Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Broadband Enhancement of the Spontaneous Emission by an Optical Dipole Nanoantenna on Metallic Substrate: an Intuitive Model of Surface Plasmon Polariton

Zhang Lian Wang Hua-Yu Wang Ning Tao Can Zhai Xue-Lin Ma Ping-Zhun Zhong Ying Liu Hai-Tao

Citation:

Broadband Enhancement of the Spontaneous Emission by an Optical Dipole Nanoantenna on Metallic Substrate: an Intuitive Model of Surface Plasmon Polariton

Zhang Lian, Wang Hua-Yu, Wang Ning, Tao Can, Zhai Xue-Lin, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao
PDF
Get Citation
  • Optical nanoantennas can achieve electromagnetic-field enhancement under far-field excitation or spontaneous-emission enhancement under excitation by radiating emitters. Among them, nanoantennas on a metallic substrate (i.e., the so-called nanoparticle-on-mirror antennas) have drawn great research interests due to their ease in forming metallic gaps of sizes down to a few nanometers or even subnanometer. Here we propose an optical dipole nanoantenna on a metallic substrate with a broadband enhancement of spontaneous emission. Its total and radiative emission-rate enhancement factors can be up to 5454 and 1041, respectively. In the near-infrared band, the wavelength range of spontaneous-emission enhancement (Purcell factor over 1000) can reach 260nm. By changing the width of the slit between the two antenna arms and changing the length of the antenna arms, the spontaneous-emission enhancement bandwidth and enhancement factors can be adjusted, respectively, which brings great freedom and simplicity to the design process. The antenna can achieve a strong far-field radiation within a central anglular zone (polar angle θ≤60°) corresponding to a certain numerical aperture of objective lens, and therefore can increase the intensity of the fluorescence collected by the objective lens. Based on the above performances, the antenna can provide a broadband enhancement of spontaneous emission for fluorescent molecules or quantum dots (whose fluorescence spectrum usually covers a certain wavelength range), which is of great significance for applications such as high-speed and super-bright nanoscale light sources and high-sensitivity fluorescent-molecule sensing.
    To clarify the underlying physical mechanisms, we build up a semi-analytical model by considering an intuitive excitation and multiple-scattering process of surface plasmon polaritons (SPPs) that propagate along the antenna arms. All the parameters used in the model (such as the SPP scattering coefficients) are obtained via rigorous calculations based on the first principle of Maxwell’s equations without any fitting process, which ensures that the model has a solid electromagnetic foundation and can provide quantitative predictions. The SPP model can comprehensively reproduce all the radiation properties of the antenna, such as the total and radiative emission rates and the far-field radiation pattern. Two phase-matching conditions are derived from the model for predicting the antenna resonance, and show that under these conditions, the SPPs on the antenna arms form a pair of Fabry-Perot resonance and therefore are enhanced, and the enhanced SPPs propagate to the emitter in the nanogap (or scattered into the free space), so as to enhance the total spontaneous emission rate (or the far-field radiative emission rate). Besides, this pair of Fabry-Perot resonance result in a pair of resonance peaks close to each other, which then forms the broadband enhancement of spontaneous emission.
  • [1]

    Mühlschlegel P, Eisler H J, Martin O J F, Hecht B, Pohl D W 2005 Science 308 1607

    [2]

    Novotny L, Van Hulst N 2011 Nat. Photonics 5 83

    [3]

    Pelton M 2015 Nat. Photonics 9 427

    [4]

    Şendur K, Baran E 2009 Appl. Phys. B 96 325

    [5]

    Sederberg S, Elezzabi A Y. 2011 Opt. Express 19 10456

    [6]

    El-Toukhy Y M, Hussein M, Hameed M F O, Obayya S S A 2018 Plasmonics 13 503

    [7]

    Aizpurua J, Bryant G W, Richter L J, García de Abajo F J, Kelley B K, Mallouk T 2005 Phys. Rev. B 71 235420

    [8]

    Yong Z D, Zhang S L, Dong Y J, He S L 2015 Prog. Electromagn. Res. 153 123

    [9]

    Lu G W, Liu J, Zhang T Y, Shen H M, Perriat P, Martini M, Tillement O, Gu Y, He Y B, Wang Y W, Gong Q H 2013 Nanoscale 5 6545

    [10]

    Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J N, Smith D R, Mikkelsen M H 2014 Nat. Photonics 8 835

    [11]

    Hoang T B, Akselrod G M, Argyropoulos C, Huang J, Smith D R, Mikkelsen M H 2015 Nat. Commun. 6 7788

    [12]

    Kinkhabwala A, Yu Z H, Fan S H, Avlasevich Y, Müllen K, Moerner W E 2009 Nat. Photonics 3 654

    [13]

    Muskens O L, Giannini V, Sánchez-Gil J A, Gómez Rivas J 2007 Nano. Lett. 7 2871

    [14]

    Baibakov M, Patra S, Claude J-B, Moreau A, Lumeau J, Wenger J 2019 ACS Nano 13 8469

    [15]

    Barulin A, Claude J-B, Patra S, Bonod N, Wenger J 2019 Nano. Lett. 19 7434

    [16]

    Rycenga M, Xia X H, Moran C H, Zhou F, Qin D, Li Z Y, Xia Y N 2011 Angew. Chem. Int. Edit. 50 5473

    [17]

    Nie S, Emory S R 1997 Science 275 1102

    [18]

    Lodahl P, Mahmoodian S, Stobbe S 2015 Rev. Mod. Phys. 87 347

    [19]

    Tsakmakidis K L, Boyd R W, Yablonovitch E, Zhang X 2016 Opt. Express 24 17916

    [20]

    Suh J Y, Kim C H, Zhou W, Huntington M D, Co D T, Wasielewski M R, Odom T W 2012 Nano. Lett. 12 5769

    [21]

    Ma R-M, Oulton R F, Sorger V J, Zhang X 2013 Laser. Photonics. Rev. 7 1

    [22]

    Harutyunyan H, Volpe G, Quidant R, Novotny L 2012 Phys. Rev. Lett. 108 217403

    [23]

    Butet J, Martin O J F 2015 Plasmonics 10 203

    [24]

    Gong T X, Guan F, Wei Z J, Huang W, Zhang X S. 2021 Front. Phys-Lausanne 9 225

    [25]

    Zhang W H, Huang L N, Santschi C, Martin O J F 2010 Nano. Lett. 10 1006

    [26]

    Fischer H, Martin O J F 2008 Opt. Express 16 9144

    [27]

    Yong Z D, Gong C S, Dong Y J, Zhang S L, He S L 2017 RSC Adv. 7 2074

    [28]

    Trojak O J, Park S I, Song J D, Sapienza L 2017 Appl. Phys. Lett. 111 021109

    [29]

    Zarrabi F B, Naser-Moghadasi M, Heydari S, Maleki M, Arezomand A S 2016 Opt. Commun. 371 34

    [30]

    Lumdee C, Yun B F, Kik P G 2014 ACS Photonics 1 1224

    [31]

    Baumberg J J, Aizpurua J, Mikkelsen M H, Smith D R 2019 Nat. Mater. 18 668

    [32]

    Huang S X, Ming T, Lin Y X, Ling X, Ruan Q F, Palacios T, Wang J F, Kong J, Dresselhaus M, Kong J 2016 Small 12 5190

    [33]

    Huang Y, Ma L W, Hou M J, Li J H, Xie Z, Zhang Z J 2016 Sci. Rep. 6 30011

    [34]

    Armstrong R E, van Liempt J C, Zijlstra P 2019 J. Phys. Chem. C 123 25801

    [35]

    Huang Y, Ma L W, Li J H, Zhang Z J 2017 Nanotechnology 28 105203

    [36]

    Purcell E M 1946 Phys. Rev. 69 681

    [37]

    Lakowicz J R, Fu Y 2009 Laser. Photonics. Rev. 3 221

    [38]

    Agio M 2012 Nanoscale 4 692

    [39]

    Li L, Hutter T, Steiner U, Mahajan S 2013 Analyst 138 4574

    [40]

    Yoon J K, Kim K, Shin K S 2009 J. Phys. Chem. C 113 1769

    [41]

    Alu A, Engheta N 2008 Phys. Rev. Lett. 101 043901

    [42]

    Eggleston M S, Messer K, Zhang L M, Yablonovitch E, Wu M C 2015 Proc. Natl. Acad. Sci. USA 112 1704

    [43]

    Fernandez-Garcia R, Rahmani M, Hong M, Maier S A, Sonnefraud Y 2013 Opt. Express 21 12552

    [44]

    Calderón J, Álvarez J, Martinez-Pastor J, Hill D 2015 Plasmonics 10 703

    [45]

    Cooper C T, Rodriguez M, Blair S, Shumaker-Parry J S 2014 J. Phys. Chem. C 118 1167

    [46]

    Jia H, Yang F, Zhong Y, Liu H 2016 Photon. Res. 4 293

    [47]

    Lalanne P, Yan W, Vynck K, Sauvan C, Hugonin J-P 2018 Laser Photon. Rev. 12 1700113

    [48]

    Sauvan C, Hugonin J P, Maksymov I S, Lalanne P 2013 Phys. Rev. Lett. 110 237401

    [49]

    Ching E S C, Leung P T, Maassen van den Brink A, Tong S S, Young K 1998 Rev. Mod. Phys. 70 1545

    [50]

    Della Valle G, Søndergaard T, Bozhevolnyi S I 2008 Opt. Express 16 6867

    [51]

    Taminiau T H, Stefani F D, van Hulst N F 2011 Nano. Lett. 11 1020

    [52]

    Cubukcu E, Capasso F 2009 Appl. Phys. Lett. 95 201101

    [53]

    Hasan S B, Filter R, Ahmed A, Vogelgesang R, Gordon R, Rockstuhl C, Lederer F 2011 Phys. Rev. B 84 195405

    [54]

    Kim D, Jeong K-Y, Kim J, Ee H-S, Kang J-H, Park H-G Seo M-K 2017 Phys. Rev. Appl. 8 054024

    [55]

    Chandran A, Barnard E S, White J S, Brongersma M L 2012 Phys. Rev. B 85 085416

    [56]

    Filter R, Qi J, Rockstuhl C, Ledere F 2012 Phys. Rev. B 85 125429

    [57]

    Wan J, Zhu J, Zhong Y, Liu H 2018 J. Opt. Soc. Am. A 35 880

    [58]

    Jia H, Liu H, Zhong Y 2015 Sci. Rep. 5 8456

    [59]

    Zhai X, Wang N, Zhong Y, Liu H 2020 IEEE J. Sel. Top. Quantum Electron. 27 4600815

    [60]

    Kotal S, Artioli A, Wang Y, Osterkryger A D, Finazzer M, Fons R, Claudon J, Bleuse J, Gérard J-M, 2021 Appl. Phys. Lett. 118 194002

    [61]

    Yang J, Kong F M, Li K, Sheng S W 2015 Opt. Commun. 342 230

    [62]

    Vesseur E J R, de Abajo F J G, Polman A 2010 Phys. Rev. B 82 165419

    [63]

    Edwards A P, Adawi A M 2014 J. Appl. Phys. 115 053101

    [64]

    Palik E D 1991 Handbook of Optical Constants of Solids, Part II (San Diego: Academic)

    [65]

    Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002

    [66]

    The calculation is performed with an in-house software: Haitao Liu, DIF CODE for Modeling Light Diffraction in Nanostructures (Nankai University, Tianjin, 2010).

    [67]

    Hugonin J P, Lalanne P 2005 J. Opt. Soc. Am. A 22 1844

    [68]

    Vassallo C 1991 Optical Waveguide Concepts (Amsterdam: Elsevier)

    [69]

    Chang D E, Sørensen A S, Hemmer P R, Lukin M D 2007 Phys. Rev. B 76 035420

    [70]

    Li L 1996 J. Opt. Soc. Am. A 13 1024

    [71]

    Li L 2014 “Fourier Modal Method,” in Gratings: Theory and Numeric Applications, Popov E ed., Second Revisited Edition (Marseille: Institut Fresnel, Aix Marseille Université) pp 573-574

    [72]

    Liu H 2013 Opt. Express 21 24093

    [73]

    Ortega J M, Rheinboldt W C 1970 Iterative Solution of Nonlinear Equations in Several Variables (New York and London: Academic)

    [74]

    Li Y, Liu H, Jia H, Bo F, Zhang G, Xu J 2014 J. Opt. Soc. Am. A 31 2459

    [75]

    Yang J, Hugonin J-P, Lalanne P 2016 ACS Photonics 3 395

  • [1] Su Yu-Hang, Zhang Lian, Tao Can, Wang Ning, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao. Spontaneous emission enhancement and directional emission by an optical nanonatenna array on a metallic mirror. Acta Physica Sinica, doi: 10.7498/aps.72.20222007
    [2] Yan Xiao-Hong, Niu Yi-Jie, Xu Hong-Xing, Wei Hong. Strong coupling of single plasmonic nanoparticles and nanogaps with quantum emitters. Acta Physica Sinica, doi: 10.7498/aps.71.20211900
    [3] Zhang Lian, Wang Hua-Yu, Wang Ning, Tao Can, Zhai Xue-Lin, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao. Broadband enhancement of spontaneous emission by optical dipole nanoantenna on metallic substrate: An intuitive model of surface plasmon polariton. Acta Physica Sinica, doi: 10.7498/aps.70.20212290
    [4] Han Di-Yi, Gu Yang, Hu Tao-Zheng, Dong Wen, Ni Ya-Xian. Enhanced photocurrent in bimetallic/TiO2 nanotube composite structures. Acta Physica Sinica, doi: 10.7498/aps.70.20201134
    [5] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, doi: 10.7498/aps.69.20200456
    [6] Zhou Li, Wang Qu-Quan. Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis. Acta Physica Sinica, doi: 10.7498/aps.68.20190276
    [7] Wang Han-Cong, Li Zhi-Peng. Advances in surface-enhanced optical forces and optical manipulations. Acta Physica Sinica, doi: 10.7498/aps.68.20190606
    [8] Li Xin, Wu Li-Xiang, Yang Yuan-Jie. Enhanced near field focus steering of rectangular nanoslit metasurface structure. Acta Physica Sinica, doi: 10.7498/aps.68.20190728
    [9] Yu Hua-Kang, Liu Bo-Dong, Wu Wan-Ling, Li Zhi-Yuan. Surface plasmaons enhanced light-matter interactions. Acta Physica Sinica, doi: 10.7498/aps.68.20190337
    [10] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, doi: 10.7498/aps.68.20190564
    [11] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, doi: 10.7498/aps.68.20190062
    [12] Cheng Zi-Qiang, Shi Hai-Quan, Yu Ping, Liu Zhi-Min. Surface-enhanced Raman scattering effect of silver nanoparticles array. Acta Physica Sinica, doi: 10.7498/aps.67.20180650
    [13] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, doi: 10.7498/aps.67.20182085
    [14] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, doi: 10.7498/aps.66.145201
    [15] Chen Yu, Liu Long, Huang Zhong, Tu Lin-Lin, Zhan Peng. Great enhancement of transversal magneto-optical Kerr effect for magnetic dielectric film embedded by one-dimensional metallic grating. Acta Physica Sinica, doi: 10.7498/aps.65.147302
    [16] Ding Dong, Yang Shi-E, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays. Acta Physica Sinica, doi: 10.7498/aps.64.248801
    [17] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, doi: 10.7498/aps.64.108402
    [18] Hu Meng-Zhu, Zhou Si-Yang, Han Qin, Sun Hua, Zhou Li-Ping, Zeng Chun-Mei, Wu Zhao-Feng, Wu Xue-Mei. Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulator-metal waveguides. Acta Physica Sinica, doi: 10.7498/aps.63.029501
    [19] Zhu Hua, Yan Zhen-Dong, Zhan Peng, Wang Zhen-Lin. Enhanced third harmonic generation by localized surface plasmon excitation. Acta Physica Sinica, doi: 10.7498/aps.62.178104
    [20] Wang Lei, Cai Wei, Tan Xin-Hui, Xiang Yin-Xiao, Zhang Xin-Zheng, Xu Jing-Jun. Effects of cross-section shape on fast electron beams excited plasmons in the surface of nanowire pairs. Acta Physica Sinica, doi: 10.7498/aps.60.067305
Metrics
  • Abstract views:  2084
  • PDF Downloads:  35
  • Cited By: 0
Publishing process
  • Available Online:  15 March 2022

/

返回文章
返回