonic modulators based on the control of carrier concentration: (a) Plasmonic modulator based on MOS structure by tuning the carrier concentration in Si[94]; (b) plasmonic modulator based on metal-insulator-silicon-insulator-metal structure by tuning the carrier concentration in the Si core[95]; (c) plasmonic modulator based on tuning the carrier concentration in ITO[97].

    图 8  基于石墨烯载流子浓度调控的表面等离激元传播调制 (a)通过调控石墨烯载流子浓度实现对银纳米线表面等离激元的调制[99]; (b)通过调控石墨载流子浓度实现对金波导结构中表面等离激元边缘模式的调制[100]; (c)通过调控石墨烯载流子浓度实现对槽状金波导结构中表面等离激元的调制[101]

    Figure 8.  Modulation of propagating surface plasmons by tuning the carrier concentration of graphene: (a) Modulating surface plasmons on silver nanowire by tuning the carrier concentration of graphene[99]; (b) modulating the wedge plasmon mode of gold waveguide by tuning the carrier concentration of graphene[100]; (c) modulating surface plasmons on gold slot waveguide by tuning the carrier concentration of graphene[101].

    图 9  利用纳机电方法控制MIM波导的间隙尺寸实现对表面等离激元的相位调制[104]

    Figure 9.  Modulating the phase of surface plasmons in a MIM structure by nanoelectromechanical control of the gap between two metal layers[104].

    图 10  基于磁光效应的表面等离激元传播调制 (a)基于钴的磁光效应的表面等离激元调制[106]; (b)利用Bi:YIG的磁光效应的表面等离激元调制[107]

    Figure 10.  Modulation of propagating surface plasmons based on magneto-optic effect: (a) Modulating surface plasmons by magneto-optic effect of Co[106]; (b) modulating surface plasmons by magneto-optic effect of Bi:YIG[107].

    表 1  传播表面等离激元调制的原理

    Table 1.  Principles of modulating propagating surface plasmons.

    调制类型调制原理
    全光调制激发和干涉调制; 光学材料调制(增益/损耗介质调制、非线性光学材料调制、光致变色材料调制、光调制波导介电函数); 光学力操控调制
    热调制热光效应调制; 相变效应调制
    电调制电光调制(线性电光效应调制、二次电光效应调制); 载流子调制(电调制半导体载流子、电调制石墨烯载流子); 电致变色材料调制; 纳机电调制
    磁调制磁光效应调制
    DownLoad: CSV

    表 2  传播表面等离激元调制器的实验性能分析

    Table 2.  The experimental performance analysis of propagating surface plasmon modulators.

    调制原理工作波长/nm消光比/dB响应时间/调制频率参考文献
    全光调制63310[26]
    63312.6[27]
    633610 s[48]
    6339.5[30]
    720—900> 201 ms[44]
    7800.31200 fs[50]
    83024[29]
    1426~0.4625 MHz[34]
    热调制44240 Hz[65]
    63313上升10 s, 下降2 s[54]
    7851.2上升4.6 μs, 下降6.5 μs[68]
    1520—163015上升65 μs, 下降20 μs[60]
    1525100 Hz[61]
    15300.488.3 kHz[66]
    1530—15503上升2 ns, 下降800 ns[67]
    1550350.7 ms[59]
    155019上升~ms, 下降60 μs[62]
    155028[64]
    15501.61 μs[76]
    1588—16047.540 Hz[63]
    电调制633142 s[103]
    6593[99]
    6880.71[92]
    7801 MHz[104]
    1200—220020[97]
    1460—164010115 GHz[89]
    1480—160065 GHz[85]
    15000.36[100]
    1500—16001570 GHz[87]
    1508—15160.64上升1.3 s, 下降1 s[84]
    1520—1620670 GHz[86]
    1520—1620910 kHz[95]
    1540—15602.1200 kHz[101]
    1550170 GHz[88]
    15504.6100 kHz[94]
    磁调制808690 Hz[106]
    DownLoad: CSV
  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [2]

    Ozbay E 2006 Science 311 189Google Scholar

    [3]

    Schuller J A, Barnard E S, Cai W S, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193Google Scholar

    [4]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83Google Scholar

    [5]

    Wei H, Pan D, Zhang S P, Li Z P, Li Q, Liu N, Wang W H, Xu H X 2018 Chem. Rev. 118 2882Google Scholar

    [6]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp1–223

    [7]

    Sorger V J, Oulton R F, Ma R M, Zhang X 2012 MRS Bull. 37 728Google Scholar

    [8]

    Mayer K M, Hafner J H 2011 Chem. Rev. 111 3828Google Scholar

    [9]

    Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [10]

    Xu H X, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318Google Scholar

    [11]

    Linic S, Christopher P, Ingram D B 2011 Nat. Mater. 10 911Google Scholar

    [12]

    Yao Y, Kats M A, Genevet P, Yu N F, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257Google Scholar

    [13]

    Hsiao V K S, Zheng Y B, Juluri B K, Huang T J 2008 Adv. Mater. 20 3528Google Scholar

    [14]

    Guo P J, Schaller R D, Ketterson J B, Chang R P H 2016 Nat. Photon. 10 267Google Scholar

    [15]

    Stockhausen V, Martin P, Ghilane J, Leroux Y, Randriamahazaka H, Grand J, Felidj N, Lacroix J C 2010 J. Am. Chem. Soc. 132 10224Google Scholar

    [16]

    Jiang N N, Shao L, Wang J F 2014 Adv. Mater. 26 3282Google Scholar

    [17]

    Weeber J C, Krenn J R, Dereux A, Lamprecht B, Lacroute Y, Goudonnet J P 2001 Phys. Rev. B 64 045411Google Scholar

    [18]

    Dionne J A, Sweatlock L A, Atwater H A, Polman A 2006 Phys. Rev. B 73 035407Google Scholar

    [19]

    Briggs R M, Grandidier J, Burgos S P, Feigenbaum E, Atwater H A 2010 Nano Lett. 10 4851Google Scholar

    [20]

    Pan D, Wei H, Jia Z L, Xu H X 2014 Sci. Rep. 4 4993

    [21]

    Zhang S P, Wei H, Bao K, Håkanson U, Halas N J, Nordlander P, Xu H X 2011 Phys. Rev. Lett. 107 096801Google Scholar

    [22]

    Fang Y R, Li Z P, Huang Y Z, Zhang S P, Nordlander P, Halas N J, Xu H X 2010 Nano Lett. 10 1950Google Scholar

    [23]

    Wei H, Pan D, Xu H X 2015 Nanoscale 7 19053Google Scholar

    [24]

    Gao L, Chen L, Wei H, Xu H X 2018 Nanoscale 10 11923Google Scholar

    [25]

    Pan D, Wei H, Gao L, Xu H X 2016 Phys. Rev. Lett. 117 166803Google Scholar

    [26]

    Wei H, Li Z P, Tian X R, Wang Z X, Cong F Z, Liu N, Zhang S P, Nordlander P, Halas N J, Xu H X 2011 Nano Lett. 11 471Google Scholar

    [27]

    Li Z P, Zhang S P, Halas N J, Nordlander P, Xu H X 2011 Small 7 593Google Scholar

    [28]

    Pan D, Wei H, Xu H X 2013 Opt. Express 21 9556Google Scholar

    [29]

    Fu Y L, Hu X Y, Lu C C, Yue S, Yang H, Gong Q H 2012 Nano Lett. 12 5784Google Scholar

    [30]

    Wang Y L, Li T, Wang L, He H, Li L, Wang Q J, Zhu S N 2014 Laser Photon. Rev. 8 L47Google Scholar

    [31]

    Wei H, Wang Z X, Tian X R, Käll M, Xu H X 2011 Nat. Commum. 2 387Google Scholar

    [32]

    Wei H, Ratchford D, Li X Q, Xu H X, Shih C K 2009 Nano Lett. 9 4168Google Scholar

    [33]

    Li Q, Wei H, Xu H X 2014 Chin. Phys. B 23 097302Google Scholar

    [34]

    Pacifici D, Lezec H J, Atwater H A 2007 Nat. Photon. 1 402Google Scholar

    [35]

    Grandidier J, des Francs G C, Massenot S, Bouhelier A, Markey L, Weeber J C, Finot C, Dereux A 2009 Nano Lett. 9 2935Google Scholar

    [36]

    Liu N, Wei H, Li J, Wang Z X, Tian X R, Pan A L, Xu H X 2013 Sci. Rep. 3 1967Google Scholar

    [37]

    Ambati M, Nam S H, Ulin Avila E, Genov D A, Bartal G, Zhang X 2008 Nano Lett. 8 3998Google Scholar

    [38]

    de Leon I, Berini P 2010 Nat. Photon. 4 382Google Scholar

    [39]

    Krasavin A V, Vo T P, Dickson W, Bolger P M, Zayats A V 2011 Nano Lett. 11 2231Google Scholar

    [40]

    Tao J, Wang Q J, Huang X G 2011 Plasmonics 6 753Google Scholar

    [41]

    Lu H, Liu X M, Wang L R, Gong Y K, Mao D 2011 Opt. Express 19 2910Google Scholar

    [42]

    Pu M B, Yao N, Hu C G, Xin X C, Zhao Z Y, Wang C T, Luo X G 2010 Opt. Express 18 21030Google Scholar

    [43]

    Marder S R, Kippelen B, Jen A K Y, Peyghambarian N 1997 Nature 388 845Google Scholar

    [44]

    Chen J J, Li Z, Yue S, Gong Q H 2011 Nano Lett. 11 2933Google Scholar

    [45]

    Zhang L, Shi J, Yang Z, Huang M M, Chen Z J, Gong Q H, Cao S K 2008 Polymer 49 2107Google Scholar

    [46]

    Irie M, Fukaminato T, Matsuda K, Kobatake S 2014 Chem. Rev. 114 12174Google Scholar

    [47]

    Zhang C, Yan Y L, Zhao Y S, Yao J N 2014 Acc. Chem. Res. 47 3448Google Scholar

    [48]

    Pala R A, Shimizu K T, Melosh N A, Brongersma M L 2008 Nano Lett. 8 1506Google Scholar

    [49]

    Großmann M, Klick A, Lemke C, Falke J, Black M, Fiutowski J, Goszczak A J, Sobolewska E, Zillohu A U, Hedayati M K, Rubahn H G, Faupel F, Elbahri M, Bauer M 2015 ACS Photon. 2 1327Google Scholar

    [50]

    MacDonald K F, Sámson Z L, Stockman M I, Zheludev N I 2009 Nat. Photon. 3 55

    [51]

    Li Z P, Käll M, Xu H X 2008 Phys. Rev. B 77 085412Google Scholar

    [52]

    Svedberg F, Li Z P, Xu H X, Käll M 2006 Nano Lett. 6 2639Google Scholar

    [53]

    Shalin A S, Ginzburg P, Belov P A, Kivshar Y S, Zayats A V 2014 Laser Photon. Rev. 8 131Google Scholar

    [54]

    Okamoto T, Kamiyama T, Yamaguchi I 1993 Opt. Lett. 18 1570Google Scholar

    [55]

    Gosciniak J, Bozhevolnyi S I 2013 Sci. Rep. 3 1803Google Scholar

    [56]

    Zhang Z Y, Zhao P, Lin P, Sun F G 2006 Polymer 47 4893Google Scholar

    [57]

    Weeber J C, Hassan K, Saviot L, Dereux A, Boissière C, Durupthy O, Chaneac C, Burov E, Pastouret A 2012 Opt. Express 20 27636Google Scholar

    [58]

    Padmaraju K, Logan D F, Zhu X L, Ackert J J, Knights A P, Bergman K 2013 Opt. Express 21 14342Google Scholar

    [59]

    Nikolajsen T, Leosson K, Bozhevolnyi S I 2004 Appl. Phys. Lett. 85 5833Google Scholar

    [60]

    Gosciniak J, Markey L, Dereux A, Bozhevolnyi S I 2012 Opt. Express 20 16300Google Scholar

    [61]

    Gosciniak J, Bozhevolnyi S I, Andersen T B, Volkov V S, Kjelstrup Hansen J, Markey L, Dereux A 2010 Opt. Express 18 1207Google Scholar

    [62]

    Gagnon G, Lahoud N, Mattiussi G A, Berini P 2006 J. Lightw. Technol. 24 4391Google Scholar

    [63]

    Gosciniak J, Markey L, Dereux A, Bozhevolnyi S I 2012 Nanotechnology 23 444008Google Scholar

    [64]

    Tang J, Liu Y R, Zhang L J, Fu X C, Xue X M, Qian G, Zhao N, Zhang T 2018 Micromachines 9 369Google Scholar

    [65]

    Lereu A L, Passian A, Goudonnet J P, Thundat T, Ferrell T L 2005 Appl. Phys. Lett. 86 154101Google Scholar

    [66]

    Kaya S, Weeber J C, Zacharatos F, Hassan K, Bernardin T, Cluzel B, Fatome J, Finot C 2013 Opt. Express 21 22269Google Scholar

    [67]

    Weeber J C, Bernardin T, Nielsen M G, Hassan K, Kaya S, Fatome J, Finot C, Dereux A, Pleros N 2013 Opt. Express 21 27291Google Scholar

    [68]

    Li Q, Chen L, Xu H X, Liu Z W, Wei H 2019 ACS Photon. http://dx.doi.org/10.1021/acsphotonics.9b00711

    [69]

    Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M 2008 Nat. Mater. 7 972Google Scholar

    [70]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824Google Scholar

    [71]

    Zalba B, Marı́n J M, Cabeza L F, Mehling H 2003 Appl. Therm. Eng. 23 251Google Scholar

    [72]

    Krasavin A V, Zheludev N I 2004 Appl. Phys. Lett. 84 1416Google Scholar

    [73]

    Markov P, Appavoo K, Haglund R F, Weiss S M 2015 Opt. Express 23 6878Google Scholar

    [74]

    Jostmeier T, Mangold M, Zimmer J, Karl H, Krenner H J, Ruppert C, Betz M 2016 Opt. Express 24 17321Google Scholar

    [75]

    Sweatlock L A, Diest K 2012 Opt. Express 20 8700Google Scholar

    [76]

    Rudé M, Simpson R E, Quidant R, Pruneri V, Renger J 2015 ACS Photon. 2 669Google Scholar

    [77]

    Cai W S, White J S, Brongersma M L 2009 Nano Lett. 9 4403Google Scholar

    [78]

    Didomenico M, Wemple S H 1969 J. Appl. Phys. 40 720Google Scholar

    [79]

    Clark N A, Lagerwall S T 1980 Appl. Phys. Lett. 36 899Google Scholar

    [80]

    Soref R A, Bennett B R 1987 IEEE J. Quantum Electron. 23 123Google Scholar

    [81]

    Schildkraut J S 1988 Appl. Opt. 27 4587Google Scholar

    [82]

    Jung C, Yee S, Kuhn K 1995 Appl. Opt. 34 946Google Scholar

    [83]

    Jiang Y, Cao Z Q, Chen G, Dou X M, Chen Y L 2001 Opt. Laser Technol. 33 417Google Scholar

    [84]

    Randhawa S, Lachèze S, Renger J, Bouhelier A, de Lamaestre R E, Dereux A, Quidant R 2012 Opt. Express 20 2354Google Scholar

    [85]

    Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler P C, Li J, Palmer R, Korn D, Muehlbrandt S, van Thourhout D, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J 2014 Nat. Photon. 8 229Google Scholar

    [86]

    Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder D L, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton L R, Hafner C, Leuthold J 2015 Nat. Photon. 9 525Google Scholar

    [87]

    Ayata M, Fedoryshyn Y, Heni W, Baeuerle B, Josten A, Zahner M, Koch U, Salamin Y, Hoessbacher C, Haffner C, Elder D L, Dalton L R, Leuthold J 2017 Science 358 630Google Scholar

    [88]

    Hoessbacher C, Josten A, Baeuerle B, Fedoryshyn Y, Hettrich H, Salamin Y, Heni W, Haffner C, Kaiser C, Schmid R, Elder D L, Hillerkuss D, Möller M, Dalton L R, Leuthold J 2017 Opt. Express 25 1762Google Scholar

    [89]

    Haffner C, Chelladurai D, Fedoryshyn Y, Josten A, Baeuerle B, Heni W, Watanabe T, Cui T, Cheng B J, Saha S, Elder D L, Dalton L R, Boltasseva A, Shalaev V M, Kinsey N, Leuthold J 2018 Nature 556 483Google Scholar

    [90]

    Smalley J S T, Zhao Y H, Nawaz A A, Hao Q Z, Ma Y, Khoo I C, Huang T J 2011 Opt. Express 19 15265Google Scholar

    [91]

    Babicheva V E, Zhukovsky S V, Lavrinenko A V 2014 Opt. Express 22 28890Google Scholar

    [92]

    Dicken M J, Sweatlock L A, Pacifici D, Lezec H J, Bhattacharya K, Atwater H A 2008 Nano Lett. 8 4048Google Scholar

    [93]

    Stolz A, Ko S M, Patriarche G, Dogheche E, Cho Y H, Decoster D 2013 Appl. Phys. Lett. 102 021905Google Scholar

    [94]

    Dionne J A, Diest K, Sweatlock L A, Atwater H A 2009 Nano Lett. 9 897Google Scholar

    [95]

    Zhu S Y, Lo G Q, Kwong D L 2013 Opt. Express 21 8320Google Scholar

    [96]

    Feigenbaum E, Diest K, Atwater H A 2010 Nano Lett. 10 2111Google Scholar

    [97]

    Sorger V J, Lanzillotti-Kimura N D, Ma R M, Zhang X 2012 Nanophotonics 1 17

    [98]

    Liu M, Yin X B, Ulin-Avila E, Geng B S, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [99]

    Qian H L, Ma Y G, Yang Q, Chen B G, Liu Y, Guo X, Lin S S, Ruan J L, Liu X, Tong L M, Wang Z L 2014 ACS Nano 8 2584Google Scholar

    [100]

    Ansell D, Radko I P, Han Z, Rodriguez F J, Bozhevolnyi S I, Grigorenko A N 2015 Nat. Commum. 6 8846Google Scholar

    [101]

    Ding Y, Guan X, Zhu X, Hu H, Bozhevolnyi S I, Oxenløwe L K, Jin K J, Mortensen N A, Xiao S 2017 Nanoscale 9 15576Google Scholar

    [102]

    Wang Y L, Li T, Zhu S N 2017 Opt. Lett. 42 2247Google Scholar

    [103]

    Agrawal A, Susut C, Stafford G, Bertocci U, McMorran B, Lezec H J, Talin A A 2011 Nano Lett. 11 2774Google Scholar

    [104]

    Dennis B S, Haftel M I, Czaplewski D A, Lopez D, Blumberg G, Aksyuk V A 2015 Nat. Photon. 9 267Google Scholar

    [105]

    Armelles G, Cebollada A, García Martín A, González M U 2013 Adv. Opt. Mater. 1 10Google Scholar

    [106]

    Temnov V V, Armelles G, Woggon U, Guzatov D, Cebollada A, Garcia Martin A, Garcia Martin J M, Thomay T, Leitenstorfer A, Bratschitsch R 2010 Nat. Photon. 4 107Google Scholar

    [107]

    Firby C J, Elezzabi A Y 2015 Optica 2 598Google Scholar

    [108]

    Firby C J, Elezzabi A Y 2016 Appl. Phys. Lett. 109 011101Google Scholar

    [109]

    Pae J S, Im S J, Ho K S, Ri C S, Ro S B, Herrmann J 2018 Phys. Rev. B 98 041406Google Scholar

    [110]

    Razdolski I, Makarov D, Schmidt O G, Kirilyuk A, Rasing T, Temnov V V 2016 ACS Photon. 3 179Google Scholar

    [111]

    Firby C J, Chang P, Helmy A S, Elezzabi A Y 2016 ACS Photon. 3 2344Google Scholar

    [112]

    Belyaev V K, Murzin D V, Perova N N, Grunin A A, Fedyanin A A, Rodionova V V 2019 J. Magn. Magn. Mater. 482 292Google Scholar

  • [1] Yan Xiao-Hong, Niu Yi-Jie, Xu Hong-Xing, Wei Hong. Strong coupling of single plasmonic nanoparticles and nanogaps with quantum emitters. Acta Physica Sinica, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [2] Zhang Lian, Wang Hua-Yu, Wang Ning, Tao Can, Zhai Xue-Lin, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao. Broadband enhancement of spontaneous emission by optical dipole nanoantenna on metallic substrate: An intuitive model of surface plasmon polariton. Acta Physica Sinica, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [3] Zhang Lian,  Wang Hua-Yu,  Wang Ning,  Tao Can,  Zhai Xue-Lin,  Ma Ping-Zhun,  Zhong Ying,  Liu Hai-Tao. Broadband Enhancement of the Spontaneous Emission by an Optical Dipole Nanoantenna on Metallic Substrate: an Intuitive Model of Surface Plasmon Polariton. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [4] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [5] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [6] Chu Pei-Xin, Zhang Yu-Bin, Chen Jun-Xue. Surface plasmon induced transparency in coupled microcavities assisted by slits. Acta Physica Sinica, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [7] Wu Li-Xiang, Li Xin, Yang Yuan-Jie. Generation of surface plasmon vortices based on double-layer Archimedes spirals. Acta Physica Sinica, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [8] Yu Hua-Kang, Liu Bo-Dong, Wu Wan-Ling, Li Zhi-Yuan. Surface plasmaons enhanced light-matter interactions. Acta Physica Sinica, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [9] Zhang Bao-Bao, Zhang Cheng-Yun, Zhang Zheng-Long, Zheng Hai-Rong. Surface plasmon mediated chemical reaction. Acta Physica Sinica, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [10] Chen Lu, Chen Yue-Gang. Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure. Acta Physica Sinica, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [11] Zhou Qiang, Lin Shu-Pei, Zhang Pu, Chen Xue-Wen. Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Acta Physica Sinica, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [12] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [13] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [14] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [15] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [16] Huang Zhi-Fang, Ni Ya-Xian, Sun Hua. Localized surface plasmon resonance and the size effects of magneto-optic rods. Acta Physica Sinica, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [17] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [18] Hu Meng-Zhu, Zhou Si-Yang, Han Qin, Sun Hua, Zhou Li-Ping, Zeng Chun-Mei, Wu Zhao-Feng, Wu Xue-Mei. Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulator-metal waveguides. Acta Physica Sinica, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [19] Wang Lei, Cai Wei, Tan Xin-Hui, Xiang Yin-Xiao, Zhang Xin-Zheng, Xu Jing-Jun. Effects of cross-section shape on fast electron beams excited plasmons in the surface of nanowire pairs. Acta Physica Sinica, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [20] Chen Jian-Jun, Li Zhi, Zhang Jia-Sen, Gong Qi-Huang. Surface plasmon polariton modulator based on electro-optic polymer. Acta Physica Sinica, 2008, 57(9): 5893-5898. doi: 10.7498/aps.57.5893
Metrics
  • Abstract views:  15878
  • PDF Downloads:  849
  • Cited By: 0
Publishing process
  • Received Date:  24 May 2019
  • Accepted Date:  01 July 2019
  • Available Online:  01 July 2019
  • Published Online:  20 July 2019

/

返回文章
返回