-
A novel circularly polarized patch antenna, which can achieve low radar cross section (RCS) and high gain performance simultaneously, is designed on the basis of metamaterial superstrate. The novelty of the design is that this antenna can possess the absorbing characteristic and the partially reflective characteristic simultaneously in an integrated structure. The proposed superstrate is composed of two metallic layers with different periodic patterns on both sides of a dielectric substrate. Through constructing different metallic patterns on the two sides of the superstrate, the upper and bottom surfaces of the superstrate will have different transmission and reflection performances when illuminated by an incident plane wave. The low RCS characteristic is dependent on the upper surface, while the gain enhancement of the resonator antenna relies on the reflection coefficient of the bottom surface. The upper surface consisting of a periodic metallic square loop with four lumped resistances on the four sides of the loop is of low reflection and transmission, and the bottom surface composed of a metallic plane with periodic slots is of high reflection and low transmission. When the superstrate is located at approximately half a wavelength above the ground plane of the circularly polarized patch antenna, the upper surface will absorb most of the incident wave by converting the electromagnetic wave into heat as Ohm loss to reduce the antenna RCS, and the bottom surface will form a Fabry-Perot resonance cavity with the ground plane of the antenna to achieve high gain and high directivity by multiple reflections between the bottom surface and the ground plane. The measured results show that with using the superstrate, the relative axial ratio bandwidth of the circularly polarized patch antenna extends from 5.9% to 7.1%, and the high gain performance is achieved in the whole working frequency band, which can be enhanced by 6.61 dB at most. Meanwhile, the RCS of the proposed antenna is dramatically reduced in a wide angle range and a broad frequency band covering a range from 2 to 14 GHz. The measured results are in good agreement with the simulated ones, which further verifies the correctness and effectiveness of the proposed method.
[1] Jia Y T, Liu Y, Gong S, Hong T, Yu D 2013 Prog. Electrom. Res. Lett. 37 11
[2] Jiang W, Liu Y, Gong S, Hong T 2009 IEEE Antennas Wireless Propag. Lett. 8 1275
[3] Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 物理学报 62 064103]
[4] Li S J, Cao X Y, Gao J, Zheng Q R, Yang Q, Zhang Z, Zhang H M 2013 Acta Phys. Sin. 62 244101 (in Chinese) [李思佳, 曹祥玉, 高军, 郑秋容, 杨群, 张昭, 张焕梅 2013 物理学报 62 244101]
[5] Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163
[6] Yang J, Shen Z 2007 IEEE Antennas Wireless Propag. Lett. 6 388
[7] Zheng Y J, Gao J, Cao X Y, Zheng Q R, Li S J, Li W Q, Yang Q 2014 Acta Phys. Sin. 63 224102 (in Chinese) [郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群 2014 物理学报 63 224102]
[8] Zheng Y J, Gao J, Cao X Y, Li S J, Li W Q 2015 Microw. Opt. Tech. Lett. 57 1738
[9] Teruhisa N, Takeshi F 2011 IEEE Trans. Antennas Propag. 59 2103
[10] Nasimuddin, Chen Z N, Qing X 2010 IEEE Trans. Antennas Propag. 58 2112
[11] Chang T N, Lin J M 2011 IEEE Trans. Antennas Propag. 59 3057
[12] Heidari A A, Heyrani M, Nakhkash M 2009 Prog. Electromagn. Res. (USA) 92 195
[13] Weily A R, Guo Y J 2009 IEEE Trans. Antennas Propag. 57 2862
[14] Zhu H L, Cheung S W, Liu X H, Yuk T I 2014 IEEE Trans. Antennas Propag. 62 2891
[15] Vaidya A R, Gupta R K, Mishra S K, Mukherjee J 2014 IEEE Antennas Wireless Propag. Lett. 13 431
[16] Orr R, Goussetis G, Fusco V 2014 IEEE Trans. Antennas Propag. 62 19
[17] Yi H, Qu S W 2013 IEEE Antennas Wireless Propag. Lett. 12 1149
[18] Zhu H L, Cheung S W, Chung K L, Yuk T I 2013 IEEE Trans. Antennas Propag. 61 4615
[19] Liu N W, Zhang Z Y, Zhao J Y, Fu G, Yao Y L 2014 Microw. Opt. Tech. Lett. 56 1274
[20] Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Zhou H, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014202
[21] Zhang H L, Hu B J, Zhang X Y 2012 Chin. Phys. B 21 027701
[22] Jiang W, Zhang Y, Deng Z B, Hong T 2013 J. Electromagnet. Waves Appl. 27 1077
[23] Jiang W, Zhang Y, Hong T, Deng Z B 2013 Chin. J. Radio Sci. 28 810 (in Chinse) [姜文, 张扬, 洪涛, 邓兆斌 2013 电波科学学报 28 810]
[24] Hong T, Jiang W, Gong S X, Liu Y 2012 J. Electromagnet. Waves Appl. 26 1947
[25] Jiang W, Hong T, Gong S X 2013 Int. J. Antenna. Propag. 2013 735847
[26] Pan W B, Cheng H, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas Propag. 62 945
-
[1] Jia Y T, Liu Y, Gong S, Hong T, Yu D 2013 Prog. Electrom. Res. Lett. 37 11
[2] Jiang W, Liu Y, Gong S, Hong T 2009 IEEE Antennas Wireless Propag. Lett. 8 1275
[3] Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 物理学报 62 064103]
[4] Li S J, Cao X Y, Gao J, Zheng Q R, Yang Q, Zhang Z, Zhang H M 2013 Acta Phys. Sin. 62 244101 (in Chinese) [李思佳, 曹祥玉, 高军, 郑秋容, 杨群, 张昭, 张焕梅 2013 物理学报 62 244101]
[5] Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163
[6] Yang J, Shen Z 2007 IEEE Antennas Wireless Propag. Lett. 6 388
[7] Zheng Y J, Gao J, Cao X Y, Zheng Q R, Li S J, Li W Q, Yang Q 2014 Acta Phys. Sin. 63 224102 (in Chinese) [郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群 2014 物理学报 63 224102]
[8] Zheng Y J, Gao J, Cao X Y, Li S J, Li W Q 2015 Microw. Opt. Tech. Lett. 57 1738
[9] Teruhisa N, Takeshi F 2011 IEEE Trans. Antennas Propag. 59 2103
[10] Nasimuddin, Chen Z N, Qing X 2010 IEEE Trans. Antennas Propag. 58 2112
[11] Chang T N, Lin J M 2011 IEEE Trans. Antennas Propag. 59 3057
[12] Heidari A A, Heyrani M, Nakhkash M 2009 Prog. Electromagn. Res. (USA) 92 195
[13] Weily A R, Guo Y J 2009 IEEE Trans. Antennas Propag. 57 2862
[14] Zhu H L, Cheung S W, Liu X H, Yuk T I 2014 IEEE Trans. Antennas Propag. 62 2891
[15] Vaidya A R, Gupta R K, Mishra S K, Mukherjee J 2014 IEEE Antennas Wireless Propag. Lett. 13 431
[16] Orr R, Goussetis G, Fusco V 2014 IEEE Trans. Antennas Propag. 62 19
[17] Yi H, Qu S W 2013 IEEE Antennas Wireless Propag. Lett. 12 1149
[18] Zhu H L, Cheung S W, Chung K L, Yuk T I 2013 IEEE Trans. Antennas Propag. 61 4615
[19] Liu N W, Zhang Z Y, Zhao J Y, Fu G, Yao Y L 2014 Microw. Opt. Tech. Lett. 56 1274
[20] Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Zhou H, Xu Z, Zhang A X 2015 Chin. Phys. B 24 014202
[21] Zhang H L, Hu B J, Zhang X Y 2012 Chin. Phys. B 21 027701
[22] Jiang W, Zhang Y, Deng Z B, Hong T 2013 J. Electromagnet. Waves Appl. 27 1077
[23] Jiang W, Zhang Y, Hong T, Deng Z B 2013 Chin. J. Radio Sci. 28 810 (in Chinse) [姜文, 张扬, 洪涛, 邓兆斌 2013 电波科学学报 28 810]
[24] Hong T, Jiang W, Gong S X, Liu Y 2012 J. Electromagnet. Waves Appl. 26 1947
[25] Jiang W, Hong T, Gong S X 2013 Int. J. Antenna. Propag. 2013 735847
[26] Pan W B, Cheng H, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas Propag. 62 945
Catalog
Metrics
- Abstract views: 6664
- PDF Downloads: 325
- Cited By: 0