Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimal resource allocation in practical quantum key distribution optical networks

Zhu Jia-Li Cao Yuan Zhang Chun-Hui Wang Qin

Citation:

Optimal resource allocation in practical quantum key distribution optical networks

Zhu Jia-Li, Cao Yuan, Zhang Chun-Hui, Wang Qin
PDF
HTML
Get Citation
  • In the application research of large-scale quantum communication network, one generally realizes resource allocation by constructing virtual service network and mapping it to actual physical space. In this mapping process, some assumptions are often made to simplify the model. For example, the key resource in the physical topology is assumed to be a fixed value, that is, the actual physical conditions and the performance differences of key supply caused by different protocols are ignored. This assumption may lead the network to fail to run appropriately in practical applications. In order to solve the above problems, from the perspective of link mapping, this paper proposes an improved virtual service mapping model and virtual service mapping algorithm with the quantum key distribution optical network as the underlying network, which makes it closer to the actual application scenario. On the one hand, by increasing the constraints of geographical location, the range from virtual nodes to the mappable physical nodes is reasonably restricted. On the other hand, from the perspective of hardware cost and actual key generation rate, the cost performance evaluation index is proposed to allocate and manage resources. In addition, by combining three mainstream quantum key distribution protocols (BB84, measurement-device-independent, and twin-field), we construct a universal virtual service mapping model in the quantum key distribution optical network, and realize the recommendation of the optimal protocol and the optimal allocation and management of resources.
      Corresponding author: Wang Qin, qinw@njupt.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018 YFA0306400), the National Natural Science Foundation of China (Grant Nos. 12074194, 12104240, 62201276), the Industry Foresight and Key Core Technology Project of Key R&D Plan of Jiangsu Province, China (Grant No. BE2022071), the Jiangsu Natural Science Foundation, China (Grant Nos. BK20192001, BK20210582), the Natural Science Research Project of Jiangsu Higher Education Institutions, China (Grant No. 22KJB510007), and the Natural Science Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY220123).
    [1]

    Lin R P, Luo S, Zhou J W, Wang S, Cai A L, Zhong W D, Moshe Z 2018 J. Lightwave Technol. 36 3551Google Scholar

    [2]

    Jiang H H, Wang Y X, Gong L, Zhu Z Q 2015 J. Opt. Commun. Netw. 7 1160Google Scholar

    [3]

    Gong L, Zhu Z 2013 J. Lightwave Technol. 32 450Google Scholar

    [4]

    Jarray A, Karmouch A 2014 IEEE/ACM Trans. Netw. 23 1012Google Scholar

    [5]

    Botero J F, Hesselbach X, Fischer A, Hermann D M 2012 Telecommun. Syst. 51 273Google Scholar

    [6]

    王妍 2020 硕士学位论文(北京: 北京邮电大学)

    Wang Y 2020 M. S. Dessertation (Beijing: Beijing University of Posts and Telecommunications ) (in Chinese)

    [7]

    Zeng P, Zhou H Y, Wu W J, Ma X F 2022 Nat. Commun. 13 1Google Scholar

    [8]

    Zhou X Y, Zhang C H, Zhang C M, Wang Q 2019 Phys. Rev. A 99 062316Google Scholar

    [9]

    Mao Y Q, Wang B X, Zhao C X, Wang G Q, Wang R C, Wang H H, Zhou F, Nie J M, Chen Q, Zhao Y, Zhang Q, Zhang J, Chen T Y, Pan J W 2018 Opt. Express 26 6010Google Scholar

    [10]

    王鹏辉, 张宁, 肖明明 2019 计算机工程与应用 55 106Google Scholar

    Wang P H, Zhang N, Xiao M M 2019 Comput. Eng. Appl. 55 106Google Scholar

    [11]

    Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325Google Scholar

    [12]

    朱凤丹 2016 硕士学位论文 (南京: 南京邮电大学)

    Zhu F D 2016 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese)

    [13]

    Zhou Y H, Yu Z W, Wang X B 2016 Phys. Rev. A 93 042324Google Scholar

    [14]

    Xu H, Yu Z W, Jiang C, Hu X L, Wang X B 2020 Phys. Rev. A 101 042330Google Scholar

    [15]

    Cao Y, Zhao Y L, Wang Q, Zhang J, Ng S X, Hanzo L 2022 IEEE Commun. Surv. Tut. 24 839Google Scholar

    [16]

    赵礼峰, 黄奕雯 2017 计算机技术与发展 27 98Google Scholar

    Zhao L F, Huang Y W 2017 Comput. Technol. Dev. 27 98Google Scholar

    [17]

    Xu F, Xu H, Lo H K 2014 Phys. Rev. A. 89 052333Google Scholar

    [18]

    Yin H L, Chen T Y, Yu Z W, Liu H, You L X, Zhou Y H, Chen S J, Mao M Q, Huang M Q, Zhang W J, Chen H, Li M J, Nolan D, Zhou F, Jiang X, Wang Z, Zhang Q, Wang X B, Pan J W 2016 Phys. Rev. Lett. 117 190501Google Scholar

    [19]

    Liu Y, Yu Z W, Zhang W J, Guan J Y, Chen J P, Zhang C, Hu X L, Li H, Jiang C, Lin J, Chen T Y, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2019 Phys. Rev. Lett. 123 100505Google Scholar

  • 图 1  USNET拓扑图

    Figure 1.  USNET topological graph.

    图 2  可信中继原理图

    Figure 2.  Schematic diagram of trusted relay.

    图 3  虚拟业务映射模型

    Figure 3.  Virtual service mapping model.

    图 4  虚拟节点映射到每个物理节点上的次数

    Figure 4.  The number of times the virtual nodes are mapped to each physical node.

    图 5  3种协议密钥产生速率随距离变化曲线图

    Figure 5.  Plot of key generation rate of three protocols versus distance.

    图 6  (a)采用BB84协议时不同距离下中继数量与性价比关系图; (b)采用MDI协议时不同距离下中继数量与性价比关系图; (c)采用TF协议时不同距离下中继数量与性价比关系图

    Figure 6.  (a) Plot of relay number and cost performance at different distances with BB84 protocol; (b) plot of relay number and cost performance at different distances with measurement-device-independent protocol; (c) plot of relay number and cost performance at different distances with two-field protocol.

    图 7  (a)中继距离(0—300 km)时性价比关系对比图; (b)中继距离(150—300 km)时性价比关系对比图

    Figure 7.  (a) Cost performance-price ratio for relay distance (0–300 km); (b) cost performance-price ratio for relay distance (150–300 km).

    图 8  业务阻塞率随业务到达速率变化曲线

    Figure 8.  Curve of traffic blocking probability versus traffic arrival rate.

    图 9  密钥利用率随业务到达速率变化曲线

    Figure 9.  Curve of the key resource utilization versus traffic arrival rate.

    图 10  每条物理链路的密钥利用率

    Figure 10.  Key utilization for each physical link.

    表 1  虚拟节点可映射范围求解算法

    Table 1.  Mapping range solving algorithm for the virtual nodes.

     输入 虚拟节点$ {v}_{i}^{\rm{v}} $, 物理节点$ {v}_{i}^{\rm{p}} $, 物理网络
        ${G}^{\rm{p} }\left({V}^{\rm{p} },\; {L}^{\rm{p} },\; {BW}^{\rm{p} },\; {K}^{\rm{p} }\right)$
     输出 虚拟节点${v}_{i}^{{\rm{v}}}$可映射的物理节点范围${D}_{i}^{{\rm{v}}}$
      1 For 每个虚拟节点$ {v}_{i}^{\rm{v}} $ do
      2 随机生成一个相应的物理节点$ {v}_{i}^{\rm{p}} $
      3 End for
      4 For 每个物理节点$ {v}_{i}^{\rm{p}} $ do
      5 根据USNET网络拓扑图得出与每个物理节点直
    接相连的节点
      6 将物理节点$ {v}_{i}^{\rm{p}} $和与其直接相连的节点, 记为$ {D}_{i}^{\rm{v}} $
      7 End for
      8 每个虚拟节点$ {v}_{i}^{\rm{v}} $可映射的物理节点范围为$ {D}_{i}^{\rm{v}} $
    DownLoad: CSV

    表 2  每个虚拟节点可映射的物理节点范围

    Table 2.  The range of physical nodes that can be mapped to each virtual node.

    随机生成物理节点可映射物理节点范围随机生成物理节点可映射物理节点范围随机生成物理节点可映射物理节点范围
    11, 2, 699, 6, 7, 10, 11, 121717, 13, 16, 18, 22, 23
    22, 1, 3, 61010, 8, 9, 13, 141818, 14, 17, 24
    33, 2, 4, 5, 71111, 6, 9, 12, 15, 191919, 11, 20
    44, 3, 5, 71212, 9, 11, 13, 162020, 15, 19, 21
    55, 3, 4, 81313, 10, 12, 14, 172121, 16, 20, 22
    66, 1, 2, 7, 9, 111414, 10, 13, 182222, 16, 17, 21, 23
    77, 3, 4, 6, 8, 91515, 11, 16, 202323, 17, 22, 24
    88, 5, 7, 101616, 12, 15, 17, 21, 222424, 18, 23
    DownLoad: CSV

    表 3  仿真参数

    Table 3.  Simulation parameters

    α/(dB·km–1)$ {e}_{\rm{d}\rm{e}\rm{t}\rm{e}\rm{c}\rm{t}\rm{o}\rm{r}} $$ {Y}_{0} $$ {\eta }_{\rm{B}\rm{o}\rm{b}} $$ f/\rm{M}\rm{H}\rm{z} $
    0.20.015$ {10}^{-8} $0.52
    DownLoad: CSV

    表 4  仿真参数

    Table 4.  Simulation parameters.

    名称名称
    物理节点数量24个物理链路数量43条
    链路频谱数量386个每条虚拟链路带宽需求{5, 6, 7, 8, 9}个
    虚拟节点数量{2, 3, 4}个每条虚拟链路密钥需求{2000, 2400, 2800, 3200, 3600}bit
    DownLoad: CSV
  • [1]

    Lin R P, Luo S, Zhou J W, Wang S, Cai A L, Zhong W D, Moshe Z 2018 J. Lightwave Technol. 36 3551Google Scholar

    [2]

    Jiang H H, Wang Y X, Gong L, Zhu Z Q 2015 J. Opt. Commun. Netw. 7 1160Google Scholar

    [3]

    Gong L, Zhu Z 2013 J. Lightwave Technol. 32 450Google Scholar

    [4]

    Jarray A, Karmouch A 2014 IEEE/ACM Trans. Netw. 23 1012Google Scholar

    [5]

    Botero J F, Hesselbach X, Fischer A, Hermann D M 2012 Telecommun. Syst. 51 273Google Scholar

    [6]

    王妍 2020 硕士学位论文(北京: 北京邮电大学)

    Wang Y 2020 M. S. Dessertation (Beijing: Beijing University of Posts and Telecommunications ) (in Chinese)

    [7]

    Zeng P, Zhou H Y, Wu W J, Ma X F 2022 Nat. Commun. 13 1Google Scholar

    [8]

    Zhou X Y, Zhang C H, Zhang C M, Wang Q 2019 Phys. Rev. A 99 062316Google Scholar

    [9]

    Mao Y Q, Wang B X, Zhao C X, Wang G Q, Wang R C, Wang H H, Zhou F, Nie J M, Chen Q, Zhao Y, Zhang Q, Zhang J, Chen T Y, Pan J W 2018 Opt. Express 26 6010Google Scholar

    [10]

    王鹏辉, 张宁, 肖明明 2019 计算机工程与应用 55 106Google Scholar

    Wang P H, Zhang N, Xiao M M 2019 Comput. Eng. Appl. 55 106Google Scholar

    [11]

    Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325Google Scholar

    [12]

    朱凤丹 2016 硕士学位论文 (南京: 南京邮电大学)

    Zhu F D 2016 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese)

    [13]

    Zhou Y H, Yu Z W, Wang X B 2016 Phys. Rev. A 93 042324Google Scholar

    [14]

    Xu H, Yu Z W, Jiang C, Hu X L, Wang X B 2020 Phys. Rev. A 101 042330Google Scholar

    [15]

    Cao Y, Zhao Y L, Wang Q, Zhang J, Ng S X, Hanzo L 2022 IEEE Commun. Surv. Tut. 24 839Google Scholar

    [16]

    赵礼峰, 黄奕雯 2017 计算机技术与发展 27 98Google Scholar

    Zhao L F, Huang Y W 2017 Comput. Technol. Dev. 27 98Google Scholar

    [17]

    Xu F, Xu H, Lo H K 2014 Phys. Rev. A. 89 052333Google Scholar

    [18]

    Yin H L, Chen T Y, Yu Z W, Liu H, You L X, Zhou Y H, Chen S J, Mao M Q, Huang M Q, Zhang W J, Chen H, Li M J, Nolan D, Zhou F, Jiang X, Wang Z, Zhang Q, Wang X B, Pan J W 2016 Phys. Rev. Lett. 117 190501Google Scholar

    [19]

    Liu Y, Yu Z W, Zhang W J, Guan J Y, Chen J P, Zhang C, Hu X L, Li H, Jiang C, Lin J, Chen T Y, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2019 Phys. Rev. Lett. 123 100505Google Scholar

  • [1] Lai Hong, Ren Li, Huang Zhong-Rui, Wan Lin-Chun. Quantum Network Communication Resource Optimization Scheme Based on Multi-Scale Entanglement Renormalization Ansatz. Acta Physica Sinica, 2024, 73(23): 1-14. doi: 10.7498/aps.73.20241382
    [2] Chen Yue, Liu Chang-Jie, Zheng Yi-Jia, Cao Yuan, Guo Ming-Xuan, Zhu Jia-Li, Zhou Xing-Yu, Yu Xiao-Song, Zhao Yong-Li, Wang Qin. On-demand provisioning strategy for inter-domain key services in multi-domain cross-protocol quantum networks. Acta Physica Sinica, 2024, 73(17): 170301. doi: 10.7498/aps.73.20240819
    [3] Zhou Jiang-Ping, Zhou Yuan-Yuan, Zhou Xue-Jun. Asymmetric channel phase matching quantum key distribution. Acta Physica Sinica, 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [4] Liu Tian-Le, Xu Xiao, Fu Bo-Wei, Xu Jia-Xin, Liu Jing-Yang, Zhou Xing-Yu, Wang Qin. Regression-decision-tree based parameter optimization of measurement-device-independent quantum key distribution. Acta Physica Sinica, 2023, 72(11): 110304. doi: 10.7498/aps.72.20230160
    [5] Meng Jie, Xu Le-Chen, Zhang Cheng-Jun, Zhang Chun-Hui, Wang Qin. Overview of applications of heralded single photon source in quantum key distribution. Acta Physica Sinica, 2022, 71(17): 170304. doi: 10.7498/aps.71.20220344
    [6] Chen Yi-Peng, Liu Jing-Yang, Zhu Jia-Li, Fang Wei, Wang Qin. Application of machine learning in optimal allocation of quantum communication resources. Acta Physica Sinica, 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [7] Ye Wei, Guo Ying, Xia Ying, Zhong Hai, Zhang Huan, Ding Jian-Zhi, Hu Li-Yun. Discrete modulation continuous-variable quantum key distribution based on quantum catalysis. Acta Physica Sinica, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [8] Wu Cheng-Feng, Du Ya-Nan, Wang Jin-Dong, Wei Zheng-Jun, Qin Xiao-Juan, Zhao Feng, Zhang Zhi-Ming. Analysis on performance optimization in measurement-device-independent quantum key distribution using weak coherent states. Acta Physica Sinica, 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [9] Zhou Fei, Yong Hai-Lin, Li Dong-Dong, Yin Juan, Ren Ji-Gang, Peng Cheng-Zhi. Study on quantum key distribution between different media. Acta Physica Sinica, 2014, 63(14): 140303. doi: 10.7498/aps.63.140303
    [10] Zhang Jing, Wang Fa-Qiang, Zhao Feng, Lu Yi-Qun, Liu Song-Hao. Quantum key distribution based on time coding and phase coding. Acta Physica Sinica, 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [11] Hu Hua-Peng, Zhang Jing, Wang Jin-Dong, Huang Yu-Xian, Lu Yi-Qun, Liu Song-Hao, Lu Wei. Experimental quantum key distribution with double protocol. Acta Physica Sinica, 2008, 57(9): 5605-5611. doi: 10.7498/aps.57.5605
    [12] Zheng Li-Ming, Wang Fa-Qiang, Liu Song-Hao. The influence of dispersion and loss on quantum key distribution system. Acta Physica Sinica, 2007, 56(4): 2180-2183. doi: 10.7498/aps.56.2180
    [13] Zhao Feng, Lu Yi-Qun, Wang Fa-Qiang, Chen Xia, Li Ming-Ming, Guo Bang-Hong, Liao Chang-Jun, Liu Song-Hao. Stable differential-phase-shift quantum key distribution based on weak coherent pulses. Acta Physica Sinica, 2007, 56(4): 2175-2179. doi: 10.7498/aps.56.2175
    [14] He Guang-Qiang, Yi Zhi, Zhu Jun, Zeng Gui-Hua. Quantum key distribution using two-mode squeezd states. Acta Physica Sinica, 2007, 56(11): 6427-6433. doi: 10.7498/aps.56.6427
    [15] Chen Xia, Wang Fa-Qiang, Lu Yi-Qun, Zhao Feng, Li Ming-Ming, Mi Jing-Long, Liang Rui-Sheng, Liu Song-Hao. A phase modulated QKD system with two quantum cryptography protocols. Acta Physica Sinica, 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
    [16] Feng Fa-Yong, Zhang Qiang. Quantum key distribution based on hyperentanglement swapping. Acta Physica Sinica, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [17] Chen Jie, Li Yao, Wu Guang, Zeng He-Ping. Stable quantum key distribution with polarization control. Acta Physica Sinica, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [18] Li Ming-Ming, Wang Fa-Qiang, Lu Yi-Qun, Zhao Feng, Chen Xia, Liang Rui-Sheng, Liu Song-Hao. A highly stable differential phase shift key distribution QKD system. Acta Physica Sinica, 2006, 55(9): 4642-4646. doi: 10.7498/aps.55.4642
    [19] Wu Guang, Zhou Chun-Yuan, Chen Xiu-Liang, Han Xiao-Hong, Zeng He-Ping. A stable long-distance quantum key distribution system. Acta Physica Sinica, 2005, 54(8): 3622-3626. doi: 10.7498/aps.54.3622
    [20] Ma Hai-Qiang, Li Ya-Ling, Zhao Huan, Wu Ling-An. A quantum key distribution system based on two polarization beam splitters. Acta Physica Sinica, 2005, 54(11): 5014-5017. doi: 10.7498/aps.54.5014
Metrics
  • Abstract views:  4560
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  21 August 2022
  • Accepted Date:  12 October 2022
  • Available Online:  03 January 2023
  • Published Online:  20 January 2023

/

返回文章
返回