-
High temperature superconductor has become one of the hotspots of research, because of its high critical temperature, strong trapped flux density, stable suspension characteristics and large magnet levitation force. The single domain REBa2Cu3O7–δ (REBCO) superconductors have the wide and potential applications in the high-tech fields, such as micro-magnet superconducting maglev train, superconducting motor and superconducting magnetic separation system. However, a large number of multi-domain samples are easy to produce in the preparation process, which leads the success rate to decrease significantly and the cost to increase considerably, which restricts its practical application process. Inspired by the top seeded infiltration growth method, we develop a reliable method of recycling failed GdBCO sample by re-supplementing the liquid phase lost in the primary growth process and pretreating the failed sample as solid phase source billets. We recycle a series of GdBCO samples by using this new technique successfully. The growth morphology, superconducting properties, and microstructures of the recycled GdBCO bulk superconductors are investigated in detail in this study. The results show that the magnetic levitation forces of the recycled GdBCO samples are all greater than 30 N, their magnetic flux densities are all above 0.3 T, and their capture efficiencies are above 60%. These results provide the scientific basis and new ideas for developing the low cost and high efficient yield of fabrication of the REBCO bulk superconductors.
-
Keywords:
- singe domain GdBCO bulk superconductor /
- recycling the failed bulk using textured growth /
- top-seeded infiltration growth /
- superconducting properties
[1] Wu M K, Ashburn J R, Torng C J 1987 Phys. Rev. Lett. 58 908Google Scholar
[2] Chu C 1987 Proc. Natl. Acad. Sci. U.S.A. 84 4681Google Scholar
[3] Durrell J H, Dennis A R, Jaroszynski J, Shi Y H, Cardwell A D 2014 Supercond. Sci. Technol. 27 082001Google Scholar
[4] Tomita M, Murakami M 2003 Nature 421 517Google Scholar
[5] Yang P T, Yang W M, Abula Y, Su X Q, Zhang L L 2017 Ceram. Int. 43 3010Google Scholar
[6] Yang W M, Wang M 2013 Physica C 493 128Google Scholar
[7] Ainslie M, Fujishiro H, Ujiie T 2014 Supercond. Sci. Technol. 27 065008Google Scholar
[8] Jin J X, Guo Y G, Zhu J G 2007 Physica C 460 1445
[9] Deng Z, He D, Zheng J 2015 IEEE Trans. Appl. Supercond. 25 3600106Google Scholar
[10] Tomita M, Fukumoto Y, Suzuki K, Ishihara A, Muralidhar M 2011 J. Appl. Phys. 109 023912Google Scholar
[11] Basaran S, Sivrioglu S 2017 Supercond. Sci. Technol. 30 035008Google Scholar
[12] Muralidhar M, Szuki K, Ishihara A, Jirsa M, Fukumoto Y, Tomita M 2010 Supercond. Sci. Technol. 23 124003Google Scholar
[13] Cardwell D A, Shi Y H, Hari Babu N, Pathak S K, Dennis A R, Iida K 2010 Supercond. Sci. Technol. 23 034008Google Scholar
[14] Cheng L, Li T, Yan S, Sun L, Yao X, Puzniak R 2011 J. Am. Ceram. Soc. 94 3139Google Scholar
[15] Meslin S, Noudem J G 2004 Supercond. Sci. Technol. 17 1324Google Scholar
[16] Congreve J J, Shi Y H, Dennis A R, Durrell J H, Cardwell D A 2018 Supercond. Sci. Technol. 31 035008Google Scholar
[17] Devendra Kumar N, Rajasekharan T, Sechubai V 2013 Physica C 495 55Google Scholar
[18] Wang M, Yang W M, Li J W, Feng Z L, Yang P T 2015 Supercond. Sci. Technol. 28 035004Google Scholar
[19] Wang M, Yang W M, Li J W, Feng Z L, Chen S L 2013 Physica C 492 129Google Scholar
[20] Hari Babu N, Shi Y H, Pathak S K, Dennis A R, Cardwell D A 2011 Physica C 471 169Google Scholar
[21] Li T Y, Cheng L, Yan S B, Sun L J, Yao X, Yoshida Y, Ikuta H 2010 Supercond. Sci. Technol. 23 125002Google Scholar
[22] Iida K, Löwe K, Kühn L, Nenkov K, Fuchs G, Krabbes G, Behr G, Holzapfel B, Schultz L 2009 Physica C 469 1153Google Scholar
[23] Pathak S K, Hari Babu N, Dennis A R, Iida K, Strasik M, Cardwell D A 2010 Supercond. Sci. Technol. 23 065012Google Scholar
[24] Xu H H, Cheng L, Yan S B, Yu D J, Guo L S, Yao X 2012 J. Appl. Phys. 111 103910Google Scholar
[25] Xu H H, Chen Y Y, Cheng L, Yan S B, Yu D J, Guo L S, Yao X 2013 J. Supercond. Novel Magn. 26 919Google Scholar
[26] Shi Y, Namburi D, Wang M, Durrell J, Dennis A, Cardwell D 2015 J. Am. Ceram. Soc. 98 2760Google Scholar
[27] Yang W M, Zhi X, Chen S L, Wang M, Ma J, Chao X X 2014 Physica C 496 1Google Scholar
[28] Yang W M, Zhou L, Feng Y, Zhang P X, Zhang C P 2006 J. Alloys compd. 415 276Google Scholar
[29] Guo Y X, Yang W M, Li J W, Guo L P, Li Q 2015 Cryst. Growth Des. 15 1771Google Scholar
[30] Chen S L, Yang W M, Li J W, Yuan X C, Ma J, Wang M 2014 Physica C 496 39Google Scholar
[31] Yang P T, Yang W M, Chen J L 2017 Supercond. Sci. Technol. 30 085003Google Scholar
[32] 王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西 2016 物理学报 65 227401Google Scholar
Wang M, Yang W M, Yang P T, Wang X M, Zhang M, Hu C X 2016 Acta Phys. Sin. 65 227401Google Scholar
[33] Chen D X, Goldfarb R B 1989 J. Appl. Phys. 66 2489Google Scholar
[34] Kumar N D, Shi Y H, Palmer K G, Dennis A D, DurRell J H, Cardwell D A 2016 J. Eur. Ceram. Soc. 36 615Google Scholar
[35] Iida K, Hari Babu N, Shi Y H, Cardwell D A, Murakami M 2006 Supercond. Sci. Technol. 19 641Google Scholar
[36] 李国政, 陈超 2020 物理学报 69 237402Google Scholar
Li G Z, Chen C 2020 Acta Phys. Sin. 69 237402Google Scholar
-
-
[1] Wu M K, Ashburn J R, Torng C J 1987 Phys. Rev. Lett. 58 908Google Scholar
[2] Chu C 1987 Proc. Natl. Acad. Sci. U.S.A. 84 4681Google Scholar
[3] Durrell J H, Dennis A R, Jaroszynski J, Shi Y H, Cardwell A D 2014 Supercond. Sci. Technol. 27 082001Google Scholar
[4] Tomita M, Murakami M 2003 Nature 421 517Google Scholar
[5] Yang P T, Yang W M, Abula Y, Su X Q, Zhang L L 2017 Ceram. Int. 43 3010Google Scholar
[6] Yang W M, Wang M 2013 Physica C 493 128Google Scholar
[7] Ainslie M, Fujishiro H, Ujiie T 2014 Supercond. Sci. Technol. 27 065008Google Scholar
[8] Jin J X, Guo Y G, Zhu J G 2007 Physica C 460 1445
[9] Deng Z, He D, Zheng J 2015 IEEE Trans. Appl. Supercond. 25 3600106Google Scholar
[10] Tomita M, Fukumoto Y, Suzuki K, Ishihara A, Muralidhar M 2011 J. Appl. Phys. 109 023912Google Scholar
[11] Basaran S, Sivrioglu S 2017 Supercond. Sci. Technol. 30 035008Google Scholar
[12] Muralidhar M, Szuki K, Ishihara A, Jirsa M, Fukumoto Y, Tomita M 2010 Supercond. Sci. Technol. 23 124003Google Scholar
[13] Cardwell D A, Shi Y H, Hari Babu N, Pathak S K, Dennis A R, Iida K 2010 Supercond. Sci. Technol. 23 034008Google Scholar
[14] Cheng L, Li T, Yan S, Sun L, Yao X, Puzniak R 2011 J. Am. Ceram. Soc. 94 3139Google Scholar
[15] Meslin S, Noudem J G 2004 Supercond. Sci. Technol. 17 1324Google Scholar
[16] Congreve J J, Shi Y H, Dennis A R, Durrell J H, Cardwell D A 2018 Supercond. Sci. Technol. 31 035008Google Scholar
[17] Devendra Kumar N, Rajasekharan T, Sechubai V 2013 Physica C 495 55Google Scholar
[18] Wang M, Yang W M, Li J W, Feng Z L, Yang P T 2015 Supercond. Sci. Technol. 28 035004Google Scholar
[19] Wang M, Yang W M, Li J W, Feng Z L, Chen S L 2013 Physica C 492 129Google Scholar
[20] Hari Babu N, Shi Y H, Pathak S K, Dennis A R, Cardwell D A 2011 Physica C 471 169Google Scholar
[21] Li T Y, Cheng L, Yan S B, Sun L J, Yao X, Yoshida Y, Ikuta H 2010 Supercond. Sci. Technol. 23 125002Google Scholar
[22] Iida K, Löwe K, Kühn L, Nenkov K, Fuchs G, Krabbes G, Behr G, Holzapfel B, Schultz L 2009 Physica C 469 1153Google Scholar
[23] Pathak S K, Hari Babu N, Dennis A R, Iida K, Strasik M, Cardwell D A 2010 Supercond. Sci. Technol. 23 065012Google Scholar
[24] Xu H H, Cheng L, Yan S B, Yu D J, Guo L S, Yao X 2012 J. Appl. Phys. 111 103910Google Scholar
[25] Xu H H, Chen Y Y, Cheng L, Yan S B, Yu D J, Guo L S, Yao X 2013 J. Supercond. Novel Magn. 26 919Google Scholar
[26] Shi Y, Namburi D, Wang M, Durrell J, Dennis A, Cardwell D 2015 J. Am. Ceram. Soc. 98 2760Google Scholar
[27] Yang W M, Zhi X, Chen S L, Wang M, Ma J, Chao X X 2014 Physica C 496 1Google Scholar
[28] Yang W M, Zhou L, Feng Y, Zhang P X, Zhang C P 2006 J. Alloys compd. 415 276Google Scholar
[29] Guo Y X, Yang W M, Li J W, Guo L P, Li Q 2015 Cryst. Growth Des. 15 1771Google Scholar
[30] Chen S L, Yang W M, Li J W, Yuan X C, Ma J, Wang M 2014 Physica C 496 39Google Scholar
[31] Yang P T, Yang W M, Chen J L 2017 Supercond. Sci. Technol. 30 085003Google Scholar
[32] 王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西 2016 物理学报 65 227401Google Scholar
Wang M, Yang W M, Yang P T, Wang X M, Zhang M, Hu C X 2016 Acta Phys. Sin. 65 227401Google Scholar
[33] Chen D X, Goldfarb R B 1989 J. Appl. Phys. 66 2489Google Scholar
[34] Kumar N D, Shi Y H, Palmer K G, Dennis A D, DurRell J H, Cardwell D A 2016 J. Eur. Ceram. Soc. 36 615Google Scholar
[35] Iida K, Hari Babu N, Shi Y H, Cardwell D A, Murakami M 2006 Supercond. Sci. Technol. 19 641Google Scholar
[36] 李国政, 陈超 2020 物理学报 69 237402Google Scholar
Li G Z, Chen C 2020 Acta Phys. Sin. 69 237402Google Scholar
Catalog
Metrics
- Abstract views: 4467
- PDF Downloads: 63
- Cited By: 0