-
Polarization state of electromagnetic waves plays a significant role in the fields of signal transmission and sensitive measurements. High-efficiently manipulating and controlling polarization state by two-dimensional flat metamaterials over a wider bandwidth has been turned into hot issues in recent years. A polarization conversion metasurface based on the split elliptical ring resonator is designed, simulated, and experimentally validated in the microwave regime. The proposed metasurface can convert a linear polarization state into its orthogonal one with a high efficiency for an ultra-wide band. Theoretically, the mechanism of polarization conversion is explained by the theoretical models of high-impedance surface and multi-plasmonic resonances. The metasurface has a strong anisotropy, which behaves as a high-impedance surface, and serves as a metal sheet in orthogonal orientation in the vicinity of the resonant frequencies. The reflection phase has a delay of π for one of the two electric field components and remains unchanged for the other. As a result, the polarization angle of the synthesized reflection electric field rotates by π/2. The fourth-order plasmonic resonances are generated by the electric and magnetic resonances, which contribute to the bandwidth expansion of cross-polarization reflection. Numerically, by means of simulation and analysis on the axial ratio and flare angle of the split elliptical ring resonators, the influences of these structure parameters on the bandwidth and efficiency of the polarization conversion are clarified. And then the design method of multi-peaks and wideband polarization conversion metasurfaces with split elliptic ring resonators is proposed for different kinds of applications. Experimentally, the geometry is implemented within the currently available printing circuit techniques, and a free space method is adopted to measure the scattering coefficients. A polarization conversion ratio of the fabricated sample is larger than 85% at a relative bandwidth of 104.5%, and approximately 100% of the polarization conversion ratio can be achieved around the resonant frequencies. Experimental results are in good consistency with the simulation results. Compared with the anterior polarization conversion metasurfaces, the proposed metasurface broadens the cross-polarization bandwidth greatly with little efficiency expenses. These works provide beneficial guidance for manipulating and controlling polarization states of electromagnetic waves, and have potential applications in modern radar and communication systems, signal detection systems, and sensitivity measurement systems, etc.
-
Keywords:
- polarization conversion /
- metasurfaces /
- split elliptical ring /
- ultra-wideband
[1] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184
[2] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[3] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[4] Shelby R A, Smith D R, Schultz S 2001 Science 292 77
[5] Chen L T, Cheng Y Z, Nie Y, Gong R Z 2012 Acta Phys. Sin. 61 094203 (in Chinese) [陈龙天, 程用志, 聂彦, 龚荣洲 2012 物理学报 61 094203]
[6] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
[7] Aieta F, Genevet P, Yu N F, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702
[8] Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104
[9] Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nature Mater. 11 426
[10] Wang W J, Wang J F, Yan M B, Lu L, Ma H, Qu S B, Chen H Y, Xu C L 2014 Acta Phys. Sin. 63 174101 (in Chinese) [王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲 2014 物理学报 63 174101]
[11] Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908
[12] Hao J M, Qiu M, Zhou L 2010 Front. Phys. China 5 291
[13] Chin J Y, Gollub J N, Mock J J, Liu R, Harrison C, Smith D R, Cui T J 2009 Opt. Express 17 7640
[14] Sun W J, He Q, Hao J M, Zhou L 2011 Opt. Lett. 36 927
[15] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A, Chen H T 2013 Science 340 1304
[16] Hao J M, Ren Q J, An Z H, Huang X Q, Chen Z H, Qiu M, Zhou L 2009 Phys. Rev. A 80 023807
[17] Wu S, Zhang Z, Zhang Y, Zhang K Y, Zhou L, Zhang X J, Zhu Y Y 2013 Phys. Rev. Lett. 110 207401
[18] Lé esque Q, Makhsiyan M, Bouchon P, Pardo F, Jaeck J, Bardou N, Dupuis C, Haïdar R, Pelouard J L 2014 Appl Phys Lett. 104 111105
[19] Shi J H, Liu X C, Yu S W, Lv T T, Zhu Z, Ma H F, Cui T J 2013 Appl. Phys. Lett. 102 191905
[20] Huang C, Feng Y J, Zhao J M, Wang Z B, Jiang T 2012 Phys. Rev. B 85 195131
[21] Mutlu M, Akosman A E, Serebryannikov A E, Ozbay E 2012 Phys. Rev. Lett. 108 213905
[22] Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Chin. Phys. B 23 118101
[23] Cheng Y Z, Nie Y, Cheng Z Z, Gong R Z 2014 Prog. Electromagn. Res. 145 263
[24] Wei Z, Cao Y, Fan Y C, Yu X, Li H Q 2011 Appl. Phys. Lett. 99 221907
[25] Han J, Li H Q, Fan Y C, Wei Z Y, Wu C, Cao Y, Yu X, Li F, Wang Z S 2011 Appl. Phys. Lett. 98 151908
[26] Sievenpiper D, Zhang L, Broas R, Alexopolous N G, Yablonovitch E 1999 IEEE Trans. Microw. Theory Technol. 47 2059
[27] Mosallaei H, Sarabandi K 2004 IEEE Trans. Antennas Propag. 52 2403
[28] Feng M D, Wang J F, Ma H, Mo W D, Ye H J, Qu S B 2013 J. Appl. Phys. 114 074508
[29] Chen H Y, Wang J F, Ma H, Qu S B, Xu Z, Zhang A X, Yan M B, Li Y F 2014 J. Appl. Phys. 115 154540
[30] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111
[31] Huang X J, Xiao B X, Yang D, Yang H L 2015 Opt. Commun. 338 416
-
[1] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184
[2] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[3] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[4] Shelby R A, Smith D R, Schultz S 2001 Science 292 77
[5] Chen L T, Cheng Y Z, Nie Y, Gong R Z 2012 Acta Phys. Sin. 61 094203 (in Chinese) [陈龙天, 程用志, 聂彦, 龚荣洲 2012 物理学报 61 094203]
[6] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
[7] Aieta F, Genevet P, Yu N F, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702
[8] Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104
[9] Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nature Mater. 11 426
[10] Wang W J, Wang J F, Yan M B, Lu L, Ma H, Qu S B, Chen H Y, Xu C L 2014 Acta Phys. Sin. 63 174101 (in Chinese) [王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲 2014 物理学报 63 174101]
[11] Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908
[12] Hao J M, Qiu M, Zhou L 2010 Front. Phys. China 5 291
[13] Chin J Y, Gollub J N, Mock J J, Liu R, Harrison C, Smith D R, Cui T J 2009 Opt. Express 17 7640
[14] Sun W J, He Q, Hao J M, Zhou L 2011 Opt. Lett. 36 927
[15] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A, Chen H T 2013 Science 340 1304
[16] Hao J M, Ren Q J, An Z H, Huang X Q, Chen Z H, Qiu M, Zhou L 2009 Phys. Rev. A 80 023807
[17] Wu S, Zhang Z, Zhang Y, Zhang K Y, Zhou L, Zhang X J, Zhu Y Y 2013 Phys. Rev. Lett. 110 207401
[18] Lé esque Q, Makhsiyan M, Bouchon P, Pardo F, Jaeck J, Bardou N, Dupuis C, Haïdar R, Pelouard J L 2014 Appl Phys Lett. 104 111105
[19] Shi J H, Liu X C, Yu S W, Lv T T, Zhu Z, Ma H F, Cui T J 2013 Appl. Phys. Lett. 102 191905
[20] Huang C, Feng Y J, Zhao J M, Wang Z B, Jiang T 2012 Phys. Rev. B 85 195131
[21] Mutlu M, Akosman A E, Serebryannikov A E, Ozbay E 2012 Phys. Rev. Lett. 108 213905
[22] Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Chin. Phys. B 23 118101
[23] Cheng Y Z, Nie Y, Cheng Z Z, Gong R Z 2014 Prog. Electromagn. Res. 145 263
[24] Wei Z, Cao Y, Fan Y C, Yu X, Li H Q 2011 Appl. Phys. Lett. 99 221907
[25] Han J, Li H Q, Fan Y C, Wei Z Y, Wu C, Cao Y, Yu X, Li F, Wang Z S 2011 Appl. Phys. Lett. 98 151908
[26] Sievenpiper D, Zhang L, Broas R, Alexopolous N G, Yablonovitch E 1999 IEEE Trans. Microw. Theory Technol. 47 2059
[27] Mosallaei H, Sarabandi K 2004 IEEE Trans. Antennas Propag. 52 2403
[28] Feng M D, Wang J F, Ma H, Mo W D, Ye H J, Qu S B 2013 J. Appl. Phys. 114 074508
[29] Chen H Y, Wang J F, Ma H, Qu S B, Xu Z, Zhang A X, Yan M B, Li Y F 2014 J. Appl. Phys. 115 154540
[30] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111
[31] Huang X J, Xiao B X, Yang D, Yang H L 2015 Opt. Commun. 338 416
Catalog
Metrics
- Abstract views: 7791
- PDF Downloads: 676
- Cited By: 0