Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress of 122-type iron-based superconducting wires and tapes

Xu Guang-Xian Huang He Zhang Xian-Ping Huang Shang-Yu Ma Yan-Wei

Citation:

Recent progress of 122-type iron-based superconducting wires and tapes

Xu Guang-Xian, Huang He, Zhang Xian-Ping, Huang Shang-Yu, Ma Yan-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With high transition temperature Tc (~38 K), high upper critical field Hc2 ( 100 T), superior transport Jc (~106 A/cm2) and extremely small anisotropy (1.5-2.0), the 122-type iron-based superconductors show great promise in high-field applications such as next-generation high energy physics accelerator and high-field magnetic resonance imaging (MRI). Power-in-tube (PIT) method is widely adopted to fabricate the iron-based superconducting wires and tapes due to low cost and easiness of large-scale fabrication. In the past few years, substantial efforts have been made to improve the transport performances of 122-type iron-based superconducting wires and tapes by ex-situ PIT technique. In this review, the recent progress of 122-type iron-based superconducting wires and tapes is presented. Firstly, we focus on the techniques for fabricating high-performance 122-type wires and tapes. We also discuss the key factors affecting the final performances of wires and tapes during the PIT process, including the preparation of high-quality precursor, the effect of chemical doping, the improvement of core density and grain connection. Recently, due to the improving of degree of c-axis texture and connectivity of grains, the transport Jc value of 122/Ag tapes reached 1.5105 A/cm2 at 4.2 K and 10 T, which exceeds the practical level of 105 A/cm2 and demonstrates their promise in high-field applications. Then, the progress of practical application of 122-type wires and tapes is summarized. In order to reduce the fabrication cost and improve the mechanical strengths of superconducting wires and tapes, an additional outer sheath such as Fe, Cu and stainless steel was used in combination with Ag. Besides, a favourable transport Jc was also obtained in the Cu-, or Fe-sheathed 122 tapes. For round wires, the highest Jc value reached 3.8104 A/cm2 in Cu/Ag composite sheathed wires at 4.2 K and 10 T, obtained by the hot-isostatic-press technology. From the viewpoint of practicality, the fabrication of multifilamentary wires and tapes is an indispensable step. The 7-, 19-and 114-filament 122 wires and tapes were successfully fabricated by the PIT method, and these multifilamentary tapes exhibited weak field dependence of Jc. Based on the experience of high-performance short samples and multifilamentary wires process, the scalable rolling process has been used to produce the first 115-m-long 7-filament Sr1-xKxFe2As2/Ag superconducting tape, confirming the great potential for large-scale manufacture. Moreover, the mechanical property, anisotropy and superconducting joint of 122 tapes are also studied. Finally, a perspective for the future development of 122-type wires and tapes in practical applications is given.
      Corresponding author: Ma Yan-Wei, ywma@mail.iee.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51320105015, 51602307, 51677179) and the Beijing Municipal Science and Technology Commission, China (Grant No. Z171100002017006).
    [1]

    Bednorz J G, Mller K A 1986 Z. Phys. B: Condens. Matter 64 189

    [2]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [3]

    Chen G F, Li Z, Li G, Zhou J, Wu D, Dong J, Hu W Z, Zheng P, Chen Z J, Yuan H Q, Singleton J, Luo J L, Wang N L 2008 Phys. Rev. Lett. 101 057007

    [4]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [5]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [6]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006

    [7]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14262

    [8]

    Fang M H, Pham H M, Qian B, Liu T J, Vehstedt E K, Liu Y, Spinu L, Mao Z Q 2008 Phys. Rev. B 78 224503

    [9]

    Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y, Jin C Q 2008 Solid State Commun. 148 538

    [10]

    Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M, Chen X 2010 Phys. Rev. B 82 180520

    [11]

    Jaroszynski J, Hunte F, Balicas L, Jo Y J, Raičević I, Gurevich A, Larbalestier D C, Balakirev F F, Fang L, Cheng P, Jia Y, Wen H H 2008 Phys. Rev. B 78 174523

    [12]

    Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L, Wang N L 2009 Nature 457 565

    [13]

    Ivanovskii A L 2008 Phys. Usp. 51 1229

    [14]

    Ma Y W 2015 Physica C 516 17

    [15]

    Togano K, Matsumoto A, Kumakura H 2011 Appl. Phys. Express 4 043101

    [16]

    Sato K, Kobayashi S, Nakashima T 2012 Jpn. J. Appl. Phys. 51 010006

    [17]

    Abetti P A 2009 Int. J. Technol. Manage. 48 423

    [18]

    Wang L, Qi Y P, Wang D L, Gao Z S, Zhang X P, Zhang Z Y, Wang C L, Ma Y W 2010 Supercond. Sci. Technol. 23 075005

    [19]

    Wang L, Ma Y W, Wang Q X, Li K, Zhang X X, Qi Y P, Gao Z S, Zhang X P, Wang D L, Yao C, Wang C L 2011 Appl. Phys. Lett. 98 222504

    [20]

    Wang C, Gao Z, Yao C, Wang L, Qi Y, Wang D, Zhang X, Ma Y 2011 Supercond. Sci. Technol. 24 065002

    [21]

    Dong C H, Yao C, Lin H, Zhang X P, Zhang Q J, Wang D L, Ma Y W, Oguro H, Awaji S, Watanabe K 2015 Scr. Mater. 99 33

    [22]

    Wang C, Wang L, Gao Z, Yao C, Wang D, Qi Y, Zhang X, Ma Y 2011 Appl. Phys. Lett. 98 042508

    [23]

    Wang L, Qi Y P, Wang D L, Zhang X P, Gao Z S, Zhang Z Y, Ma Y W, Awaji S, Nishijima G, Watanabe K 2010 Physica C 470 183

    [24]

    Qi Y, Wang L, Wang D, Zhang Z, Gao Z, Zhang X, Ma Y 2010 Supercond. Sci. Technol. 23 055009

    [25]

    Yao C, Wang C L, Zhang X P, Wang L, Gao Z S, Wang D L, Wang C D, Qi Y P, Ma Y W, Awaji S, Watanabe K 2012 Supercond. Sci. Technol. 25 035020

    [26]

    Gao Z, Wang L, Yao C, Qi Y, Wang C, Zhang X, Wang D, Wang C, Ma Y 2011 Appl. Phys. Lett. 99 242506

    [27]

    Lin H, Yao C, Zhang X P, Zhang H T, Wang D L, Zhang Q J, Ma Y W 2013 Physica C 495 48

    [28]

    Lin H, Yao C, Zhang X P, Zhang H T, Zhang Q J, Wang D L, Dong C H, Ma Y W 2016 Scr. Mater. 112 128

    [29]

    Weiss J D, Tarantini C, Jiang J, Kametani F, Polyanskii A A, Larbalestier D C, Hellstrom E E 2012 Nat. Mater. 11 682

    [30]

    Pyon S, Tsuchiya Y, Inoue H, Kajitani H, Koizumi N, Awaji S, Watanabe K, Tamegai T 2014 Supercond. Sci. Technol. 27 095002

    [31]

    Gao Z S, Ma Y W, Yao C, Zhang X P, Wang C L, Wang D L, Awaji S, Watanabe K 2012 Sci. Rep. 2 998

    [32]

    Yao C, Lin H, Zhang X P, Dong C H, Wang D L, Zhang Q J, Ma Y W, Awaji S, Watanabe K 2015 IEEE Trans. Appl. Supercond. 25 7300204

    [33]

    Zhang X P, Yao C, Lin H, Cai Y, Chen Z, Li J Q, Dong C H, Zhang Q J, Wang D L, Ma Y W, Oguro H, Awaji S, Watanabe K 2014 Appl. Phys. Lett. 104 202601

    [34]

    Lin H, Yao C, Zhang X, Dong C, Zhang H, Wang D, Zhang Q, Ma Y, Awaji S, Watanabe K, Tian H, Li J 2014 Sci. Rep. 4 6944

    [35]

    Huang H, Yao C, Dong C H, Zhang X P, Wang D L, Cheng Z, Li J Q, Awaji S, Wen H H, Ma Y W 2018 Supercond. Sci. Technol. 31 015017

    [36]

    Gao Z S, Wang L, Qi Y P, Wang D L, Zhang X P, Ma Y W 2008 Supercond. Sci. Technol. 21 105024

    [37]

    Gao Z S, Wang L, Qi Y P, Wang D L, Zhang X P, Ma Y W, Yang H, Wen H H 2008 Supercond. Sci. Technol. 21 112001

    [38]

    Qi Y P, Zhang X P, Gao Z S, Zhang Z Y, Wang L, Wang D L, Ma Y W 2009 Physica C 469 717

    [39]

    Wang L, Qi Y P, Zhang X P, Wang D L, Gao Z S, Wang C L, Yao C, Ma Y W 2011 Physica C 471 1689

    [40]

    Lin K L, Yao C, Zhang X P, Zhang Q J, Huang H, Li C, Wang D L, Dong C H, Ma Y W, Awaji S, Watanabe K 2016 Supercond. Sci. Technol. 29 095006

    [41]

    Togano K, Gao Z, Matsumoto A, Kikuchi A, Kumakura H 2017 Supercond. Sci. Technol. 30 015012

    [42]

    Yao C, Wang D L, Huang H, Dong C H, Zhang X P, Ma Y W, Awaji S 2017 Supercond. Sci. Technol. 30 075010

    [43]

    Gao Z S, Togano K, Matsumoto A, Kumakura H 2015 Supercond. Sci. Technol. 28 012001

    [44]

    Gao Z S, Togano K, Zhang Y C, Matsumoto A, Kikuchi A, Kumakura H 2017 Supercond. Sci. Technol. 30 095012

    [45]

    Ding Q P, Prombood T, Tsuchiya Y, Nakajima Y, Tamegai T 2012 Supercond. Sci. Technol. 25 035019

    [46]

    Pyon S, Yamasaki Y, Kajitani H, Koizumi N, Tsuchiya Y, Awaji S, Watanabe K, Tamegai T 2015 Supercond. Sci. Technol. 28 125014

    [47]

    Pyon S, Suwa T, Park A, Kajitani H, Koizumi N, Tsuchiya Y, Awaji S, Watanabe K, Tamegai T 2016 Supercond. Sci. Technol. 29 115002

    [48]

    Pyon S, Suwa T, Tamegai T, Takano K, Kajitani H, Koizumi N, Awaji S, Zhou N, Shi Z 2018 Supercond. Sci. Technol. 31 055016

    [49]

    Liu S F, Lin K L, Yao C, Zhang X P, Dong C H, Wang D L, Awaji S, Kumakura H, Ma Y W 2017 Supercond. Sci. Technol. 30 115007

    [50]

    Yao C, Ma Y W, Zhang X P, Wang D L, Wang C L, Lin H, Zhang Q J 2013 Appl. Phys. Lett. 102 082602

    [51]

    Yao C, Lin H, Zhang Q J, Zhang X P, Wang D L, Dong C H, Ma Y W, Awaji S, Watanabe K 2015 J. Appl. Phys. 118 203909

    [52]

    Zhang X P, Oguro H, Yao C, Dong C H, Xu Z T, Wang D L, Awaji S, Watanabe K, Ma Y W 2017 IEEE Trans. Appl. Supercond. 27 7300705

    [53]

    Hosono H, Yamamoto A, Hiramatsu H, Ma Y 2018 Mater. Today 21 278

    [54]

    Kovč P, Kopera L, Meliek T, Kulich M, Huek I, Lin H, Yao C, Zhang X, Ma Y 2015 Supercond. Sci. Technol. 28 035007

    [55]

    Liu F, Yao C, Liu H, Dai C, Qin J, Ci L, Mao Z, Zhou C, Shi Y, Jin H, Wang D, Ma Y 2017 Supercond. Sci. Technol. 30 07LT01

    [56]

    Awaji S, Nakazawa Y, Oguro H, Tsuchiya Y, Watanabe K, Shimada Y, Lin H, Yao C, Zhang X, Ma Y 2017 Supercond. Sci. Technol. 30 035018

    [57]

    Zhu Y, Wang D, Zhu C, Huang H, Xu Z, Liu S, Cheng Z, Ma Y 2018 Supercond. Sci. Technol. 31 06LT02

  • [1]

    Bednorz J G, Mller K A 1986 Z. Phys. B: Condens. Matter 64 189

    [2]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [3]

    Chen G F, Li Z, Li G, Zhou J, Wu D, Dong J, Hu W Z, Zheng P, Chen Z J, Yuan H Q, Singleton J, Luo J L, Wang N L 2008 Phys. Rev. Lett. 101 057007

    [4]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [5]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215

    [6]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006

    [7]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14262

    [8]

    Fang M H, Pham H M, Qian B, Liu T J, Vehstedt E K, Liu Y, Spinu L, Mao Z Q 2008 Phys. Rev. B 78 224503

    [9]

    Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y, Jin C Q 2008 Solid State Commun. 148 538

    [10]

    Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M, Chen X 2010 Phys. Rev. B 82 180520

    [11]

    Jaroszynski J, Hunte F, Balicas L, Jo Y J, Raičević I, Gurevich A, Larbalestier D C, Balakirev F F, Fang L, Cheng P, Jia Y, Wen H H 2008 Phys. Rev. B 78 174523

    [12]

    Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L, Wang N L 2009 Nature 457 565

    [13]

    Ivanovskii A L 2008 Phys. Usp. 51 1229

    [14]

    Ma Y W 2015 Physica C 516 17

    [15]

    Togano K, Matsumoto A, Kumakura H 2011 Appl. Phys. Express 4 043101

    [16]

    Sato K, Kobayashi S, Nakashima T 2012 Jpn. J. Appl. Phys. 51 010006

    [17]

    Abetti P A 2009 Int. J. Technol. Manage. 48 423

    [18]

    Wang L, Qi Y P, Wang D L, Gao Z S, Zhang X P, Zhang Z Y, Wang C L, Ma Y W 2010 Supercond. Sci. Technol. 23 075005

    [19]

    Wang L, Ma Y W, Wang Q X, Li K, Zhang X X, Qi Y P, Gao Z S, Zhang X P, Wang D L, Yao C, Wang C L 2011 Appl. Phys. Lett. 98 222504

    [20]

    Wang C, Gao Z, Yao C, Wang L, Qi Y, Wang D, Zhang X, Ma Y 2011 Supercond. Sci. Technol. 24 065002

    [21]

    Dong C H, Yao C, Lin H, Zhang X P, Zhang Q J, Wang D L, Ma Y W, Oguro H, Awaji S, Watanabe K 2015 Scr. Mater. 99 33

    [22]

    Wang C, Wang L, Gao Z, Yao C, Wang D, Qi Y, Zhang X, Ma Y 2011 Appl. Phys. Lett. 98 042508

    [23]

    Wang L, Qi Y P, Wang D L, Zhang X P, Gao Z S, Zhang Z Y, Ma Y W, Awaji S, Nishijima G, Watanabe K 2010 Physica C 470 183

    [24]

    Qi Y, Wang L, Wang D, Zhang Z, Gao Z, Zhang X, Ma Y 2010 Supercond. Sci. Technol. 23 055009

    [25]

    Yao C, Wang C L, Zhang X P, Wang L, Gao Z S, Wang D L, Wang C D, Qi Y P, Ma Y W, Awaji S, Watanabe K 2012 Supercond. Sci. Technol. 25 035020

    [26]

    Gao Z, Wang L, Yao C, Qi Y, Wang C, Zhang X, Wang D, Wang C, Ma Y 2011 Appl. Phys. Lett. 99 242506

    [27]

    Lin H, Yao C, Zhang X P, Zhang H T, Wang D L, Zhang Q J, Ma Y W 2013 Physica C 495 48

    [28]

    Lin H, Yao C, Zhang X P, Zhang H T, Zhang Q J, Wang D L, Dong C H, Ma Y W 2016 Scr. Mater. 112 128

    [29]

    Weiss J D, Tarantini C, Jiang J, Kametani F, Polyanskii A A, Larbalestier D C, Hellstrom E E 2012 Nat. Mater. 11 682

    [30]

    Pyon S, Tsuchiya Y, Inoue H, Kajitani H, Koizumi N, Awaji S, Watanabe K, Tamegai T 2014 Supercond. Sci. Technol. 27 095002

    [31]

    Gao Z S, Ma Y W, Yao C, Zhang X P, Wang C L, Wang D L, Awaji S, Watanabe K 2012 Sci. Rep. 2 998

    [32]

    Yao C, Lin H, Zhang X P, Dong C H, Wang D L, Zhang Q J, Ma Y W, Awaji S, Watanabe K 2015 IEEE Trans. Appl. Supercond. 25 7300204

    [33]

    Zhang X P, Yao C, Lin H, Cai Y, Chen Z, Li J Q, Dong C H, Zhang Q J, Wang D L, Ma Y W, Oguro H, Awaji S, Watanabe K 2014 Appl. Phys. Lett. 104 202601

    [34]

    Lin H, Yao C, Zhang X, Dong C, Zhang H, Wang D, Zhang Q, Ma Y, Awaji S, Watanabe K, Tian H, Li J 2014 Sci. Rep. 4 6944

    [35]

    Huang H, Yao C, Dong C H, Zhang X P, Wang D L, Cheng Z, Li J Q, Awaji S, Wen H H, Ma Y W 2018 Supercond. Sci. Technol. 31 015017

    [36]

    Gao Z S, Wang L, Qi Y P, Wang D L, Zhang X P, Ma Y W 2008 Supercond. Sci. Technol. 21 105024

    [37]

    Gao Z S, Wang L, Qi Y P, Wang D L, Zhang X P, Ma Y W, Yang H, Wen H H 2008 Supercond. Sci. Technol. 21 112001

    [38]

    Qi Y P, Zhang X P, Gao Z S, Zhang Z Y, Wang L, Wang D L, Ma Y W 2009 Physica C 469 717

    [39]

    Wang L, Qi Y P, Zhang X P, Wang D L, Gao Z S, Wang C L, Yao C, Ma Y W 2011 Physica C 471 1689

    [40]

    Lin K L, Yao C, Zhang X P, Zhang Q J, Huang H, Li C, Wang D L, Dong C H, Ma Y W, Awaji S, Watanabe K 2016 Supercond. Sci. Technol. 29 095006

    [41]

    Togano K, Gao Z, Matsumoto A, Kikuchi A, Kumakura H 2017 Supercond. Sci. Technol. 30 015012

    [42]

    Yao C, Wang D L, Huang H, Dong C H, Zhang X P, Ma Y W, Awaji S 2017 Supercond. Sci. Technol. 30 075010

    [43]

    Gao Z S, Togano K, Matsumoto A, Kumakura H 2015 Supercond. Sci. Technol. 28 012001

    [44]

    Gao Z S, Togano K, Zhang Y C, Matsumoto A, Kikuchi A, Kumakura H 2017 Supercond. Sci. Technol. 30 095012

    [45]

    Ding Q P, Prombood T, Tsuchiya Y, Nakajima Y, Tamegai T 2012 Supercond. Sci. Technol. 25 035019

    [46]

    Pyon S, Yamasaki Y, Kajitani H, Koizumi N, Tsuchiya Y, Awaji S, Watanabe K, Tamegai T 2015 Supercond. Sci. Technol. 28 125014

    [47]

    Pyon S, Suwa T, Park A, Kajitani H, Koizumi N, Tsuchiya Y, Awaji S, Watanabe K, Tamegai T 2016 Supercond. Sci. Technol. 29 115002

    [48]

    Pyon S, Suwa T, Tamegai T, Takano K, Kajitani H, Koizumi N, Awaji S, Zhou N, Shi Z 2018 Supercond. Sci. Technol. 31 055016

    [49]

    Liu S F, Lin K L, Yao C, Zhang X P, Dong C H, Wang D L, Awaji S, Kumakura H, Ma Y W 2017 Supercond. Sci. Technol. 30 115007

    [50]

    Yao C, Ma Y W, Zhang X P, Wang D L, Wang C L, Lin H, Zhang Q J 2013 Appl. Phys. Lett. 102 082602

    [51]

    Yao C, Lin H, Zhang Q J, Zhang X P, Wang D L, Dong C H, Ma Y W, Awaji S, Watanabe K 2015 J. Appl. Phys. 118 203909

    [52]

    Zhang X P, Oguro H, Yao C, Dong C H, Xu Z T, Wang D L, Awaji S, Watanabe K, Ma Y W 2017 IEEE Trans. Appl. Supercond. 27 7300705

    [53]

    Hosono H, Yamamoto A, Hiramatsu H, Ma Y 2018 Mater. Today 21 278

    [54]

    Kovč P, Kopera L, Meliek T, Kulich M, Huek I, Lin H, Yao C, Zhang X, Ma Y 2015 Supercond. Sci. Technol. 28 035007

    [55]

    Liu F, Yao C, Liu H, Dai C, Qin J, Ci L, Mao Z, Zhou C, Shi Y, Jin H, Wang D, Ma Y 2017 Supercond. Sci. Technol. 30 07LT01

    [56]

    Awaji S, Nakazawa Y, Oguro H, Tsuchiya Y, Watanabe K, Shimada Y, Lin H, Yao C, Zhang X, Ma Y 2017 Supercond. Sci. Technol. 30 035018

    [57]

    Zhu Y, Wang D, Zhu C, Huang H, Xu Z, Liu S, Cheng Z, Ma Y 2018 Supercond. Sci. Technol. 31 06LT02

  • [1] Li Geng, Ding Hong, Wang Zi-Qiang, Gao Hong-Jun. Majorana zero mode and its lattice construction in iron-based superconductors. Acta Physica Sinica, 2024, 73(3): 030302. doi: 10.7498/aps.73.20232022
    [2] Zhou Yang, Ma Xiao, Zhou Xing-Yu, Zhang Chun-Hui, Wang Qin. Study of practical state-preparation error tolerant reference-frame-independent quantum key distribution protocol. Acta Physica Sinica, 2023, 72(24): 240301. doi: 10.7498/aps.72.20231144
    [3] Zhu Jia-Li, Cao Yuan, Zhang Chun-Hui, Wang Qin. Optimal resource allocation in practical quantum key distribution optical networks. Acta Physica Sinica, 2023, 72(2): 020301. doi: 10.7498/aps.72.20221661
    [4] Wang Miao, Yang Wan-Min, Wang Xiao-Mei, Zan Ya-Ting, Chen Sen-Lin, Zhang Ming, Hu Cheng-Xi. Fabrication process and superconducting properties of recycling multi-domain GdBCO bulk superconductors using improved infiltration technique. Acta Physica Sinica, 2021, 70(15): 158101. doi: 10.7498/aps.70.20202141
    [5] Li Miao-Cong, Tao Qian, Xu Zhu-An. The transport properties of iron-based superconductors. Acta Physica Sinica, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [6] Wang Xin-Meng, Shi Peng, Zhang Xue-Qiang, Chen Ai-Bing, Zhang Qiang. Failure mechanism of lithium metal anode under practical conditions. Acta Physica Sinica, 2020, 69(22): 228501. doi: 10.7498/aps.69.20200906
    [7] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [8] Lin Tong, Hu Die, Shi Li-Yu, Zhang Si-Jie, Liu Yan-Qi, Lv Jia-Lin, Dong Tao, Zhao Jun, Wang Nan-Lin. Infrared spectroscopy study of ironbased superconductor Li0.8Fe0.2 ODFeSe. Acta Physica Sinica, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [9] Xu Hai-Chao, Niu Xiao-Hai, Ye Zi-Rong, Feng Dong-Lai. Unified phase diagram of Fe-based superconductors based on electron correlation strength. Acta Physica Sinica, 2018, 67(20): 207405. doi: 10.7498/aps.67.20181541
    [10] Wang Zhi-Cheng, Cao Guang-Han. Self-doped iron-based superconductors with intergrowth structures. Acta Physica Sinica, 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [11] Gong Dong-Liang, Luo Hui-Qian. Antiferromagnetic order and spin dynamics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [12] Guo Jing, Wu Qi, Sun Li-Ling. Pressure-induced phenomena and physics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [13] Yu Rong. Electron correlations and orbital selectivities in multiorbital models for iron-based superconductors. Acta Physica Sinica, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [14] Guo Jing, Sun Li-Ling. Phenomena and findings in pressurized alkaline iron selenide superconductors. Acta Physica Sinica, 2015, 64(21): 217406. doi: 10.7498/aps.64.217406
    [15] Du Zeng-Yi, Fang De-Long, Wang Zhen-Yu, Du Guan, Yang Xiong, Yang Huan, Gu Gen-Da, Wen Hai-Hu. Investigation of scanning tunneling spectra on iron-based superconductor FeSe0.5Te0.5. Acta Physica Sinica, 2015, 64(9): 097401. doi: 10.7498/aps.64.097401
    [16] Li Shi-Chao, Gan Yuan, Wang Jing-Hui, Ran Ke-Jing, Wen Jin-Sheng. Magnetic neutron scattering studies on the Fe-based superconductor system Fe1+yTe1-xSex. Acta Physica Sinica, 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [17] Li Zheng, Zhou Rui, Zheng Guo-Qing. Quantum criticalities in carrier-doped iron-based superconductors. Acta Physica Sinica, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [18] Guo Rui-Xiang, Jia Xiao-Jun, Xie Chang-De, Peng Kun-Xi. . Acta Physica Sinica, 2002, 51(6): 1262-1267. doi: 10.7498/aps.51.1262
    [19] XIONG YU-FENG, JIN DUO, YAO YU-SHU, WU FEI, JIA SHUN-LIAN, ZHAO ZHONG-XIAN. HIGH-PRESSURE SYNTHESIS AND SUPERCONDUCTIVITY OF NEW BULK Pr1-xCaxBa2Cu3O7-δSUPERCONDUCTORS. Acta Physica Sinica, 1998, 47(10): 1713-1719. doi: 10.7498/aps.47.1713
    [20] FENG YONG, ZHOU LIAN. PROPERTIES AND MICROSTRUCTURES OF MELT PROCES-SED (YHo)Ba2Cu3O7-y SUPERCONDUCTOR. Acta Physica Sinica, 1992, 41(11): 1880-1883. doi: 10.7498/aps.41.1880
Metrics
  • Abstract views:  6472
  • PDF Downloads:  260
  • Cited By: 0
Publishing process
  • Received Date:  28 June 2018
  • Accepted Date:  02 August 2018
  • Published Online:  20 October 2019

/

返回文章
返回