Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication process and superconducting properties of recycling multi-domain GdBCO bulk superconductors using improved infiltration technique

Wang Miao Yang Wan-Min Wang Xiao-Mei Zan Ya-Ting Chen Sen-Lin Zhang Ming Hu Cheng-Xi

Citation:

Fabrication process and superconducting properties of recycling multi-domain GdBCO bulk superconductors using improved infiltration technique

Wang Miao, Yang Wan-Min, Wang Xiao-Mei, Zan Ya-Ting, Chen Sen-Lin, Zhang Ming, Hu Cheng-Xi
cstr: 32037.14.aps.70.20202141
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • High temperature superconductor has become one of the hotspots of research, because of its high critical temperature, strong trapped flux density, stable suspension characteristics and large magnet levitation force. The single domain REBa2Cu3O7–δ (REBCO) superconductors have the wide and potential applications in the high-tech fields, such as micro-magnet superconducting maglev train, superconducting motor and superconducting magnetic separation system. However, a large number of multi-domain samples are easy to produce in the preparation process, which leads the success rate to decrease significantly and the cost to increase considerably, which restricts its practical application process. Inspired by the top seeded infiltration growth method, we develop a reliable method of recycling failed GdBCO sample by re-supplementing the liquid phase lost in the primary growth process and pretreating the failed sample as solid phase source billets. We recycle a series of GdBCO samples by using this new technique successfully. The growth morphology, superconducting properties, and microstructures of the recycled GdBCO bulk superconductors are investigated in detail in this study. The results show that the magnetic levitation forces of the recycled GdBCO samples are all greater than 30 N, their magnetic flux densities are all above 0.3 T, and their capture efficiencies are above 60%. These results provide the scientific basis and new ideas for developing the low cost and high efficient yield of fabrication of the REBCO bulk superconductors.
      Corresponding author: Wang Miao, cwnanmao@126.com
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 51802247, 51872199), the Young Talent Fund of University Association for Science and Technology in Shaanxi Province, China (Grant No. 20190422), and the 3rd Batch of Young Outstanding Talents Support Program for Colleges and Universities in Shaanxi Province, China
    [1]

    Wu M K, Ashburn J R, Torng C J 1987 Phys. Rev. Lett. 58 908Google Scholar

    [2]

    Chu C 1987 Proc. Natl. Acad. Sci. U.S.A. 84 4681Google Scholar

    [3]

    Durrell J H, Dennis A R, Jaroszynski J, Shi Y H, Cardwell A D 2014 Supercond. Sci. Technol. 27 082001Google Scholar

    [4]

    Tomita M, Murakami M 2003 Nature 421 517Google Scholar

    [5]

    Yang P T, Yang W M, Abula Y, Su X Q, Zhang L L 2017 Ceram. Int. 43 3010Google Scholar

    [6]

    Yang W M, Wang M 2013 Physica C 493 128Google Scholar

    [7]

    Ainslie M, Fujishiro H, Ujiie T 2014 Supercond. Sci. Technol. 27 065008Google Scholar

    [8]

    Jin J X, Guo Y G, Zhu J G 2007 Physica C 460 1445

    [9]

    Deng Z, He D, Zheng J 2015 IEEE Trans. Appl. Supercond. 25 3600106Google Scholar

    [10]

    Tomita M, Fukumoto Y, Suzuki K, Ishihara A, Muralidhar M 2011 J. Appl. Phys. 109 023912Google Scholar

    [11]

    Basaran S, Sivrioglu S 2017 Supercond. Sci. Technol. 30 035008Google Scholar

    [12]

    Muralidhar M, Szuki K, Ishihara A, Jirsa M, Fukumoto Y, Tomita M 2010 Supercond. Sci. Technol. 23 124003Google Scholar

    [13]

    Cardwell D A, Shi Y H, Hari Babu N, Pathak S K, Dennis A R, Iida K 2010 Supercond. Sci. Technol. 23 034008Google Scholar

    [14]

    Cheng L, Li T, Yan S, Sun L, Yao X, Puzniak R 2011 J. Am. Ceram. Soc. 94 3139Google Scholar

    [15]

    Meslin S, Noudem J G 2004 Supercond. Sci. Technol. 17 1324Google Scholar

    [16]

    Congreve J J, Shi Y H, Dennis A R, Durrell J H, Cardwell D A 2018 Supercond. Sci. Technol. 31 035008Google Scholar

    [17]

    Devendra Kumar N, Rajasekharan T, Sechubai V 2013 Physica C 495 55Google Scholar

    [18]

    Wang M, Yang W M, Li J W, Feng Z L, Yang P T 2015 Supercond. Sci. Technol. 28 035004Google Scholar

    [19]

    Wang M, Yang W M, Li J W, Feng Z L, Chen S L 2013 Physica C 492 129Google Scholar

    [20]

    Hari Babu N, Shi Y H, Pathak S K, Dennis A R, Cardwell D A 2011 Physica C 471 169Google Scholar

    [21]

    Li T Y, Cheng L, Yan S B, Sun L J, Yao X, Yoshida Y, Ikuta H 2010 Supercond. Sci. Technol. 23 125002Google Scholar

    [22]

    Iida K, Löwe K, Kühn L, Nenkov K, Fuchs G, Krabbes G, Behr G, Holzapfel B, Schultz L 2009 Physica C 469 1153Google Scholar

    [23]

    Pathak S K, Hari Babu N, Dennis A R, Iida K, Strasik M, Cardwell D A 2010 Supercond. Sci. Technol. 23 065012Google Scholar

    [24]

    Xu H H, Cheng L, Yan S B, Yu D J, Guo L S, Yao X 2012 J. Appl. Phys. 111 103910Google Scholar

    [25]

    Xu H H, Chen Y Y, Cheng L, Yan S B, Yu D J, Guo L S, Yao X 2013 J. Supercond. Novel Magn. 26 919Google Scholar

    [26]

    Shi Y, Namburi D, Wang M, Durrell J, Dennis A, Cardwell D 2015 J. Am. Ceram. Soc. 98 2760Google Scholar

    [27]

    Yang W M, Zhi X, Chen S L, Wang M, Ma J, Chao X X 2014 Physica C 496 1Google Scholar

    [28]

    Yang W M, Zhou L, Feng Y, Zhang P X, Zhang C P 2006 J. Alloys compd. 415 276Google Scholar

    [29]

    Guo Y X, Yang W M, Li J W, Guo L P, Li Q 2015 Cryst. Growth Des. 15 1771Google Scholar

    [30]

    Chen S L, Yang W M, Li J W, Yuan X C, Ma J, Wang M 2014 Physica C 496 39Google Scholar

    [31]

    Yang P T, Yang W M, Chen J L 2017 Supercond. Sci. Technol. 30 085003Google Scholar

    [32]

    王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西 2016 物理学报 65 227401Google Scholar

    Wang M, Yang W M, Yang P T, Wang X M, Zhang M, Hu C X 2016 Acta Phys. Sin. 65 227401Google Scholar

    [33]

    Chen D X, Goldfarb R B 1989 J. Appl. Phys. 66 2489Google Scholar

    [34]

    Kumar N D, Shi Y H, Palmer K G, Dennis A D, DurRell J H, Cardwell D A 2016 J. Eur. Ceram. Soc. 36 615Google Scholar

    [35]

    Iida K, Hari Babu N, Shi Y H, Cardwell D A, Murakami M 2006 Supercond. Sci. Technol. 19 641Google Scholar

    [36]

    李国政, 陈超 2020 物理学报 69 237402Google Scholar

    Li G Z, Chen C 2020 Acta Phys. Sin. 69 237402Google Scholar

  • 图 1  二次单畴化制备GdBCO样品的流程图

    Figure 1.  Preparation flow chart of recycling the failed samples.

    图 2  GdBCO超导样品的表面宏观形貌图 (a)—(d) 生长失败的GdBCO样品; (e)—(h)二次单畴化生长后对应的样品

    Figure 2.  Top view of the GdBCO bulk superconductors: (a)–(d) Failed GdBCO samples; (e)–(h) recycled samples.

    图 3  不同二次单畴化制备GdBCO超导样品的磁悬浮力曲线

    Figure 3.  Levitation force of the recycled GdBCO samples.

    图 4  不同二次单畴化制备GdBCO超导样品的捕获磁通密度分布图 (a)样品e; (b)样品f; (c)样品g; (d)样品h

    Figure 4.  Trapped field of the recycled GdBCO samples: (a) Sample e; (b) sample f; (c) sample g; (d) sample h.

    图 5  在二次单畴化制备的GdBCO超导样品的纵切面上取样示意图

    Figure 5.  Schematic of the specimens cut from the recycled GdBCO sample.

    图 6  二次单畴化制备GdBCO超导样品f的临界转变温度(1 emu = 10–3 A·m2)

    Figure 6.  Superconducting transition temperature of the recycled GdBCO sample f.

    图 7  二次单畴化制备GdBCO超导样品f的临界电流密度

    Figure 7.  The Jc of the recycled GdBCO sample f.

    图 8  二次单畴化制备GdBCO超导样品f不同位置的微观形貌图

    Figure 8.  Microstructure of the specimens cut from the recycled GdBCO sample f.

  • [1]

    Wu M K, Ashburn J R, Torng C J 1987 Phys. Rev. Lett. 58 908Google Scholar

    [2]

    Chu C 1987 Proc. Natl. Acad. Sci. U.S.A. 84 4681Google Scholar

    [3]

    Durrell J H, Dennis A R, Jaroszynski J, Shi Y H, Cardwell A D 2014 Supercond. Sci. Technol. 27 082001Google Scholar

    [4]

    Tomita M, Murakami M 2003 Nature 421 517Google Scholar

    [5]

    Yang P T, Yang W M, Abula Y, Su X Q, Zhang L L 2017 Ceram. Int. 43 3010Google Scholar

    [6]

    Yang W M, Wang M 2013 Physica C 493 128Google Scholar

    [7]

    Ainslie M, Fujishiro H, Ujiie T 2014 Supercond. Sci. Technol. 27 065008Google Scholar

    [8]

    Jin J X, Guo Y G, Zhu J G 2007 Physica C 460 1445

    [9]

    Deng Z, He D, Zheng J 2015 IEEE Trans. Appl. Supercond. 25 3600106Google Scholar

    [10]

    Tomita M, Fukumoto Y, Suzuki K, Ishihara A, Muralidhar M 2011 J. Appl. Phys. 109 023912Google Scholar

    [11]

    Basaran S, Sivrioglu S 2017 Supercond. Sci. Technol. 30 035008Google Scholar

    [12]

    Muralidhar M, Szuki K, Ishihara A, Jirsa M, Fukumoto Y, Tomita M 2010 Supercond. Sci. Technol. 23 124003Google Scholar

    [13]

    Cardwell D A, Shi Y H, Hari Babu N, Pathak S K, Dennis A R, Iida K 2010 Supercond. Sci. Technol. 23 034008Google Scholar

    [14]

    Cheng L, Li T, Yan S, Sun L, Yao X, Puzniak R 2011 J. Am. Ceram. Soc. 94 3139Google Scholar

    [15]

    Meslin S, Noudem J G 2004 Supercond. Sci. Technol. 17 1324Google Scholar

    [16]

    Congreve J J, Shi Y H, Dennis A R, Durrell J H, Cardwell D A 2018 Supercond. Sci. Technol. 31 035008Google Scholar

    [17]

    Devendra Kumar N, Rajasekharan T, Sechubai V 2013 Physica C 495 55Google Scholar

    [18]

    Wang M, Yang W M, Li J W, Feng Z L, Yang P T 2015 Supercond. Sci. Technol. 28 035004Google Scholar

    [19]

    Wang M, Yang W M, Li J W, Feng Z L, Chen S L 2013 Physica C 492 129Google Scholar

    [20]

    Hari Babu N, Shi Y H, Pathak S K, Dennis A R, Cardwell D A 2011 Physica C 471 169Google Scholar

    [21]

    Li T Y, Cheng L, Yan S B, Sun L J, Yao X, Yoshida Y, Ikuta H 2010 Supercond. Sci. Technol. 23 125002Google Scholar

    [22]

    Iida K, Löwe K, Kühn L, Nenkov K, Fuchs G, Krabbes G, Behr G, Holzapfel B, Schultz L 2009 Physica C 469 1153Google Scholar

    [23]

    Pathak S K, Hari Babu N, Dennis A R, Iida K, Strasik M, Cardwell D A 2010 Supercond. Sci. Technol. 23 065012Google Scholar

    [24]

    Xu H H, Cheng L, Yan S B, Yu D J, Guo L S, Yao X 2012 J. Appl. Phys. 111 103910Google Scholar

    [25]

    Xu H H, Chen Y Y, Cheng L, Yan S B, Yu D J, Guo L S, Yao X 2013 J. Supercond. Novel Magn. 26 919Google Scholar

    [26]

    Shi Y, Namburi D, Wang M, Durrell J, Dennis A, Cardwell D 2015 J. Am. Ceram. Soc. 98 2760Google Scholar

    [27]

    Yang W M, Zhi X, Chen S L, Wang M, Ma J, Chao X X 2014 Physica C 496 1Google Scholar

    [28]

    Yang W M, Zhou L, Feng Y, Zhang P X, Zhang C P 2006 J. Alloys compd. 415 276Google Scholar

    [29]

    Guo Y X, Yang W M, Li J W, Guo L P, Li Q 2015 Cryst. Growth Des. 15 1771Google Scholar

    [30]

    Chen S L, Yang W M, Li J W, Yuan X C, Ma J, Wang M 2014 Physica C 496 39Google Scholar

    [31]

    Yang P T, Yang W M, Chen J L 2017 Supercond. Sci. Technol. 30 085003Google Scholar

    [32]

    王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西 2016 物理学报 65 227401Google Scholar

    Wang M, Yang W M, Yang P T, Wang X M, Zhang M, Hu C X 2016 Acta Phys. Sin. 65 227401Google Scholar

    [33]

    Chen D X, Goldfarb R B 1989 J. Appl. Phys. 66 2489Google Scholar

    [34]

    Kumar N D, Shi Y H, Palmer K G, Dennis A D, DurRell J H, Cardwell D A 2016 J. Eur. Ceram. Soc. 36 615Google Scholar

    [35]

    Iida K, Hari Babu N, Shi Y H, Cardwell D A, Murakami M 2006 Supercond. Sci. Technol. 19 641Google Scholar

    [36]

    李国政, 陈超 2020 物理学报 69 237402Google Scholar

    Li G Z, Chen C 2020 Acta Phys. Sin. 69 237402Google Scholar

Metrics
  • Abstract views:  7074
  • PDF Downloads:  86
  • Cited By: 0
Publishing process
  • Received Date:  16 December 2020
  • Accepted Date:  19 March 2021
  • Available Online:  07 June 2021
  • Published Online:  05 August 2021
  • /

    返回文章
    返回