-
Nonlinear optical (NLO) effects are ubiquitous in the interaction of light with different materials. However, the NLO responses of most materials are inherently weak due to the small NLO susceptibility and the limited interaction length with the incident light. In plasmonic nanostructures the optical field is confined near the surface of the structures, so that the electromagnetic field is greatly enhanced in a localized fashion by spectral resonance. This effect results in the enhancement of light-matter interaction and NLO response of the material. Ultrafast pulse lasers have been widely used in optical communication, precise measurement, biomedicine, military laser weapons and other important fields due to their excellent performances. Although commercial lasers become very matured, they can achieve ultra-high peak power and ultra-short pulse width and ultra-high repetition rate, but the ultra-fast pulses in the mid-to-far infrared band are seldom studied, so finding a saturable absorber material with excellent performance is of great significance for developing the pulsed lasers. In this paper, we review the recent research progress of the applications of exiton nanostructure in ultrafast optical switches and pulse lasers based on noble metal and non-noble metals. The metallic system mainly refers to gold and silver nanoparticles. For non-noble metals, we mainly introduce our researches of chalcogenide semiconductor, heavily doped oxide and titanium nitride. A variety of wide bandgap semiconductors can exhibit metal-like properties through doping. Since doping can form free carriers, when their size is reduced to a nanometer scale, they will show the characteristics of local surface plasmon resonance, thus realizing ultra-fast nonlinear optical response, and the concentration of doped carriers cannot reach the level of metal carriers, thus being able to effectively reduce the inter-band loss caused by excessively high carriers. Through pump probe detection and Z-scan testing, we found that these plasmonic nanostructures exhibit ultrafast NLO response in tunable resonance bandwidth, which has been utilized as a working material for developing the optical switch to generate the pulsed laser with duration down to a femtosecond range. These results take on their potential applications in ultrafast photonics. Finally, we make a comparison of the pros and cons among different plasmonic materials and present a perspective of the future development.
-
Keywords:
- nonlinear optics /
- saturable absorber /
- surface plasmon /
- pulse laser
[1] Maiman T H 1960 Nature 187 493Google Scholar
[2] DeMaria A J, Stetser D A, Heynau H 1966 Appl. Phys. Lett. 8 174Google Scholar
[3] Keller U 2003 Nature 424 831Google Scholar
[4] Okhotnikov O, Grudinin A, Pessa M 2004 New J. Phys. 6 177Google Scholar
[5] Davis K M, Miura K, Sugimoto N, Hirao K 1996 Opt. Lett. 21 1729Google Scholar
[6] Ams M, Marshall G D, Dekker P, Piper J A, Withford M J 2009 Laser Photonics Rev. 3 535Google Scholar
[7] Zewail A H 1988 Science 242 1645Google Scholar
[8] Liu X F, Guo Q B, Qiu J R 2017 Adv. Mater. 29 1605886Google Scholar
[9] Wang G Z, Baker-Murray A A, Blau W J 2019 Laser Photonics Rev. 13 1800282Google Scholar
[10] Zhang Y X, Lu D Z, Yu H H, Zhang H J 2019 Adv. Opt. Mater. 7 1800886Google Scholar
[11] Gladush Y, Mkrtchyan A A, Kopylova D S, Ivanenko A, Nyushkov B, Kobtsev S, Kokhanovskiy A, Khegai A, Melkumov M, Burdanova M, Staniforth M, Lloyd-Hughes J, Nasibulin A G 2019 Nano Lett. 19 5836Google Scholar
[12] Martinez A, Sun Z 2013 Nat. Photonics 7 842Google Scholar
[13] Hasan T, Sun Z P, Tan P H, Popa D, Flahaut E, Kelleher E J R, Bonaccorso F, Wang F Q, Jiang Z, Torrisi F, Privitera G, Nicolosi V, Ferrari A C 2014 ACS Nano 8 4836Google Scholar
[14] Sun Z P, Hasan T, Torrisi F, Popa D, Privitera G, Wang F Q, Bonaccorso F, Basko D M, Ferrari A C 2010 ACS Nano 4 803Google Scholar
[15] Bao Q L, Loh K P 2012 ACS Nano 6 3677Google Scholar
[16] Lu L, Liang Z M, Wu L M, Chen Y X, Song Y F, Dhanabalan S C, Ponraj J S, Dong B Q, Xiang Y J, Xing F, Fan D Y, Zhang H 2018 Laser Photonics Rev. 12 1700221Google Scholar
[17] Jin X X, Hu G H, Zhang M, Albrow O T, Zheng Z, Hasan T 2020 Nanophotonics 5 2192Google Scholar
[18] Chen Y, Jiang G B, Chen S Q, Guo Z N, Yu X F, Zhao C J, Zhang H, Bao Q L, Wen S C, Tang D Y, Fan D Y 2015 Opt. Express 23 12823Google Scholar
[19] Sun X L, Shi B N, Wang H Y, Lin N, Liu S D, Yang K J, Zhang B T, He J L 2019 Adv. Opt. Mater. 8 1901181Google Scholar
[20] Ge Y Q, Zhu Z F, Xu Y H, Chen Y X, Chen S, Liang Z M, Song Y F, Zou Y S, Zeng H B, Xu S X, Zhang H, Fan D Y 2018 Adv. Opt. Mater. 6 1701166Google Scholar
[21] Feng J J, Li X H, Shi Z J, Zheng C, Li X W, Leng D Y, Wang Y M, Liu J, Zhu L J 2020 Adv. Opt. Mater. 8 1901762Google Scholar
[22] Nie Z H, Trovatello C, Pogna E A A, Dal Conte S, Miranda P B, Kelleher E, Zhu C H, Turcu I C E, Xu Y B, Liu K H, Cerullo G, Wang F Q 2018 Appl. Phys. Lett. 112 031108Google Scholar
[23] Gutierrez H R, Perea-Lopez N, Elias A L, Berkdemir A, Wang B, Lv R, Lopez-Urias F, Crespi V H, Terrones H, Terrones M 2013 Nano Lett. 13 3447Google Scholar
[24] Liu J T, Khayrudinov V, Yang H, Sun Y, Matveev B, Remennyi M, Yang K J, Haggren T, Lipsanen H, Wang F Q, Zhang B T, He J L 2019 J. Phys. Chem. Lett. 10 4429Google Scholar
[25] Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, derAu J A 1996 IEEE J. Sel. Top. Quantum Electron. 2 435Google Scholar
[26] Zhu C H, Wang F Q, Meng Y F, Yuan X, Xiu F X, Luo H Y, Wang Y Z, Li J F, Lv X J, He L, Xu Y B, Liu J F, Zhang C, Shi Y, Zhang R, Zhu S N 2017 Nat. Commun. 8 14111Google Scholar
[27] Wang F Q, Rozhin A G, Scardaci V, Sun Z, Hennrich F, White I H, Milne W I, Ferrari A C 2008 Nat. Nanotechnol. 3 738Google Scholar
[28] Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077Google Scholar
[29] Wang K P, Wang J, Fan J T, Lotya M, O'Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L, Blau W J 2013 ACS Nano 7 9260Google Scholar
[30] Zhang S F, Dong N N, McEvoy N, O'Brien M, Winters S, Berner N C, Yim C, Li Y X, Zhang X Y, Chen Z H, Zhang L, Duesberg G S, Wang J 2015 ACS Nano 9 7142Google Scholar
[31] Zhao C J, Zhang H, Qi X, Chen Y, Wang Z T, Wen S C, Tang D Y 2012 Appl. Phys. Lett. 101 211106Google Scholar
[32] Yu H H, Zhang H, Wang Y C, Zhao C J, Wang B L, Wen S C, Zhang H J, Wang J Y 2013 Laser Photonics Rev. 7 L77Google Scholar
[33] Zhang M, Wu Q, Zhang F, Chen L L, Jin X X, Hu Y W, Zheng Z, Zhang H 2019 Adv. Opt. Mater. 7 1800224Google Scholar
[34] Jiang X F, Zeng Z, Li S, Guo Z, Zhang H, Huang F, Xu Q H 2017 Materials (Basel) 10 210Google Scholar
[35] Hantanasirisakul K, Zhao M-Q, Urbankowski P, Halim J, Anasori B, Kota S, Ren C E, Barsoum M W, Gogotsi Y 2016 Adv. Electron. Mater. 2 1600050Google Scholar
[36] Jhon Y I, Koo J, Anasori B, Seo M, Lee J H, Gogotsi Y, Jhon Y M 2017 Adv. Mater. 29 1702496Google Scholar
[37] Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y, Zhang H 2018 Laser Photonics Rev. 12 1700229Google Scholar
[38] Chen H B, Wang F, Liu M Y, Qian M D, Men X J, Yao C F, Xi L, Qin W P, Qin G S, Wu C F 2019 Laser Photonics Rev. 13 1800326Google Scholar
[39] Link S, El-Sayed M A 2003 Annu. Rev. Phys. Chem. 54 331Google Scholar
[40] 李杨, 徐红星, 郑迪, 石俊俊, 康猛, 付统, 张顺平 2019 激光与光电子学进展 56 2401Google Scholar
Li Y, Xu H X, Zheng D, Shi J J, Kang M, Fu T, Zhang S P 2019 Laser & Optoelectronics Progress 56 2401Google Scholar
[41] Prakash J, Harris R A, Swart H C 2016 Int. Rev. Phys. Chem. 35 353Google Scholar
[42] Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotechnology 10 25Google Scholar
[43] Kauranen M, Zayats A V 2012 Nat. Photonics 6 737Google Scholar
[44] Stefan A M, Mark L B, Pieter G K, Sheffer M, Ari A G R, Harry A A 2001 Adv. Mater. 13 1501Google Scholar
[45] 徐娅, 边捷, 张伟华 2019 激光与光电子学进展 56 202407Google Scholar
Xu Y, Bian J, Zhang W H 2019 Laser & Optoelectronics Progress 56 202407Google Scholar
[46] 杨天, 陈成, 王晓丹, 周鑫, 雷泽雨 2019 激光与光电子学进展 56 202404Google Scholar
Yang T, Cheng C, Wang X D, Zhou X, Lei Z Y 2019 Laser & Optoelectronics Progress 56 202404Google Scholar
[47] 王恒亮, 徐洁, 安正华 2019 中国科学: 物理学 力学 天文学 49 124202Google Scholar
Wang H L, Xu J, An Z H 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 124202Google Scholar
[48] 徐凝, 刘海舟, 朱嘉, 喻小强, 周林, 李金磊 2019 中国科学: 物理学 力学 天文学 49 124203Google Scholar
Xu N, Liu H Z, Zhu J, Yu X Q, Zhou L, Li J L 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 124203Google Scholar
[49] Luther J M, Jain P K, Ewers T, Alivisatos A P 2011 Nat. Mater. 10 361Google Scholar
[50] Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264Google Scholar
[51] Coughlan C, Ibanez M, Dobrozhan O, Singh A, Cabot A, Ryan K M 2017 Chem. Rev. 117 5865Google Scholar
[52] Agrawal A, Cho S H, Zandi O 2018 Chem. Rev. 118 3121Google Scholar
[53] 郑迪, 徐红星, 李杨, 付统, 陈文, 孙嘉伟, 张顺平 2019 中国科学: 物理学 力学 天文学 49 124205
Zheng D, Xu H X, Li Y, Fu T, Chen W, Sun J W, Zhang S P 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 124205
[54] 盛冲, 刘辉, 祝世宁 2019 激光与光电子学进展 56 202402
Sheng C, Liu H, Zhu S N 2019 Laser & Optoelectronics Progress 56 202402
[55] Dykman L, Khlebtsov N 2012 Chem. Soc. Rev. 41 2256Google Scholar
[56] Huang J A, Luo L B 2018 Adv. Opt. Mater. 6 1701282Google Scholar
[57] Nie W J, Zhang Y X, Yu H H, Li R, He R Y, Dong N N, Wang J, Hubner R, Bottger R, Zhou S Q, Amekura H, Chen F 2018 Nanoscale 10 4228Google Scholar
[58] Comin A, Manna L 2014 Chem. Soc. Rev. 43 3957Google Scholar
[59] Rycenga M, Hou K K, Cobley C M, Schwartz A G, Camargo P H C, Xia Y N 2009 Phys. Chem. Chem. Phys. 11 5866Google Scholar
[60] Eustis S, El-Sayed M A 2006 Chem. Soc. Rev. 35 209Google Scholar
[61] Zhou F, Li Z Y, Liu Y, Xia Y N 2008 J. Phys. Chem. C 112 20233Google Scholar
[62] Huang B, Kang Z, Li J, Liu M Y, Tang P H, Miao L L, Zhao C J, Qin G S, Qin W P, Wen S C, Prasad P N 2019 Photonics Res. 7 699Google Scholar
[63] Li S Q, Kang Z, Li N, Jia H, Liu M Y, Liu J X, Zhou N N, Qin W P, Qin G S 2019 Opt. Mater. Express 9 2406Google Scholar
[64] Li R, Pang C, Li Z Q, Yang M, Amekura H, Dong N N, Wang J, Ren F, Wu Q, Chen F 2020 Laser Photonics Rev. 14 1900302Google Scholar
[65] Chen J J, Shi Z, Zhou S F, Fang Z J, Lv S C, Yu H H, Hao J H, Zhang H J, Wang J Y, Qiu J R 2019 Adv. Opt. Mater. 7 1801413Google Scholar
[66] Lounis S D, Runnerstrom E L, Llordes A, Milliron D J 2014 J. Phys. Chem. Lett. 5 1564Google Scholar
[67] Guo Q B, Yao Y H, Luo Z C, Qin Z P, Xie G Q, Liu M, Kang J, Zhang S A, Bi G, Liu X F, Qiu J R 2016 ACS Nano 10 9463Google Scholar
[68] Alam M Z, De Leon I, Boyd R W 2016 Science 352 795Google Scholar
[69] Caspani L, Kaipurath R P, Clerici M, Ferrera M, Roger T, Kim J, Kinsey N, Pietrzyk M, Di Falco A, Shalaev V M, Boltasseva A, Faccio D 2016 Phys. Rev. Lett. 116 233901Google Scholar
[70] Guo Q B, Cui Y D, Yao Y H, Ye Y T, Yang Y, Liu X M, Zhang S A, Liu X F, Qiu J R, Hosono H 2017 Adv. Mater. 29 1700754Google Scholar
[71] Guo Q B, Qin Z P, Wang Z, Weng Y X, Liu X F, Xie G Q, Qiu J R 2018 ACS Nano 12 12770Google Scholar
[72] Wang W Q, Yue W J, Liu Z Z, Shi T C, Du J, Leng Y X, Wei R F, Ye Y T, Liu C, Liu X F, Qiu J R 2018 Adv. Opt. Mater. 6 1700948Google Scholar
[73] Litchinitser N M 2018 Adv. Phys. X 3 1367628Google Scholar
[74] Xian Y H, Cai Y, Sun X Y, Liu X F, Guo Q B, Zhang Z X, Tong L M, Qiu J R 2019 Laser Photonics Rev. 13 1900029Google Scholar
[75] Kang Z, Xu Y, Zhang L, Jia Z Y, Liu L, Zhao D, Feng Y, Qin G S, Qin W P 2013 Appl. Phys. Lett. 103 0401105Google Scholar
[76] Guo Q B, Ji M X, Yao Y Y, Liu M, Luo Z C, Zhang S A, Liu X F, Qiu J R 2016 Nanoscale 8 18277Google Scholar
-
图 6 金纳米棒的吸收光谱和脉冲激光输出 (a) 金纳米棒的透射电子显微镜图, 插图是金纳米棒溶液的照片; (b) 金纳米棒的吸收光谱(400—3200 nm); (c) 时域有限差分方法对串联GNRs的LSPR特性的数值模拟; (d) Er3+:ZBLAN光纤激光器的装置示意图; (e) 波长可调的调Q脉冲输出光谱[62]
Figure 6. Absorption spectrμm and pulse laser generation of Gold nanorods (GNRs): (a) Transmission electron microscope image, the inset of (a) shows the photograph of the GNRs solution; (b) absorption spectrum of GNRs from 400 to 3200 nm; (c) the finite-difference time-domain simulation results of the absorption cross section of one, two, three, and four GNRs concatenated; (d) experiment schematic of a tunable passively Q-switched Er3+:ZBLAN fiber laser using GNRs as the saturable absorber; (e) output spectrum of tunable passively Q-switched Er3+:ZBLAN fiber laser[62].
图 7 在1064 nm实现调Q被动锁模 (a) 离子注入实验示意图; (b) Ag:SiO2的横截面透射电子显微镜图像, 银离子的通量为1.0 × 1017 cm-2, 其中下左图为选区电子衍射图像, 下右图为元素映射图像; (c) 调Q被动锁模装置图; (d)单脉冲序列(左图), 基频射频谱(右图)[64]
Figure 7. Experimental preparation and characterization of Q-switched mode-locked pulses at 1064 nm: (a) Schematic diagram of the experimental process; (b) cross-sectional transmission electron microscope image of the Ag:SiO2 with Ag+ fluence of 1.0 × 1017 ions per cm2, the selected area electron diffraction image and element mapping image are shown as the left and right insets; (c) schematic diagram of Q-switched mode-locking operation; (d) the single pulse profile (left image) and the radio-frequency spectrum (right image)[64].
图 9 Cu2–xS溶胶纳米晶的非线性光学性质和相应脉冲激光器的性能 (a) Cu2–xS纳米晶的吸收光谱; (b) Cu2–xS和Cu2S纳米颗粒在1300 nm处的Z扫描曲线; (c) Cu2–xS纳米晶薄膜的透过率和激光功率密度的关系; (d) 1550 nm锁模脉冲输出序列; (e) 脉冲的自相关谱; (f) 激光脉冲在基频的射频谱[67]
Figure 9. Nonlinear properties of Cu2–xS nanocrystals and its ultrafast pulse generation: (a) Absorption spectrum of the synthesized nanocrystals; (b) typical Z-scan curves of Cu2–xS and Cu2S nanocrystals recorded at 1300 nm; (c) corresponding input power-dependent transmission; (d) mode-locking pulse train; (e) autocorrelation trace; (f) the radio-frequency optical spectrum at the fundamental frequency[67].
图 10 ITO纳米颗粒在ENZ区域的光学非线性及超快瞬态光学响应 (a) ITO纳米颗粒的透射电子显微镜图, 插图为ITO溶胶纳米颗粒溶液和高分辨透射电子显微镜图; (b) 不同掺杂浓度的ITO纳米晶归一化消光光谱; (c) ITO纳米颗粒薄膜介电常数的实部与波长的关系; (d) ITO-12 PVA薄膜在1.3 μm处的Z扫描曲线, 其中作为对照, 给出了相同条件下的未掺杂的In2O3纳米晶薄膜的相应Z扫描曲线; (e) 不同抽运功率下, 旋涂于高纯石英片上的ITO-10纳米晶薄膜的瞬态吸收特性, 实线表示单次指数衰减函数的拟合结果[70]
Figure 10. Nonlinear optical response and ultrafast transient optical response of the ITO nanocrystals in ENZ region: (a) Typical transmission electron microscope images of ITO nanocrystals, with an average diameter of about 9 nm, the inset shows a photograph of the colloidal solution of ITO nanocrystals and a high resolution transmission electron microscope image of a single ITO nanocrystals; (b) normalized optical extinction spectra of the ITO nanocrystals with different doping levels; (c) wavelength dependent real part of the permittivity of the spin-coated ITO nanocrystals thin films; (d) Z-scan trace of a PVA film containing ITO nanocrystals recorded at 1.3 μm, ITO-12 shows notable saturable absorption, as compared to the undoped In2O3; (e) transient bleaching dynamics of ITO-10 nanocrystals film (spin-coated on quartz slid) under different pump fluence. Solid line shows the fitting with a single exponential decay function[70].
图 11 IZO纳米颗粒在中红外波段的调Q脉冲输出 (a) 输出脉冲激光装置图; (b) 调Q脉冲序列; (c) 光谱图, 其中插图是激光脉冲在基频的射频谱, 对应的信噪比为30 dB; (d) 单脉冲曲线[71]
Figure 11. The Q-switching at mid-infrared region band based on IZO nanoparticles: (a) Schematic illustration of laser setup; (b) typical Q-switched pulse train; (c) optical spectrum; the inset is the radio frequency spectrum, indicating a signal-to-noise ratio of ~30 dB; (d) single pulse profile[71].
图 12 二维MoO3纳米片的性质 (a) 原子力显微镜图; (b) 原始的MoO3纳米片和经过紫外光活化的等离激元MoO3纳米片分散液的紫外可见吸收光谱; (c) MoO3的透过率随光强的变化曲线; (d) 1 μm附近锁模光谱图; (e) 锁模脉冲序列; (f) 脉宽[72]
Figure 12. Characterizations of 2D MoO3 nanosheets: (a) Atomic force microscope image; (b) VIS-NIR absorption spectra for the colloidal dispersions of pristine MoO3 nanosheets and plasmonic (photoactivated) MoO3 nanosheets; the inset is the corresponding photographs; (c) dependence of transmission as a function of input power for plasmonic 2D MoO3; (d) optical spectrum; (e) pulse train; (f) pulse duration[72].
图 13 基于TiN纳米颗粒的锁模脉冲输出及调Q脉冲 (a) TiN PVA薄膜在1550 nm处的非线性透过率随输入脉冲通量的变化曲线(调制深度); (b) 1.5 μm附近的锁模光谱; (c) 锁模脉冲序列; (d) 自相关曲线(脉宽); (e) 1 μm附近的调Q光谱; (f) 调Q脉冲输出功率随抽运功率的变化曲线[74]
Figure 13. Ultrafast pulse laser generation and Q-switched laser based on TiN: (a) Nonlinear transmittance curve of the TiN/PVA sample versus the input pulse fluence at 1550 nm; (b) optical spectrum; (c) pulse trains; (d) autocorrelation trace; (e) laser spectrum from the Q-switched laser at the maximum pumping power; (f) average output powers versus pumping power for lasing operation at 1064 nm[74].
表 1 不同表面等离激元材料体系的光开关和超快脉冲应用(ML, 锁模; OS, 调Q)
Table 1. Different plasmonic materials for optical switch and pulse lasers (ML, mode-locking; QS: Q switch).
激光
波段光开关材
料体系激光器运
行模式最短
脉宽重频 1.0 μm MoO3–x 光纤(ML) 130 ps 17 MHz[72] Cu2–xS 固体(ML) 7.8 ps 84.17 MHz[67] TiN 固体(QS) 0.25μs 590 kHz[74] Ag 固体(ML) 27 ps 6.5 GHz[64] 1.5 μm Cu2–xS 光纤(ML) 295 fs 7.28 MHz[67] TiN 光纤(ML) 763 fs 8.19 MHz[74] ITO 光纤(ML) 593 fs 16.62 MHz[70] Au 光纤(ML) 12 ps 34.7 MHz[75] Cu-Sn-S 光纤(ML) 923 fs 4.99 MHz[76] 2.0 μm IZO 固体(QS) 3.61 μs 17.32 kHz[71] Au 光纤(QS) 2.4 μs 100.5 kHz[63] 2.8 μm Cu2–xS 光纤(QS) 0.75 μs 90.7 kHz[67] IZO 固体(QS) 0.56 μs 157.63 kHz[71] Au 固体(QS) 533 ns 53.1 kHz[62] 3.6 μm IZO 固体(QS) 1.78 μs 56.2 kHz[71] -
[1] Maiman T H 1960 Nature 187 493Google Scholar
[2] DeMaria A J, Stetser D A, Heynau H 1966 Appl. Phys. Lett. 8 174Google Scholar
[3] Keller U 2003 Nature 424 831Google Scholar
[4] Okhotnikov O, Grudinin A, Pessa M 2004 New J. Phys. 6 177Google Scholar
[5] Davis K M, Miura K, Sugimoto N, Hirao K 1996 Opt. Lett. 21 1729Google Scholar
[6] Ams M, Marshall G D, Dekker P, Piper J A, Withford M J 2009 Laser Photonics Rev. 3 535Google Scholar
[7] Zewail A H 1988 Science 242 1645Google Scholar
[8] Liu X F, Guo Q B, Qiu J R 2017 Adv. Mater. 29 1605886Google Scholar
[9] Wang G Z, Baker-Murray A A, Blau W J 2019 Laser Photonics Rev. 13 1800282Google Scholar
[10] Zhang Y X, Lu D Z, Yu H H, Zhang H J 2019 Adv. Opt. Mater. 7 1800886Google Scholar
[11] Gladush Y, Mkrtchyan A A, Kopylova D S, Ivanenko A, Nyushkov B, Kobtsev S, Kokhanovskiy A, Khegai A, Melkumov M, Burdanova M, Staniforth M, Lloyd-Hughes J, Nasibulin A G 2019 Nano Lett. 19 5836Google Scholar
[12] Martinez A, Sun Z 2013 Nat. Photonics 7 842Google Scholar
[13] Hasan T, Sun Z P, Tan P H, Popa D, Flahaut E, Kelleher E J R, Bonaccorso F, Wang F Q, Jiang Z, Torrisi F, Privitera G, Nicolosi V, Ferrari A C 2014 ACS Nano 8 4836Google Scholar
[14] Sun Z P, Hasan T, Torrisi F, Popa D, Privitera G, Wang F Q, Bonaccorso F, Basko D M, Ferrari A C 2010 ACS Nano 4 803Google Scholar
[15] Bao Q L, Loh K P 2012 ACS Nano 6 3677Google Scholar
[16] Lu L, Liang Z M, Wu L M, Chen Y X, Song Y F, Dhanabalan S C, Ponraj J S, Dong B Q, Xiang Y J, Xing F, Fan D Y, Zhang H 2018 Laser Photonics Rev. 12 1700221Google Scholar
[17] Jin X X, Hu G H, Zhang M, Albrow O T, Zheng Z, Hasan T 2020 Nanophotonics 5 2192Google Scholar
[18] Chen Y, Jiang G B, Chen S Q, Guo Z N, Yu X F, Zhao C J, Zhang H, Bao Q L, Wen S C, Tang D Y, Fan D Y 2015 Opt. Express 23 12823Google Scholar
[19] Sun X L, Shi B N, Wang H Y, Lin N, Liu S D, Yang K J, Zhang B T, He J L 2019 Adv. Opt. Mater. 8 1901181Google Scholar
[20] Ge Y Q, Zhu Z F, Xu Y H, Chen Y X, Chen S, Liang Z M, Song Y F, Zou Y S, Zeng H B, Xu S X, Zhang H, Fan D Y 2018 Adv. Opt. Mater. 6 1701166Google Scholar
[21] Feng J J, Li X H, Shi Z J, Zheng C, Li X W, Leng D Y, Wang Y M, Liu J, Zhu L J 2020 Adv. Opt. Mater. 8 1901762Google Scholar
[22] Nie Z H, Trovatello C, Pogna E A A, Dal Conte S, Miranda P B, Kelleher E, Zhu C H, Turcu I C E, Xu Y B, Liu K H, Cerullo G, Wang F Q 2018 Appl. Phys. Lett. 112 031108Google Scholar
[23] Gutierrez H R, Perea-Lopez N, Elias A L, Berkdemir A, Wang B, Lv R, Lopez-Urias F, Crespi V H, Terrones H, Terrones M 2013 Nano Lett. 13 3447Google Scholar
[24] Liu J T, Khayrudinov V, Yang H, Sun Y, Matveev B, Remennyi M, Yang K J, Haggren T, Lipsanen H, Wang F Q, Zhang B T, He J L 2019 J. Phys. Chem. Lett. 10 4429Google Scholar
[25] Keller U, Weingarten K J, Kartner F X, Kopf D, Braun B, Jung I D, Fluck R, Honninger C, Matuschek N, derAu J A 1996 IEEE J. Sel. Top. Quantum Electron. 2 435Google Scholar
[26] Zhu C H, Wang F Q, Meng Y F, Yuan X, Xiu F X, Luo H Y, Wang Y Z, Li J F, Lv X J, He L, Xu Y B, Liu J F, Zhang C, Shi Y, Zhang R, Zhu S N 2017 Nat. Commun. 8 14111Google Scholar
[27] Wang F Q, Rozhin A G, Scardaci V, Sun Z, Hennrich F, White I H, Milne W I, Ferrari A C 2008 Nat. Nanotechnol. 3 738Google Scholar
[28] Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077Google Scholar
[29] Wang K P, Wang J, Fan J T, Lotya M, O'Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L, Blau W J 2013 ACS Nano 7 9260Google Scholar
[30] Zhang S F, Dong N N, McEvoy N, O'Brien M, Winters S, Berner N C, Yim C, Li Y X, Zhang X Y, Chen Z H, Zhang L, Duesberg G S, Wang J 2015 ACS Nano 9 7142Google Scholar
[31] Zhao C J, Zhang H, Qi X, Chen Y, Wang Z T, Wen S C, Tang D Y 2012 Appl. Phys. Lett. 101 211106Google Scholar
[32] Yu H H, Zhang H, Wang Y C, Zhao C J, Wang B L, Wen S C, Zhang H J, Wang J Y 2013 Laser Photonics Rev. 7 L77Google Scholar
[33] Zhang M, Wu Q, Zhang F, Chen L L, Jin X X, Hu Y W, Zheng Z, Zhang H 2019 Adv. Opt. Mater. 7 1800224Google Scholar
[34] Jiang X F, Zeng Z, Li S, Guo Z, Zhang H, Huang F, Xu Q H 2017 Materials (Basel) 10 210Google Scholar
[35] Hantanasirisakul K, Zhao M-Q, Urbankowski P, Halim J, Anasori B, Kota S, Ren C E, Barsoum M W, Gogotsi Y 2016 Adv. Electron. Mater. 2 1600050Google Scholar
[36] Jhon Y I, Koo J, Anasori B, Seo M, Lee J H, Gogotsi Y, Jhon Y M 2017 Adv. Mater. 29 1702496Google Scholar
[37] Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y, Zhang H 2018 Laser Photonics Rev. 12 1700229Google Scholar
[38] Chen H B, Wang F, Liu M Y, Qian M D, Men X J, Yao C F, Xi L, Qin W P, Qin G S, Wu C F 2019 Laser Photonics Rev. 13 1800326Google Scholar
[39] Link S, El-Sayed M A 2003 Annu. Rev. Phys. Chem. 54 331Google Scholar
[40] 李杨, 徐红星, 郑迪, 石俊俊, 康猛, 付统, 张顺平 2019 激光与光电子学进展 56 2401Google Scholar
Li Y, Xu H X, Zheng D, Shi J J, Kang M, Fu T, Zhang S P 2019 Laser & Optoelectronics Progress 56 2401Google Scholar
[41] Prakash J, Harris R A, Swart H C 2016 Int. Rev. Phys. Chem. 35 353Google Scholar
[42] Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotechnology 10 25Google Scholar
[43] Kauranen M, Zayats A V 2012 Nat. Photonics 6 737Google Scholar
[44] Stefan A M, Mark L B, Pieter G K, Sheffer M, Ari A G R, Harry A A 2001 Adv. Mater. 13 1501Google Scholar
[45] 徐娅, 边捷, 张伟华 2019 激光与光电子学进展 56 202407Google Scholar
Xu Y, Bian J, Zhang W H 2019 Laser & Optoelectronics Progress 56 202407Google Scholar
[46] 杨天, 陈成, 王晓丹, 周鑫, 雷泽雨 2019 激光与光电子学进展 56 202404Google Scholar
Yang T, Cheng C, Wang X D, Zhou X, Lei Z Y 2019 Laser & Optoelectronics Progress 56 202404Google Scholar
[47] 王恒亮, 徐洁, 安正华 2019 中国科学: 物理学 力学 天文学 49 124202Google Scholar
Wang H L, Xu J, An Z H 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 124202Google Scholar
[48] 徐凝, 刘海舟, 朱嘉, 喻小强, 周林, 李金磊 2019 中国科学: 物理学 力学 天文学 49 124203Google Scholar
Xu N, Liu H Z, Zhu J, Yu X Q, Zhou L, Li J L 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 124203Google Scholar
[49] Luther J M, Jain P K, Ewers T, Alivisatos A P 2011 Nat. Mater. 10 361Google Scholar
[50] Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264Google Scholar
[51] Coughlan C, Ibanez M, Dobrozhan O, Singh A, Cabot A, Ryan K M 2017 Chem. Rev. 117 5865Google Scholar
[52] Agrawal A, Cho S H, Zandi O 2018 Chem. Rev. 118 3121Google Scholar
[53] 郑迪, 徐红星, 李杨, 付统, 陈文, 孙嘉伟, 张顺平 2019 中国科学: 物理学 力学 天文学 49 124205
Zheng D, Xu H X, Li Y, Fu T, Chen W, Sun J W, Zhang S P 2019 Scientia Sinica Physica, Mechanica & Astronomica 49 124205
[54] 盛冲, 刘辉, 祝世宁 2019 激光与光电子学进展 56 202402
Sheng C, Liu H, Zhu S N 2019 Laser & Optoelectronics Progress 56 202402
[55] Dykman L, Khlebtsov N 2012 Chem. Soc. Rev. 41 2256Google Scholar
[56] Huang J A, Luo L B 2018 Adv. Opt. Mater. 6 1701282Google Scholar
[57] Nie W J, Zhang Y X, Yu H H, Li R, He R Y, Dong N N, Wang J, Hubner R, Bottger R, Zhou S Q, Amekura H, Chen F 2018 Nanoscale 10 4228Google Scholar
[58] Comin A, Manna L 2014 Chem. Soc. Rev. 43 3957Google Scholar
[59] Rycenga M, Hou K K, Cobley C M, Schwartz A G, Camargo P H C, Xia Y N 2009 Phys. Chem. Chem. Phys. 11 5866Google Scholar
[60] Eustis S, El-Sayed M A 2006 Chem. Soc. Rev. 35 209Google Scholar
[61] Zhou F, Li Z Y, Liu Y, Xia Y N 2008 J. Phys. Chem. C 112 20233Google Scholar
[62] Huang B, Kang Z, Li J, Liu M Y, Tang P H, Miao L L, Zhao C J, Qin G S, Qin W P, Wen S C, Prasad P N 2019 Photonics Res. 7 699Google Scholar
[63] Li S Q, Kang Z, Li N, Jia H, Liu M Y, Liu J X, Zhou N N, Qin W P, Qin G S 2019 Opt. Mater. Express 9 2406Google Scholar
[64] Li R, Pang C, Li Z Q, Yang M, Amekura H, Dong N N, Wang J, Ren F, Wu Q, Chen F 2020 Laser Photonics Rev. 14 1900302Google Scholar
[65] Chen J J, Shi Z, Zhou S F, Fang Z J, Lv S C, Yu H H, Hao J H, Zhang H J, Wang J Y, Qiu J R 2019 Adv. Opt. Mater. 7 1801413Google Scholar
[66] Lounis S D, Runnerstrom E L, Llordes A, Milliron D J 2014 J. Phys. Chem. Lett. 5 1564Google Scholar
[67] Guo Q B, Yao Y H, Luo Z C, Qin Z P, Xie G Q, Liu M, Kang J, Zhang S A, Bi G, Liu X F, Qiu J R 2016 ACS Nano 10 9463Google Scholar
[68] Alam M Z, De Leon I, Boyd R W 2016 Science 352 795Google Scholar
[69] Caspani L, Kaipurath R P, Clerici M, Ferrera M, Roger T, Kim J, Kinsey N, Pietrzyk M, Di Falco A, Shalaev V M, Boltasseva A, Faccio D 2016 Phys. Rev. Lett. 116 233901Google Scholar
[70] Guo Q B, Cui Y D, Yao Y H, Ye Y T, Yang Y, Liu X M, Zhang S A, Liu X F, Qiu J R, Hosono H 2017 Adv. Mater. 29 1700754Google Scholar
[71] Guo Q B, Qin Z P, Wang Z, Weng Y X, Liu X F, Xie G Q, Qiu J R 2018 ACS Nano 12 12770Google Scholar
[72] Wang W Q, Yue W J, Liu Z Z, Shi T C, Du J, Leng Y X, Wei R F, Ye Y T, Liu C, Liu X F, Qiu J R 2018 Adv. Opt. Mater. 6 1700948Google Scholar
[73] Litchinitser N M 2018 Adv. Phys. X 3 1367628Google Scholar
[74] Xian Y H, Cai Y, Sun X Y, Liu X F, Guo Q B, Zhang Z X, Tong L M, Qiu J R 2019 Laser Photonics Rev. 13 1900029Google Scholar
[75] Kang Z, Xu Y, Zhang L, Jia Z Y, Liu L, Zhao D, Feng Y, Qin G S, Qin W P 2013 Appl. Phys. Lett. 103 0401105Google Scholar
[76] Guo Q B, Ji M X, Yao Y Y, Liu M, Luo Z C, Zhang S A, Liu X F, Qiu J R 2016 Nanoscale 8 18277Google Scholar
Catalog
Metrics
- Abstract views: 10967
- PDF Downloads: 306
- Cited By: 0