-
Epsilon-near-zero mode provides a new path for tailoring light-matter interactions on a nanoscale because of its unique characteristics and ability to be used in many scientific fields. Among these applications, broadband absorption has aroused the considerable interest in photonic research. In this paper, we first show that the surface plasmon resonance is excited by the metal disk array structure without dysprosium-doped cadmium oxide nanolayer, and the structure achieves the local effect of light at a certain wavelength. In addition, in order to be able to use this new technique to achieve a broadband absorption, we take advantage of the surface plasmon resonance to excite the epsilonnear-zero mode which cannot be excited under normal incidence but has a very large density of states. Then, we show that over one order of magnitude increase in the absorption band of a periodically patterned metal-dielectric-metal structure can be obtained by integrating a dysprosium-doped cadmium oxide material into the insulating dielectric gap region. We analyze the absorption band at mid-infrared wavelength comprising plasmonic metamaterial resonators and epsilon-near-zero modes supported by dysprosium-doped cadmium oxide material. The two resonance modes lie in the weak coupling regime and achieve a 470 nm wideband light absorption. Finally, we perform numerical simulations by using the finite-difference-time-domain method to investigate the relationship between the epsilon-near-zero mode and the surface plasmon resonance mode. It is sure that the whole broadband mightily has the local effect of light. The epsilon-near-zero mode mainly is excited at the short wavelength of the broadband, and the surface plasmon resonance mode mainly focuses on long wavelength of the broadband. The simulation demonstrates that the two resonance modes are coupled to achieve a broadband absorption. Additionally, the dielectric constants are tunable by doping density, resulting in plasma frequency change, where the real part of the dielectric constant becomes zero at plasma frequency. Broadband absorption theoretically can be realized in any band of mid-infrared wavelength due to plasma frequency changing. Broadband absorption relaxes the single wavelength condition in previous absorption studies, and compared with the narrowband absorption, broadband absorption at present has many applications, such as in absorbers, sensors, filters, coherent thermal emitters, microbolometers, photodectors, solar cells, fingerprint recognition, energy harvesting devices, etc.
-
Keywords:
- plasmonic /
- coupling /
- wideband /
- absorption
[1] Qu C, Ma S J, Hao J M, Qiu M, Li X, Xiao S Y, Miao Z Q, Dai N, He Q, Sun S L, Zhou L 2015 Phys. Rev. Lett. 115 235503
[2] Hao J, Ren Q, An Z, Huang X, Chen Z, Qiu M 2009 Phys. Rev. A 80 023807
[3] Pors A, Nielsen M G, Bozhevolnyi S I 2013 Opt. Lett. 38 513
[4] Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908
[5] Pors A, Bozhevolnyi S I 2013 Opt. Express 21 27438
[6] Hu C G, Zhao Z Y, Chen X N, Luo X G 2009 Opt. Express 17 11039
[7] Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342
[8] Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 98
[9] Yu N, Capasso F 2014 Nat. Mater. 13 139
[10] Sun S L, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S Y, Kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223
[11] Pors A, Nielsen M G, Eriksen R L, Bozhevolnyi S I 2013 Nano Lett. 13 829
[12] Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Liao C Y, Hsu W L, Lin H T, Sun S L, Zhou L, Liu A Q, Tsai D P 2014 Nano Lett. 14 225
[13] Hendrickson J, Guo J, Zhang B, Buchwald W, Soref R 2012 Opt. Lett. 37 371
[14] Hendrickson J R, Vangala S, Dass C, Gibson R, Goldsmith J, Leedy K 2018 ACS Photonics 5 3
[15] Campione S, Wendt J R, Keeler G A, Luk T S 2016 ACS Photonics 3 293
[16] Sachet E, Shelton C T, Harris J S, Gaddy B E, Irving D L, Curtarolo S 2015 Nat. Mater. 1 414
[17] Campione S, Liu S, Benz A, Klem J F, Sinclair M B, Brener I 2015 Phys. Rev. Applied 4 044011
[18] Xu Y D, Chen H Y 2011 Appl. Phys. Lett. 98 113501
[19] Xu Y D, Chan C T, Chen H Y 2015 Sci. Rep. 5 8681
[20] Fu Y Y, Xu Y D, Chen H Y 2016 Opt. Express 24 1648
[21] Campione S, Brener I, Marquier F 2015 Phys. Rev. B 91 121408
[22] Al A M, Silveirinha R G, Salandrino A, Engheta N 2007 Phys. Rev. B 75 155410
[23] Kinsey N, Devault C, Kim J, Ferrera M, Shalaev V M, Boltasseva A 2015 Optica 2 616
[24] Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264
[25] Campione S, Kim I, De C D, Keeler G A, Luk T S 2016 Opt. Express 24 18782
[26] Hendrickson J R, Vangala S, Dass C K, Gibson R, Leedy K, Walker D, Cleary J W, Luk T S, Guo J P 2018 arXiv:1801. 03139[physics. optics]
[27] Badsha M A, Jun Y C, Chang K H 2014 Opt. Commun. 332 206
-
[1] Qu C, Ma S J, Hao J M, Qiu M, Li X, Xiao S Y, Miao Z Q, Dai N, He Q, Sun S L, Zhou L 2015 Phys. Rev. Lett. 115 235503
[2] Hao J, Ren Q, An Z, Huang X, Chen Z, Qiu M 2009 Phys. Rev. A 80 023807
[3] Pors A, Nielsen M G, Bozhevolnyi S I 2013 Opt. Lett. 38 513
[4] Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908
[5] Pors A, Bozhevolnyi S I 2013 Opt. Express 21 27438
[6] Hu C G, Zhao Z Y, Chen X N, Luo X G 2009 Opt. Express 17 11039
[7] Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342
[8] Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 98
[9] Yu N, Capasso F 2014 Nat. Mater. 13 139
[10] Sun S L, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S Y, Kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223
[11] Pors A, Nielsen M G, Eriksen R L, Bozhevolnyi S I 2013 Nano Lett. 13 829
[12] Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Liao C Y, Hsu W L, Lin H T, Sun S L, Zhou L, Liu A Q, Tsai D P 2014 Nano Lett. 14 225
[13] Hendrickson J, Guo J, Zhang B, Buchwald W, Soref R 2012 Opt. Lett. 37 371
[14] Hendrickson J R, Vangala S, Dass C, Gibson R, Goldsmith J, Leedy K 2018 ACS Photonics 5 3
[15] Campione S, Wendt J R, Keeler G A, Luk T S 2016 ACS Photonics 3 293
[16] Sachet E, Shelton C T, Harris J S, Gaddy B E, Irving D L, Curtarolo S 2015 Nat. Mater. 1 414
[17] Campione S, Liu S, Benz A, Klem J F, Sinclair M B, Brener I 2015 Phys. Rev. Applied 4 044011
[18] Xu Y D, Chen H Y 2011 Appl. Phys. Lett. 98 113501
[19] Xu Y D, Chan C T, Chen H Y 2015 Sci. Rep. 5 8681
[20] Fu Y Y, Xu Y D, Chen H Y 2016 Opt. Express 24 1648
[21] Campione S, Brener I, Marquier F 2015 Phys. Rev. B 91 121408
[22] Al A M, Silveirinha R G, Salandrino A, Engheta N 2007 Phys. Rev. B 75 155410
[23] Kinsey N, Devault C, Kim J, Ferrera M, Shalaev V M, Boltasseva A 2015 Optica 2 616
[24] Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264
[25] Campione S, Kim I, De C D, Keeler G A, Luk T S 2016 Opt. Express 24 18782
[26] Hendrickson J R, Vangala S, Dass C K, Gibson R, Leedy K, Walker D, Cleary J W, Luk T S, Guo J P 2018 arXiv:1801. 03139[physics. optics]
[27] Badsha M A, Jun Y C, Chang K H 2014 Opt. Commun. 332 206
Catalog
Metrics
- Abstract views: 8157
- PDF Downloads: 245
- Cited By: 0