Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A kind of shared aperture radar absorbing material with absorber and phase cancellation characteristics

Li Wen-Qiang Gao Jun Cao Xiang-Yu Yang Qun Zhao Yi Zhang Zhao Zhang Cheng-Hui

Citation:

A kind of shared aperture radar absorbing material with absorber and phase cancellation characteristics

Li Wen-Qiang, Gao Jun, Cao Xiang-Yu, Yang Qun, Zhao Yi, Zhang Zhao, Zhang Cheng-Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A method of designing a kind of shared aperture radar absorbing material (SA-RAM) is presented, in which method the scattering problem of passive metamaterial (MTM) is converted into the radiation problem of active array. Multifunctional SA-RAM is realized by optimizing the position, amplitude, and phase of the MTM subarray composed of finite MTM structures based on the array theory. An SA-RAM with absorber and phase cancellation characteristics is fulfilled by interleaving artificial magnetic conductor (AMC) subarray and perfect metamaterial absorber (PMA) subarray. Simulation and experimental results demonstrate that the backscattering radar cross section (RCS) of SA-RAM is smaller than that of the metal plate in a frequency range of 5.5-8.3 GHz. Especially, the RCS reduction is caused by high absorbance at 5.54 GHz and by phase cancellation between AMC subarray and PMA subarray at 7.0 GHz. The idea can help to design radar absorbing material, which combines frequency stealth with space stealth function.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60671001, 61271100), the Key Program of the Natural Science Basic Research of Shaanxi Province, China (Grant No. 2010JZ010), the China Postdoctoral Science Foundation (Grant No. 2012T50878), and the Natural Science Basic Research of Shanxi Province, China (Grant Nos. SJ08-ZT06, 2012JM8003).
    [1]

    Ronald L F, Michael T M 1988 IEEE Trans. Antennas Propag. 36 1443

    [2]

    Sievenpiper D, Zhang L J, Broas R F J, Alexópolous N G, Yablonovitch E 1999 IEEE Trans. Microw. Theory Tech. 47 2059

    [3]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [4]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [5]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [6]

    Gao Q, Yin Y, Yan D B 2005 Electron. Lett. 41 3

    [7]

    Li Y Q, Zhang H, Fu Y Q, Yuan N C 2008 IEEE Anten. Wirel. Propag. Lett. 7 473

    [8]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Marcus D, Thomas K, Soukoulis C M 2009 Phys. Rev. B 79 033101

    [10]

    Huang Y J, Wen G J, Li J, Zhong J P, Wang P, Sun Y H, Gordon O, Zhu W R 2012 Chin. Phys. B 21 117801

    [11]

    Li H, Dibakar R C, Suchitra R, Matthew T R 2012 Appl. Phys. Lett. 101 101102

    [12]

    Cheng Y Z, Nie Y, Gong R Z 2013 Appl. Phys. B 111 483

    [13]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479

    [14]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [15]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photonic Tech. Lett. 26 111

    [16]

    Paquay M, Iriarte J C, Ederra I 2007 IEEE Trans. Antennas Propag. 55 3630

    [17]

    Simms S, Fusco V 2008 Electron. Lett. 44 316

    [18]

    Zhang Y, Mittra R, Wang B Z, Huang N T 2009 Electron. Lett. 45 484

    [19]

    Fu Y Q, Li Y Q, Yuan N C 2011 Microw. Opt. Technol. Lett. 53 712

    [20]

    Yao X, Cao X Y, Gao J, Yang Q 2012 Prog. Electromag. Res. Lett. 32 11

    [21]

    Lu L, Qu S B, Ma H, Xia S, Xu Z, Wang J F, Yu F 2013 Acta Phys. Sin. 62 034206 (in Chinese)[鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐 2013 物理学报 62 034206]

    [22]

    Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204 (in Chinese)[赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 物理学报 62 154204]

    [23]

    Edalati A, Sarabandi K 2014 IEEE Trans. Antennas Propag. 62 747

    [24]

    Hwang R B, Tsai Y L 2012 AIP Advances 2 012128

    [25]

    Axness T A, Coffman R V, Kopp B A, O'Hare K W 1996 Johns Hopkins APL Technical Digest 17 285

    [26]

    Fourikis N 2000 Advanced Array Systems, Applications and RF Technologies (California: A Harcourt Science and Technology Company) p111

    [27]

    Chu Q X, Ma H Q, Zheng H L 2008 IEEE Trans. Antennas Propag. 56 3391

    [28]

    Mauricio S B, Jackson R W, Frasier S 2012 IEEE Trans. Geosci. Remote 50 1283

    [29]

    Zhong S H, Sun Z, Kong L B 2012 IEEE Trans. Antennas Propag. 60 4157

    [30]

    Naishadham K, Li R L, Yang L 2013 IEEE Trans. Antennas Propag. 61 606

    [31]

    Smith T, Gothelf U, Kim O S, Breinbjerg O 2014 IEEE Trans. Antennas Propag. 62 661

    [32]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [33]

    Szabo Z, Park G H, Hedge R 2010 IEEE Trans. Microw. Theory Tech. 58 2646

    [34]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [35]

    He X J, Wang Y, Wang J M, Gui T L 2011 Prog. Electromag. Res. 115 381

  • [1]

    Ronald L F, Michael T M 1988 IEEE Trans. Antennas Propag. 36 1443

    [2]

    Sievenpiper D, Zhang L J, Broas R F J, Alexópolous N G, Yablonovitch E 1999 IEEE Trans. Microw. Theory Tech. 47 2059

    [3]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [4]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [5]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [6]

    Gao Q, Yin Y, Yan D B 2005 Electron. Lett. 41 3

    [7]

    Li Y Q, Zhang H, Fu Y Q, Yuan N C 2008 IEEE Anten. Wirel. Propag. Lett. 7 473

    [8]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Marcus D, Thomas K, Soukoulis C M 2009 Phys. Rev. B 79 033101

    [10]

    Huang Y J, Wen G J, Li J, Zhong J P, Wang P, Sun Y H, Gordon O, Zhu W R 2012 Chin. Phys. B 21 117801

    [11]

    Li H, Dibakar R C, Suchitra R, Matthew T R 2012 Appl. Phys. Lett. 101 101102

    [12]

    Cheng Y Z, Nie Y, Gong R Z 2013 Appl. Phys. B 111 483

    [13]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479

    [14]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [15]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photonic Tech. Lett. 26 111

    [16]

    Paquay M, Iriarte J C, Ederra I 2007 IEEE Trans. Antennas Propag. 55 3630

    [17]

    Simms S, Fusco V 2008 Electron. Lett. 44 316

    [18]

    Zhang Y, Mittra R, Wang B Z, Huang N T 2009 Electron. Lett. 45 484

    [19]

    Fu Y Q, Li Y Q, Yuan N C 2011 Microw. Opt. Technol. Lett. 53 712

    [20]

    Yao X, Cao X Y, Gao J, Yang Q 2012 Prog. Electromag. Res. Lett. 32 11

    [21]

    Lu L, Qu S B, Ma H, Xia S, Xu Z, Wang J F, Yu F 2013 Acta Phys. Sin. 62 034206 (in Chinese)[鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐 2013 物理学报 62 034206]

    [22]

    Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204 (in Chinese)[赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 物理学报 62 154204]

    [23]

    Edalati A, Sarabandi K 2014 IEEE Trans. Antennas Propag. 62 747

    [24]

    Hwang R B, Tsai Y L 2012 AIP Advances 2 012128

    [25]

    Axness T A, Coffman R V, Kopp B A, O'Hare K W 1996 Johns Hopkins APL Technical Digest 17 285

    [26]

    Fourikis N 2000 Advanced Array Systems, Applications and RF Technologies (California: A Harcourt Science and Technology Company) p111

    [27]

    Chu Q X, Ma H Q, Zheng H L 2008 IEEE Trans. Antennas Propag. 56 3391

    [28]

    Mauricio S B, Jackson R W, Frasier S 2012 IEEE Trans. Geosci. Remote 50 1283

    [29]

    Zhong S H, Sun Z, Kong L B 2012 IEEE Trans. Antennas Propag. 60 4157

    [30]

    Naishadham K, Li R L, Yang L 2013 IEEE Trans. Antennas Propag. 61 606

    [31]

    Smith T, Gothelf U, Kim O S, Breinbjerg O 2014 IEEE Trans. Antennas Propag. 62 661

    [32]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [33]

    Szabo Z, Park G H, Hedge R 2010 IEEE Trans. Microw. Theory Tech. 58 2646

    [34]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [35]

    He X J, Wang Y, Wang J M, Gui T L 2011 Prog. Electromag. Res. 115 381

  • [1] Zhang Xu-Tao, Que Xiao-Feng, Cai He, Sun Jin-Hai, Zhang Jing, Li Liang-Sheng, Liu Yong-Qiang. Simulations and time-domain spectroscopy measurements for terahertz radar-cross section. Acta Physica Sinica, 2019, 68(16): 168701. doi: 10.7498/aps.68.20190552
    [2] Cong Li-Li, Fu Qiang, Cao Xiang-Yu, Gao Jun, Song Tao, Li Wen-Qiang, Zhao Yi, Zheng Yue-Jun. A novel circularly polarized patch antenna with low radar cross section and high-gain. Acta Physica Sinica, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [3] Jiang Yue-Song, Nie Meng-Yao, Zhang Chong-Hui, Xin Can-Wei, Hua Hou-Qiang. Terahertz scattering property for the coated object of rough surface. Acta Physica Sinica, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [4] Yan Xin, Liang Lan-Ju, Zhang Ya-Ting, Ding Xin, Yao Jian-Quan. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies. Acta Physica Sinica, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [5] Li Wen-Qiang, Cao Xiang-Yu, Gao Jun, Zheng Yue-Jun, Yang Huan-Huan, Li Si-Jia, Zhao Yi. Design of shared aperture metamaterial and its applications for high gain and low radar cross section antenna. Acta Physica Sinica, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [6] Li Wen-Qiang, Cao Xiang-Yu, Gao Jun, Zhao Yi, Yang Huan-Huan, Liu Tao. Low-RCS waveguide slot array antenna based on a metamaterial absorber. Acta Physica Sinica, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [7] Zheng Yue-Jun, Gao Jun, Cao Xiang-Yu, Li Si-Jia, Yang Huan-Huan, Li Wen-Qiang, Zhao Yi, Liu Hong-Xi. A low radar cross-section artificial magnetic conductor reflection screen covering X and Ku band. Acta Physica Sinica, 2015, 64(2): 024219. doi: 10.7498/aps.64.024219
    [8] Zhu Yan-Ju, Jiang Yue-Song, Hua Hou-Qiang, Zhang Chong-Hui, Xin Can-Wei. Modified equivalent current approximation and graphical electromagnetic computing method of analyzing radar cross section of missile target scatterer covered with thermal protection layer. Acta Physica Sinica, 2014, 63(24): 244101. doi: 10.7498/aps.63.244101
    [9] He Jing, Miao Qiang, Wu De-Wei. Microwave and light wave radar cross section similitude with unequal electrical length. Acta Physica Sinica, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [10] Liang Da-Chuan, Wei Ming-Gui, Gu Jian-Qiang, Yin Zhi-Ping, Ouyang Chun-Mei, Tian Zhen, He Ming-Xia, Han Jia-Guang, Zhang Wei-Li. Broad-band time domain terahertz radar cross-section research in scale models. Acta Physica Sinica, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [11] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [12] Li Si-Jia, Cao Xiang-Yu, Gao Jun, Zheng Qiu-Rong, Yang Qun, Zhang Zhao, Zhang Huan-Mei. Design of the ultra-thin perfect metamaterial absorber with high Q-factor. Acta Physica Sinica, 2013, 62(24): 244101. doi: 10.7498/aps.62.244101
    [13] Yang Huan-Huan, Cao Xiang-Yu, Gao Jun, Liu Tao, Li Si-Jia, Zhao Yi, Yuan Zi-Dong, Zhang Hao. Broadband low-RCS metamaterial absorber based on electromagnetic resonance separation. Acta Physica Sinica, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [14] Li Si-Jia, Cao Xiang-Yu, Gao Jun, Liu Tao, Yang Huan-Huan, Li Wen-Qiang. Design of ultra-thin broadband metamaterial absorber and its application for RCS reduction of circular polarization tilted beam antenna. Acta Physica Sinica, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [15] Yang Huan-Huan, Cao Xiang-Yu, Gao Jun, Liu Tao, Ma Jia-Jun, Yao Xu, Li Wen-Qiang. Design of low-radar cross section microstrip antenna based on metamaterial absorber. Acta Physica Sinica, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [16] Lu Lei, Qu Shao-Bo, Ma Hua, Xia Song, Xu Zhuo, Wang Jia-Fu, Yu Fei. A broadband artificial magnetic conductor composite structure for radar cross section reduction. Acta Physica Sinica, 2013, 62(3): 034206. doi: 10.7498/aps.62.034206
    [17] Zhao Yi, Cao Xiang-Yu, Gao Jun, Yao Xu, Ma Jia-Jun, Li Si-Jia, Yang Huan-Huan. A wideband low RCS reflection screen based on artificial magnetic conductor orthogonal array. Acta Physica Sinica, 2013, 62(15): 154204. doi: 10.7498/aps.62.154204
    [18] Li Si-Jia, Cao Xiang-Yu, Gao Jun, Zheng Qiu-Rong, Zhao Yi, Yang Qun. Design of ultrathin broadband perfect metamaterial absorber with low radar cross section. Acta Physica Sinica, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [19] Li Min-Quan, Tao Xiao-Jun, Zhao Jin, Wu Xian-Liang. Radar cross section computation using symplectic Runge-Kutta-Nystrom method. Acta Physica Sinica, 2007, 56(4): 2115-2118. doi: 10.7498/aps.56.2115
    [20] Liu Shao-Bin, Zhang Guang-Fu, Yuan Nai-Chang. Finite-difference time-domain analysis on radar cross section of conducting cube scatterer covered with plasmas. Acta Physica Sinica, 2004, 53(8): 2633-2637. doi: 10.7498/aps.53.2633
Metrics
  • Abstract views:  6716
  • PDF Downloads:  973
  • Cited By: 0
Publishing process
  • Received Date:  08 December 2013
  • Accepted Date:  04 March 2014
  • Published Online:  05 June 2014

/

返回文章
返回