-
According to the Pancharatnam-Berry phase principle, a single-layer reflecting element is proposed for steering the phase of the electromagnetic wave. The structure of the element is composed of metabolic cross wire and copper ground sheet, which are separated by an FR4 dielectric substrate with a thickness of 3 mm. When the incident wave is circularly polarized, different rotary angles of the element are used to achieve the co-polarization reflection with high efficiency in a broadband of 11-16 GHz. In the design of the focusing metasurface, the phase compensation for forming a constant aperture phase is provided by the individual reflected element with a different rotated angle. Remarkably, the size of the element is only 5 mm (0.230), and then it can be more accurate to control the phase of the array. The focusing metasurface is composed of 1515 elements with a focal length of 30 mm at 13.5 GHz. The designed sample is simulated in CST Microwave Studio. The results show that the incident circularly polarized plane wave is well transformed into a spherical wave in the band from 11 to 16 GHz, and the focal length is around 30 mm. For further application, a unidirectional Archimedean spiral antenna is located at the focal point of the metasurface. According to the reversibility principle of electromagnetic wave propagation, the spherical wave radiated by the feed antenna is converted into a plane wave by the reflecting metasurface, so that the antenna gain is remarkably enhanced. Through adjusting the distance between the feed antenna and the focusing metasurface, we find that 28 mm is the best distance. Finally, the feed antenna and the metasurface are fabricated, assembled and measured. Numerical and experimental results are in good agreement with each other, showing that the -1 dB gain bandwidth of the high-gain antenna is 12.5-16 GHz, and in this band the peak gains are all over 19 dBc and the axial ratio is better than 3 dB. In addition, the aperture efficiencies are more than 50% in the band from 12 to 15.5 GHz, especially the efficiency at 13 GHz reaches a highest value of 61%. The good performances indicate that the proposed high-gain antenna has a highly promising application in portable communication systems.
-
Keywords:
- metasurface /
- broadband /
- circularly polarized /
- high-gain
[1] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
[2] Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese) [孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201]
[3] Yu N F, Aieta F, Genevet P, Kats M, Gaburro Z, Capassp F 2012 Nano Lett. 12 6328
[4] Lee J H, Yoon J W, Jung J, Hong J K, Song S H, Magnusson R 2014 Appl. Phys. Lett. 104 233505
[5] Cheng J, Mosallaei H 2014 Opt. Lett. 39 2719
[6] Cai T, Wang G M, Zhang X F, Shi J P 2015 IEEE Antennas Wirel. Propag. Lett. 14 1072
[7] Chen P Y, Argyropoulos C, Al A 2013 Phys. Rev. Lett. 111 233001
[8] Yan X, Liang L J, Zhang Y T, Ding X, Yao J Q 2015 Acta Phys. Sin. 64 158101 (in Chinese) [闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨 2015 物理学报 64 158101]
[9] Kuznetsov S A, Astafev M A, Beruete M, Ca M N 2015 Sci. Rep. 5 7738
[10] Wei Z Y, Cao Y, Su X P, Gong Z J, Long Y, Li H Q 2013 Opt. Express 21 010739
[11] Li X, Xiao S Y, Cai B G, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940
[12] Zhu B O, Zhao J M, Feng Y J 2013 Sci. Rep. 3 3059
[13] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218
[14] Erez H, Vladimir K, Gabriel B, Avi N 2003 Appl. Phys. Lett. 82 328
[15] Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Zhou H, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014202
[16] Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 124102 (in Chinese) [李勇峰, 张介秋, 屈少波, 王甲富, 吴翔, 徐卓, 张安学 2015 物理学报 64 124102]
[17] Ding X M, Monticone F, Zhang K, Zhang L, Gao D L, Burokur S N, Lustrac A, Wu Q, Qiu C W, Al A 2015 Adv. Mater. 27 1195
[18] Yu A, Yang F, Elsherbeni A Z, Huang J, Kim Y 2012 IEEE Trans. Antennas Propag. 60 1619
[19] Zhong X J, Chen L, Shi Y, Shi X W 2015 Electromagnetics 35 217
-
[1] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
[2] Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese) [孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201]
[3] Yu N F, Aieta F, Genevet P, Kats M, Gaburro Z, Capassp F 2012 Nano Lett. 12 6328
[4] Lee J H, Yoon J W, Jung J, Hong J K, Song S H, Magnusson R 2014 Appl. Phys. Lett. 104 233505
[5] Cheng J, Mosallaei H 2014 Opt. Lett. 39 2719
[6] Cai T, Wang G M, Zhang X F, Shi J P 2015 IEEE Antennas Wirel. Propag. Lett. 14 1072
[7] Chen P Y, Argyropoulos C, Al A 2013 Phys. Rev. Lett. 111 233001
[8] Yan X, Liang L J, Zhang Y T, Ding X, Yao J Q 2015 Acta Phys. Sin. 64 158101 (in Chinese) [闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨 2015 物理学报 64 158101]
[9] Kuznetsov S A, Astafev M A, Beruete M, Ca M N 2015 Sci. Rep. 5 7738
[10] Wei Z Y, Cao Y, Su X P, Gong Z J, Long Y, Li H Q 2013 Opt. Express 21 010739
[11] Li X, Xiao S Y, Cai B G, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940
[12] Zhu B O, Zhao J M, Feng Y J 2013 Sci. Rep. 3 3059
[13] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218
[14] Erez H, Vladimir K, Gabriel B, Avi N 2003 Appl. Phys. Lett. 82 328
[15] Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Zhou H, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014202
[16] Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 124102 (in Chinese) [李勇峰, 张介秋, 屈少波, 王甲富, 吴翔, 徐卓, 张安学 2015 物理学报 64 124102]
[17] Ding X M, Monticone F, Zhang K, Zhang L, Gao D L, Burokur S N, Lustrac A, Wu Q, Qiu C W, Al A 2015 Adv. Mater. 27 1195
[18] Yu A, Yang F, Elsherbeni A Z, Huang J, Kim Y 2012 IEEE Trans. Antennas Propag. 60 1619
[19] Zhong X J, Chen L, Shi Y, Shi X W 2015 Electromagnetics 35 217
Catalog
Metrics
- Abstract views: 7833
- PDF Downloads: 569
- Cited By: 0