Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators

Yu Ji-Bao Ma Hua Wang Jia-Fu Feng Ming-De Li Yong-Feng Qu Shao-Bo

Citation:

High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators

Yu Ji-Bao, Ma Hua, Wang Jia-Fu, Feng Ming-De, Li Yong-Feng, Qu Shao-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Polarization state of electromagnetic waves plays a significant role in the fields of signal transmission and sensitive measurements. High-efficiently manipulating and controlling polarization state by two-dimensional flat metamaterials over a wider bandwidth has been turned into hot issues in recent years. A polarization conversion metasurface based on the split elliptical ring resonator is designed, simulated, and experimentally validated in the microwave regime. The proposed metasurface can convert a linear polarization state into its orthogonal one with a high efficiency for an ultra-wide band. Theoretically, the mechanism of polarization conversion is explained by the theoretical models of high-impedance surface and multi-plasmonic resonances. The metasurface has a strong anisotropy, which behaves as a high-impedance surface, and serves as a metal sheet in orthogonal orientation in the vicinity of the resonant frequencies. The reflection phase has a delay of π for one of the two electric field components and remains unchanged for the other. As a result, the polarization angle of the synthesized reflection electric field rotates by π/2. The fourth-order plasmonic resonances are generated by the electric and magnetic resonances, which contribute to the bandwidth expansion of cross-polarization reflection. Numerically, by means of simulation and analysis on the axial ratio and flare angle of the split elliptical ring resonators, the influences of these structure parameters on the bandwidth and efficiency of the polarization conversion are clarified. And then the design method of multi-peaks and wideband polarization conversion metasurfaces with split elliptic ring resonators is proposed for different kinds of applications. Experimentally, the geometry is implemented within the currently available printing circuit techniques, and a free space method is adopted to measure the scattering coefficients. A polarization conversion ratio of the fabricated sample is larger than 85% at a relative bandwidth of 104.5%, and approximately 100% of the polarization conversion ratio can be achieved around the resonant frequencies. Experimental results are in good consistency with the simulation results. Compared with the anterior polarization conversion metasurfaces, the proposed metasurface broadens the cross-polarization bandwidth greatly with little efficiency expenses. These works provide beneficial guidance for manipulating and controlling polarization states of electromagnetic waves, and have potential applications in modern radar and communication systems, signal detection systems, and sensitivity measurement systems, etc.
      Corresponding author: Ma Hua, mahuar@163.com;qushaobo@mail.xjtu.edu.cn ; Qu Shao-Bo, mahuar@163.com;qushaobo@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 11204378), the Postdoctoral Science Foundation of China (Grant No. 2014M552451), the Foundation of the Author of National Excellent Doctoral Dissertation of China (Grant No. 201242), and the Innovation Group Foundation of Shaanxi Province, China (Grant No. 2014KCT-05).
    [1]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [2]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [3]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [4]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [5]

    Chen L T, Cheng Y Z, Nie Y, Gong R Z 2012 Acta Phys. Sin. 61 094203 (in Chinese) [陈龙天, 程用志, 聂彦, 龚荣洲 2012 物理学报 61 094203]

    [6]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [7]

    Aieta F, Genevet P, Yu N F, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702

    [8]

    Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [9]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nature Mater. 11 426

    [10]

    Wang W J, Wang J F, Yan M B, Lu L, Ma H, Qu S B, Chen H Y, Xu C L 2014 Acta Phys. Sin. 63 174101 (in Chinese) [王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲 2014 物理学报 63 174101]

    [11]

    Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908

    [12]

    Hao J M, Qiu M, Zhou L 2010 Front. Phys. China 5 291

    [13]

    Chin J Y, Gollub J N, Mock J J, Liu R, Harrison C, Smith D R, Cui T J 2009 Opt. Express 17 7640

    [14]

    Sun W J, He Q, Hao J M, Zhou L 2011 Opt. Lett. 36 927

    [15]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A, Chen H T 2013 Science 340 1304

    [16]

    Hao J M, Ren Q J, An Z H, Huang X Q, Chen Z H, Qiu M, Zhou L 2009 Phys. Rev. A 80 023807

    [17]

    Wu S, Zhang Z, Zhang Y, Zhang K Y, Zhou L, Zhang X J, Zhu Y Y 2013 Phys. Rev. Lett. 110 207401

    [18]

    Lé esque Q, Makhsiyan M, Bouchon P, Pardo F, Jaeck J, Bardou N, Dupuis C, Haïdar R, Pelouard J L 2014 Appl Phys Lett. 104 111105

    [19]

    Shi J H, Liu X C, Yu S W, Lv T T, Zhu Z, Ma H F, Cui T J 2013 Appl. Phys. Lett. 102 191905

    [20]

    Huang C, Feng Y J, Zhao J M, Wang Z B, Jiang T 2012 Phys. Rev. B 85 195131

    [21]

    Mutlu M, Akosman A E, Serebryannikov A E, Ozbay E 2012 Phys. Rev. Lett. 108 213905

    [22]

    Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Chin. Phys. B 23 118101

    [23]

    Cheng Y Z, Nie Y, Cheng Z Z, Gong R Z 2014 Prog. Electromagn. Res. 145 263

    [24]

    Wei Z, Cao Y, Fan Y C, Yu X, Li H Q 2011 Appl. Phys. Lett. 99 221907

    [25]

    Han J, Li H Q, Fan Y C, Wei Z Y, Wu C, Cao Y, Yu X, Li F, Wang Z S 2011 Appl. Phys. Lett. 98 151908

    [26]

    Sievenpiper D, Zhang L, Broas R, Alexopolous N G, Yablonovitch E 1999 IEEE Trans. Microw. Theory Technol. 47 2059

    [27]

    Mosallaei H, Sarabandi K 2004 IEEE Trans. Antennas Propag. 52 2403

    [28]

    Feng M D, Wang J F, Ma H, Mo W D, Ye H J, Qu S B 2013 J. Appl. Phys. 114 074508

    [29]

    Chen H Y, Wang J F, Ma H, Qu S B, Xu Z, Zhang A X, Yan M B, Li Y F 2014 J. Appl. Phys. 115 154540

    [30]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111

    [31]

    Huang X J, Xiao B X, Yang D, Yang H L 2015 Opt. Commun. 338 416

  • [1]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [2]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [3]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [4]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [5]

    Chen L T, Cheng Y Z, Nie Y, Gong R Z 2012 Acta Phys. Sin. 61 094203 (in Chinese) [陈龙天, 程用志, 聂彦, 龚荣洲 2012 物理学报 61 094203]

    [6]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [7]

    Aieta F, Genevet P, Yu N F, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702

    [8]

    Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [9]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nature Mater. 11 426

    [10]

    Wang W J, Wang J F, Yan M B, Lu L, Ma H, Qu S B, Chen H Y, Xu C L 2014 Acta Phys. Sin. 63 174101 (in Chinese) [王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲 2014 物理学报 63 174101]

    [11]

    Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908

    [12]

    Hao J M, Qiu M, Zhou L 2010 Front. Phys. China 5 291

    [13]

    Chin J Y, Gollub J N, Mock J J, Liu R, Harrison C, Smith D R, Cui T J 2009 Opt. Express 17 7640

    [14]

    Sun W J, He Q, Hao J M, Zhou L 2011 Opt. Lett. 36 927

    [15]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A, Chen H T 2013 Science 340 1304

    [16]

    Hao J M, Ren Q J, An Z H, Huang X Q, Chen Z H, Qiu M, Zhou L 2009 Phys. Rev. A 80 023807

    [17]

    Wu S, Zhang Z, Zhang Y, Zhang K Y, Zhou L, Zhang X J, Zhu Y Y 2013 Phys. Rev. Lett. 110 207401

    [18]

    Lé esque Q, Makhsiyan M, Bouchon P, Pardo F, Jaeck J, Bardou N, Dupuis C, Haïdar R, Pelouard J L 2014 Appl Phys Lett. 104 111105

    [19]

    Shi J H, Liu X C, Yu S W, Lv T T, Zhu Z, Ma H F, Cui T J 2013 Appl. Phys. Lett. 102 191905

    [20]

    Huang C, Feng Y J, Zhao J M, Wang Z B, Jiang T 2012 Phys. Rev. B 85 195131

    [21]

    Mutlu M, Akosman A E, Serebryannikov A E, Ozbay E 2012 Phys. Rev. Lett. 108 213905

    [22]

    Shi H Y, Li J X, Zhang A X, Wang J F, Xu Z 2014 Chin. Phys. B 23 118101

    [23]

    Cheng Y Z, Nie Y, Cheng Z Z, Gong R Z 2014 Prog. Electromagn. Res. 145 263

    [24]

    Wei Z, Cao Y, Fan Y C, Yu X, Li H Q 2011 Appl. Phys. Lett. 99 221907

    [25]

    Han J, Li H Q, Fan Y C, Wei Z Y, Wu C, Cao Y, Yu X, Li F, Wang Z S 2011 Appl. Phys. Lett. 98 151908

    [26]

    Sievenpiper D, Zhang L, Broas R, Alexopolous N G, Yablonovitch E 1999 IEEE Trans. Microw. Theory Technol. 47 2059

    [27]

    Mosallaei H, Sarabandi K 2004 IEEE Trans. Antennas Propag. 52 2403

    [28]

    Feng M D, Wang J F, Ma H, Mo W D, Ye H J, Qu S B 2013 J. Appl. Phys. 114 074508

    [29]

    Chen H Y, Wang J F, Ma H, Qu S B, Xu Z, Zhang A X, Yan M B, Li Y F 2014 J. Appl. Phys. 115 154540

    [30]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111

    [31]

    Huang X J, Xiao B X, Yang D, Yang H L 2015 Opt. Commun. 338 416

  • [1] Wang Dong-Jun, Sun Zi-Han, Zhang Yuan, Tang Li, Yan Li-Ping. Ultra-wideband thin frequency-selective surface absorber against sheet resistance fluctuation. Acta Physica Sinica, 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [2] Wang Dan, Li Jiu-Sheng, Guo Feng-Lei. Switchable ultra-broadband absorption and polarization conversion terahertz metasurface. Acta Physica Sinica, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [3] Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission. Acta Physica Sinica, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [4] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [5] Guo Ze-Xu, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Yang Huan-Huan, Hao Biao. Composite polarization conversion metasurface and its application in integrated regulation radiation and scattering of antenna. Acta Physica Sinica, 2020, 69(23): 234102. doi: 10.7498/aps.69.20200797
    [6] Zeng Li, Liu Guo-Biao, Zhang Hai-Feng, Huang Tong. An ultrawideband linear-to-circular polarization converter based on multiphysics regulation. Acta Physica Sinica, 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [7] Zhou Lu, Zhao Guo-Zhong, Li Xiao-Nan. Broadband terahertz vortex beam generation based on metasurface of double-split resonant rings. Acta Physica Sinica, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [8] Xu Jin, Li Rong-Qiang, Jiang Xiao-Ping, Wang Shen-Yun, Han Tian-Cheng. Ultra-wideband linear polarization converter based on square split ring. Acta Physica Sinica, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [9] Yu Hui-Cun, Cao Xiang-Yu, Gao Jun, Yang Huan-Huan, Han Jiang-Feng, Zhu Xue-Wen, Li Tong. Broadband reconfigurable reflective polarization convertor. Acta Physica Sinica, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041
    [10] Chen Wei, Gao Jun, Zhang Guang, Cao Xiang-Yu, Yang Huan-Huan, Zheng Yue-Jun. A wideband coding reflective metasurface with multiple functionalities. Acta Physica Sinica, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [11] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng, Niu Xue-Bin, Liu Ya-Qiao. Broadband circularly polarized high-gain antenna design based on linear-to-circular polarization conversion focusing metasurface. Acta Physica Sinica, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [12] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [13] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng. Broadband circularly polarized high-gain antenna design based on single-layer reflecting metasurface. Acta Physica Sinica, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [14] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [15] Fan Ya, Qu Shao-Bo, Wang Jia-Fu, Zhang Jie-Qiu, Feng Ming-De, Zhang An-Xue. Broadband anomalous reflector based on cross-polarized version phase gradient metasurface. Acta Physica Sinica, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [16] Liu Ming, Zhang Ming-Jiang, Wang An-Bang, Wang Long-Sheng, Ji Yong-Ning, Ma Zhe. Generation of ultra-wideband signals by directly current-modulating distributed feedback laser diode subjected to optical feedback. Acta Physica Sinica, 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [17] Mo Man-Man, Wen Qi-Ye, Chen Zhi, Yang Qing-Hui, Li Sheng, Jing Yu-Lan, Zhang Huai-Wu. A polarization-independent and ultra-broadband terahertz metamaterial absorber studied based on circular-truncated cone structure. Acta Physica Sinica, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [18] Gong Yun-Rui, He Di, He Chen. Investigation of blind detection mechanism for chaotic UWB system based on generalized negentrogy. Acta Physica Sinica, 2012, 61(12): 120502. doi: 10.7498/aps.61.120502
    [19] Yang Rui, Xie Yong-Jun, Hu Hai-Peng, Wang Rui, Man Ming-Yuan, Wu Zhao-Hai. Ultra wideband planner inverted-F antenna with metamaterials loading. Acta Physica Sinica, 2010, 59(5): 3173-3178. doi: 10.7498/aps.59.3173
    [20] Wang Peng, Zhao Huan, Zhao Yan-Ying, Wang Zhao-Hua, Tian Jin-Rong, Li De-Hua, Wei Zhi-Yi. Pulse width measurement of ultra-broad-bandwidth Ti: sapphire oscillator using SPIDER technique. Acta Physica Sinica, 2007, 56(1): 224-228. doi: 10.7498/aps.56.224
Metrics
  • Abstract views:  7791
  • PDF Downloads:  676
  • Cited By: 0
Publishing process
  • Received Date:  29 January 2015
  • Accepted Date:  12 May 2015
  • Published Online:  05 September 2015

/

返回文章
返回