Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

On-demand provisioning strategy for inter-domain key services in multi-domain cross-protocol quantum networks

Chen Yue Liu Chang-Jie Zheng Yi-Jia Cao Yuan Guo Ming-Xuan Zhu Jia-Li Zhou Xing-Yu Yu Xiao-Song Zhao Yong-Li Wang Qin

Citation:

On-demand provisioning strategy for inter-domain key services in multi-domain cross-protocol quantum networks

Chen Yue, Liu Chang-Jie, Zheng Yi-Jia, Cao Yuan, Guo Ming-Xuan, Zhu Jia-Li, Zhou Xing-Yu, Yu Xiao-Song, Zhao Yong-Li, Wang Qin
PDF
HTML
Get Citation
  • Most of the existing metropolitan quantum networks are implemented based on a single quantum key distribution protocol, and interconnecting metropolitan quantum networks implemented by different protocols are the development trend of large-scale quantum networks, but there are still some problems in the provision of inter-domain key services, such as low possibility of success and mismatch between key supply and demand. To solve the above problems, this paper proposes two on-demand inter-domain key service provisioning strategies for multi-domain cross-protocol quantum networks, namely, on-demand provisioning strategy based on BB84 bypass first (BB84-BF) and on-demand provisioning strategy based on MDI bypass first (MDI-BF). Meanwhile, a service provisioning model for multi-domain cross-protocol quantum networks is constructed, and an on-demand inter-domain key service provisioning algorithm is designed. Moreover, numerical simulations and performance evaluation are carried out under two scenarios: high key rate demand and low key rate demand for two-domain and three-domain quantum network topologies. Simulation results verify that the proposed on-demand provisioning strategies have better applicability to different multi-domain quantum networks. In addition, for different key rate requirements, the MDI-BF strategy and BB84-BF strategys have different performance advantages under different performance indicators. For example, in terms of the success possibility of inter-domain key service requests, the MDI-BF strategy is more suitable for the low key rate requirements (~30% higher than the traditional strategies in two domain topologies), while the BB84-BF strategy is more suitable for the high key rate requirements (~19% higher than the traditional strategies under two domain topologies). In addition, compared with the traditional strategies, the proposed on-demand provisioning strategies can increase the balance degree between key supply and demand by more than one order of magnitude. Hence, the proposed strategies can reduce the cost of inter-domain key service provisioning and improve the realistic security level.
      Corresponding author: Cao Yuan, yuancao@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62201276, 62350001, U22B2026, 62101285), the Industry Foresight and Key Core Technology Project of Key R&D Plan of Jiangsu Province, China (Grant No. BE2022071), and the Natural Science Research Project of Jiangsu Higher Education Institutions, China (Grant No. 22KJB510007).
    [1]

    Yang Z, Zolanvari M, Jain R 2023 IEEE Commun. Surveys Tuts. 25 1059Google Scholar

    [2]

    Gill S S, Kumar A, Singh H, Singh M, Kaur K, Usman M, Buyya R 2022 Softw. Pract. Exp. 52 66Google Scholar

    [3]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photon. 8 595Google Scholar

    [4]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shamsul S J, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photon. 12 1012Google Scholar

    [5]

    Bennett C H, Brassard G 1984 IEEE Int. Conf. Comput. Syst. Signal Process. Bangalore, India, January, 1984 p175

    [6]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [7]

    Li W, Zhang L K, Tan H, Lu Y C, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B Z, Li Q, Liu Y, Zhang Q, Peng C Z, You L X, Xu F H, Pan J W 2023 Nat. Photon. 17 416Google Scholar

    [8]

    Yin H L, Fu Y, Li C L, Weng C X, Li B H, Gu J, Lu Y S, Huang S, Chen Z B 2023 Nat. Sci. Rev. 10 nwac228Google Scholar

    [9]

    Cao Y, Zhao Y, Wang Q, Zhang J, Ng S X, Hanzo L 2022 IEEE Commun. Surveys Tuts. 24 839Google Scholar

    [10]

    Tang Y L, Yin H L, Zhao Q, Liu H, Sun X X, Huang M Q, Zhang W J, Chen S J, Zhang L, You L X, Wang Z, Liu Yang, Lu C Y, Jiang X, Ma X F, Zhang Q, Chen T Y, Pan J W 2016 Phys. Rev. X 6 011024Google Scholar

    [11]

    Joshi S K, Aktas D, Wengerowsky S, Lončarić M, Neumann S P, Liu B, Scheidl T, Lorenzo G C, Samec Ž, Kling L, Qiu A, Razavi M, Stipčević M, Rarity J G, Ursin R 2020 Sci. Adv. 6 eaba0959Google Scholar

    [12]

    Avesani M, Foletto G, Padovan M, Calderaro L, Agnesi C, Bazzani E, Berra F, Bertapelle T, Picciariello F, Santagiustina F, Scalcon D, Scriminich A, Stanco A, Vedovato F, Vallone G, Villoresi P 2023 Quantum Computing, Communication, and Simulation III San Francisco, United States, 2023 p112

    [13]

    Cao Y, Zhao Y L, Zhang J, Wang Q, Niyato D, Hanzo L 2022 IEEE Netw. 36 14Google Scholar

    [14]

    Cao Y, Zhao Y L, Zhang J, Wang Q 2022 IEEE Commun. Mag. 60 38Google Scholar

    [15]

    Zhou L, Lin J P, Xie Y M, Lu Y S, Jing Y M, Yin H L, Yuan Z L 2023 Phys. Rev. Lett. 130 250801Google Scholar

    [16]

    Fan-Yuan G J, Lu F Y, Wang S, Yin Z Q, He D Y, Zhou Z, Teng J, Chen W, Guo G C, Han Z F 2021 Photonics Res. 9 1881Google Scholar

    [17]

    Tysowski P K, Ling X, Lütkenhaus N, Mosca M 2018 Quantum Sci. Technol. 3 024001Google Scholar

    [18]

    Li P, Yu X, Zhao Y, Zhang J 2023 Opto-Electronic and Communications Conference Shanghai, China, July 2–6, 2023 p1

    [19]

    Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325Google Scholar

    [20]

    Ma X F, Qi B, Zhao Y, Lo H K 2005 Phys. Rev. A 72 012326Google Scholar

    [21]

    Xu F H, Xu H, Lo H K 2014 Phys. Rev. A 89 052333Google Scholar

    [22]

    Ma X F, Fung C H F, Razavi M 2012 Phys. Rev. A 86 052305Google Scholar

    [23]

    Wang X B 2013 Phys. Rev. A 87 012320Google Scholar

    [24]

    Yu Z W, Zhou Y H, Wang X B 2013 Phys. Rev. A 88 062339Google Scholar

    [25]

    Curty M, Xu F, Cui W, Lim C C W, Tamaki K, Lo H K 2014 Nat. Commun. 5 3732Google Scholar

    [26]

    Wang Q, Wang X B 2014 Sci. Rep. 4 4612Google Scholar

    [27]

    Zhou Y H, Yu Z W, Wang X B 2016 Phys. Rev. A 93 042324Google Scholar

  • 图 1  多域跨协议量子网络

    Figure 1.  Multi-domain cross-protocol quantum networks.

    图 2  多域跨协议量子网络的密钥中继结构示例

    Figure 2.  Example of the key relay structure in a multi-domain cross-protocol quantum network.

    图 3  密钥中继路径示例 (a) 传统策略; (b) MDI-BF策略; (c) BB84-BF策略

    Figure 3.  Examples of QKD relay paths: (a) Traditional strategy; (b) MDI-BF strategy; (c) BB84-BF strategy.

    图 4  仿真使用的多域量子网络拓扑 (a) 双域拓扑; (b) 三域拓扑

    Figure 4.  Multi-domain quantum network topologies used for simulations: (a) Two-domain topology; (b) three-domain topology.

    图 5  不同策略下域间密钥业务请求成功率随负载的变化关系 (a) 双域量子网络; (b) 三域量子网络

    Figure 5.  Success possibility of inter-domain key service requests versus traffic load for different strategies: (a) Two-domain quantum network; (b) three-domain quantum network.

    图 6  不同策略下域间密钥业务请求成功率随最大延迟时间的变化关系

    Figure 6.  Success possibility of inter-domain key service requests versus maximum delay time for different strategies.

    图 7  不同策略下全网最小密钥供应速率随负载的变化关系 (a) 双域量子网络; (b) 三域量子网络

    Figure 7.  Minimum key supply rate versus traffic load for different strategies: (a) Two-domain quantum network; (b) three-domain quantum network.

    图 8  不同策略下密钥供需均衡度随负载的变化关系 (a) 双域量子网络; (b) 三域量子网络

    Figure 8.  Balance degree between key supply and demand versus traffic load for different strategies: (a) Two-domain quantum network; (b) three-domain quantum network.

    图 9  不同策略下密钥供需均衡度随最大延迟时间的变化关系

    Figure 9.  Balance degree between key supply and demand versus maximum delay time for different strategies.

    图 10  不同策略下平均可信节点数量随负载的变化关系 (a) 双域量子网络; (b) 三域量子网络

    Figure 10.  Average number of trusted nodes versus traffic load for different strategies: (a) Two-domain quantum network; (b) three-domain quantum network.

    表 1  域间密钥业务按需提供算法

    Table 1.  Algorithm for on-demand provisioning of inter-domain key services.

    输入: $G\left( {V, E} \right)$, ${V_{\text{B}}}$, ${V_{\text{M}}}$, ${V_{{\text{BJ}}}}$, ${V_{{\text{MJ}}}}$, $R$
    输出: 每个成功的域间密钥业务的密钥中继路径${p_r}\left( {{N_{{p_r}}}, {L_{{p_r}}}, {B_{{p_r}}}, {m_{{p_r}}}} \right)$, ${R_{\text{S}}}$
    1 初始化变量${R_{\text{S}}} \leftarrow \emptyset $;
    2 for 每个域间密钥业务请求$r\left( {{s_r}, {d_r}, {k_r}, {t_r}} \right) \in R$ do
    3  更新全网各节点设备占用状态;
    4  如果源宿节点没有可用的QKD设备, 则该业务失败;
    5  if 执行BB84-BF策略 then
    6   for ${v_i} \in {V_{{\text{MJ}}}}$ do
    7    if ${\lambda _{{v_i}}} < 2$ then
    8     将${v_i}$从$V$中移除并更新$E$;
    9    end if
    10   end for
    11  end if
    12  基于K短路径算法计算源宿节点间的K条备选密钥中继路径, 路径集合为${P_r}$;
    13  if ${P_r} = \emptyset $ then
    14   域间密钥业务请求r失败;
    15  end if
    16  for 每条密钥中继路径${p_r}\left( {{N_{{p_r}}}, {L_{{p_r}}}, {B_{{p_r}}}, {m_{{p_r}}}} \right) \in {P_r}$ do
    17   ${N_{{p_r}}} \leftarrow $${p_r}$经过的QKD节点集合, ${L_{{p_r}}} \leftarrow $${p_r}$经过的QKD链路集合, ${B_{{p_r}}} \leftarrow \emptyset $, ${m_{{p_r}}} \leftarrow {p_r}$的密钥供应
      速率;
    18   for $n_{{p_r}}^i \in {N_{{p_r}}}$ do
    19    if 执行MDI-BF策略 && $n_{{p_r}}^i \in {V_{{\text{MJ}}}}$ then
    20     ${B_{{p_r}}} \leftarrow \{ {B_{{p_r}}}, n_{{p_r}}^i\} $;
    21    end if
    22    if $n_{{p_r}}^i \in {V_{\text{B}}}$ && $n_{{p_r}}^i \ne {d_r}$ && $n_{{p_r}}^i \ne {s_r}$ && (${\lambda _{n_{{p_r}}^i}} = 0~||~{\varepsilon _{n_{{p_r}}^i}} = 0 $) then
    23     ${B_{{p_r}}} \leftarrow \{ {B_{{p_r}}}, n_{{p_r}}^i\} $;
    24    end if
    25   end for
    26   ${m_{{p_r}}} \leftarrow $根据更新后的密钥中继路径重新计算${m_{{p_r}}}$;
    27   if ${m_{{p_r}}} < {k_r}$ then
    28    continue;
    29   else
    30    for $n_{{p_r}}^i \in {N_{{p_r}}}$do
    31     if 旁路$n_{{p_r}}^i$后密钥中继路径密钥供应速率$ \geqslant {k_r}$ then
    32      ${B_{{p_r}}} \leftarrow \{ {B_{{p_r}}}, n_{{p_r}}^i\} $, 更新${m_{{p_r}}}$;
    33     end if
    34    end for
    35    将${p_r}$作为域间密钥业务r的最终密钥中继路径, ${R_{\text{S}}} \leftarrow \left\{ {{R_{\text{S}}}, r} \right\}$;
    36    break;
    37   end if
    38  end for
    39  如果${P_r}$中没有满足密钥率需求的密钥中继路径, 则该业务失败;
    40 end for
    41 return 每个成功的域间密钥业务的密钥中继路径${p_r}\left( {{N_{{p_r}}}, {L_{{p_r}}}, {B_{{p_r}}}, {m_{{p_r}}}} \right)$, ${R_{\text{S}}}$
    DownLoad: CSV

    表 2  密钥生成率仿真参数

    Table 2.  Simulation parameters for key rates.

    参数 取值
    真空态误码率${e_0}$ 0.5
    本底误码${e_{\text{d}}}$/% 1
    暗计数率${p_{\text{d}}}$ ${10^{ - 7}}$
    探测效率${\eta _{\text{d}}}$/% 40
    纠错效率${f_{\text{e}}}$ 1.16
    光纤衰减常数$\alpha $/(dB·km–1) 0.2
    重复频率/GHz 1
    DownLoad: CSV
  • [1]

    Yang Z, Zolanvari M, Jain R 2023 IEEE Commun. Surveys Tuts. 25 1059Google Scholar

    [2]

    Gill S S, Kumar A, Singh H, Singh M, Kaur K, Usman M, Buyya R 2022 Softw. Pract. Exp. 52 66Google Scholar

    [3]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photon. 8 595Google Scholar

    [4]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shamsul S J, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photon. 12 1012Google Scholar

    [5]

    Bennett C H, Brassard G 1984 IEEE Int. Conf. Comput. Syst. Signal Process. Bangalore, India, January, 1984 p175

    [6]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [7]

    Li W, Zhang L K, Tan H, Lu Y C, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B Z, Li Q, Liu Y, Zhang Q, Peng C Z, You L X, Xu F H, Pan J W 2023 Nat. Photon. 17 416Google Scholar

    [8]

    Yin H L, Fu Y, Li C L, Weng C X, Li B H, Gu J, Lu Y S, Huang S, Chen Z B 2023 Nat. Sci. Rev. 10 nwac228Google Scholar

    [9]

    Cao Y, Zhao Y, Wang Q, Zhang J, Ng S X, Hanzo L 2022 IEEE Commun. Surveys Tuts. 24 839Google Scholar

    [10]

    Tang Y L, Yin H L, Zhao Q, Liu H, Sun X X, Huang M Q, Zhang W J, Chen S J, Zhang L, You L X, Wang Z, Liu Yang, Lu C Y, Jiang X, Ma X F, Zhang Q, Chen T Y, Pan J W 2016 Phys. Rev. X 6 011024Google Scholar

    [11]

    Joshi S K, Aktas D, Wengerowsky S, Lončarić M, Neumann S P, Liu B, Scheidl T, Lorenzo G C, Samec Ž, Kling L, Qiu A, Razavi M, Stipčević M, Rarity J G, Ursin R 2020 Sci. Adv. 6 eaba0959Google Scholar

    [12]

    Avesani M, Foletto G, Padovan M, Calderaro L, Agnesi C, Bazzani E, Berra F, Bertapelle T, Picciariello F, Santagiustina F, Scalcon D, Scriminich A, Stanco A, Vedovato F, Vallone G, Villoresi P 2023 Quantum Computing, Communication, and Simulation III San Francisco, United States, 2023 p112

    [13]

    Cao Y, Zhao Y L, Zhang J, Wang Q, Niyato D, Hanzo L 2022 IEEE Netw. 36 14Google Scholar

    [14]

    Cao Y, Zhao Y L, Zhang J, Wang Q 2022 IEEE Commun. Mag. 60 38Google Scholar

    [15]

    Zhou L, Lin J P, Xie Y M, Lu Y S, Jing Y M, Yin H L, Yuan Z L 2023 Phys. Rev. Lett. 130 250801Google Scholar

    [16]

    Fan-Yuan G J, Lu F Y, Wang S, Yin Z Q, He D Y, Zhou Z, Teng J, Chen W, Guo G C, Han Z F 2021 Photonics Res. 9 1881Google Scholar

    [17]

    Tysowski P K, Ling X, Lütkenhaus N, Mosca M 2018 Quantum Sci. Technol. 3 024001Google Scholar

    [18]

    Li P, Yu X, Zhao Y, Zhang J 2023 Opto-Electronic and Communications Conference Shanghai, China, July 2–6, 2023 p1

    [19]

    Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quantum Inf. Comput. 4 325Google Scholar

    [20]

    Ma X F, Qi B, Zhao Y, Lo H K 2005 Phys. Rev. A 72 012326Google Scholar

    [21]

    Xu F H, Xu H, Lo H K 2014 Phys. Rev. A 89 052333Google Scholar

    [22]

    Ma X F, Fung C H F, Razavi M 2012 Phys. Rev. A 86 052305Google Scholar

    [23]

    Wang X B 2013 Phys. Rev. A 87 012320Google Scholar

    [24]

    Yu Z W, Zhou Y H, Wang X B 2013 Phys. Rev. A 88 062339Google Scholar

    [25]

    Curty M, Xu F, Cui W, Lim C C W, Tamaki K, Lo H K 2014 Nat. Commun. 5 3732Google Scholar

    [26]

    Wang Q, Wang X B 2014 Sci. Rep. 4 4612Google Scholar

    [27]

    Zhou Y H, Yu Z W, Wang X B 2016 Phys. Rev. A 93 042324Google Scholar

  • [1] Luo Yi-Zhen, Ma Luo-Jia, Sun Ming-Shuo, Wu Si-Rui, Qiu Li-Hua, Wang He, Wang Qin. Source monitoring quantum key distribution protocol based on heralded single photon source. Acta Physica Sinica, 2024, 73(24): 240302. doi: 10.7498/aps.73.20241269
    [2] Zhu Jia-Li, Cao Yuan, Zhang Chun-Hui, Wang Qin. Optimal resource allocation in practical quantum key distribution optical networks. Acta Physica Sinica, 2023, 72(2): 020301. doi: 10.7498/aps.72.20221661
    [3] Zhou Jiang-Ping, Zhou Yuan-Yuan, Zhou Xue-Jun. Asymmetric channel phase matching quantum key distribution. Acta Physica Sinica, 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [4] Zhou Yang, Ma Xiao, Zhou Xing-Yu, Zhang Chun-Hui, Wang Qin. Study of practical state-preparation error tolerant reference-frame-independent quantum key distribution protocol. Acta Physica Sinica, 2023, 72(24): 240301. doi: 10.7498/aps.72.20231144
    [5] Meng Jie, Xu Le-Chen, Zhang Cheng-Jun, Zhang Chun-Hui, Wang Qin. Overview of applications of heralded single photon source in quantum key distribution. Acta Physica Sinica, 2022, 71(17): 170304. doi: 10.7498/aps.71.20220344
    [6] Ma Xiao, Sun Ming-Shuo, Liu Jing-Yang, Ding Hua-Jian, Wang Qin. State preparation error tolerant quantum key distribution protocol based on heralded single photon source. Acta Physica Sinica, 2022, 71(3): 030301. doi: 10.7498/aps.71.20211456
    [7] Ye Wei, Guo Ying, Xia Ying, Zhong Hai, Zhang Huan, Ding Jian-Zhi, Hu Li-Yun. Discrete modulation continuous-variable quantum key distribution based on quantum catalysis. Acta Physica Sinica, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [8] Du Cong, Wang Jin-Dong, Qin Xiao-Juan, Wei Zheng-Jun, Yu Ya-Fei, Zhang Zhi-Ming. A simple protocol for measuring device independent quantum key distribution based on hybrid encoding. Acta Physica Sinica, 2020, 69(19): 190301. doi: 10.7498/aps.69.20200162
    [9] Gu Wen-Yuan, Zhao Shang-Hong, Dong Chen, Wang Xing-Yu, Yang Ding. Reference-frame-independent measurement-device-independent quantum key distribution under reference frame fluctuation. Acta Physica Sinica, 2019, 68(24): 240301. doi: 10.7498/aps.68.20191364
    [10] Zhou Fei, Yong Hai-Lin, Li Dong-Dong, Yin Juan, Ren Ji-Gang, Peng Cheng-Zhi. Study on quantum key distribution between different media. Acta Physica Sinica, 2014, 63(14): 140303. doi: 10.7498/aps.63.140303
    [11] Zhang Jing, Wang Fa-Qiang, Zhao Feng, Lu Yi-Qun, Liu Song-Hao. Quantum key distribution based on time coding and phase coding. Acta Physica Sinica, 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [12] Hu Hua-Peng, Zhang Jing, Wang Jin-Dong, Huang Yu-Xian, Lu Yi-Qun, Liu Song-Hao, Lu Wei. Experimental quantum key distribution with double protocol. Acta Physica Sinica, 2008, 57(9): 5605-5611. doi: 10.7498/aps.57.5605
    [13] Zhao Feng, Lu Yi-Qun, Wang Fa-Qiang, Chen Xia, Li Ming-Ming, Guo Bang-Hong, Liao Chang-Jun, Liu Song-Hao. Stable differential-phase-shift quantum key distribution based on weak coherent pulses. Acta Physica Sinica, 2007, 56(4): 2175-2179. doi: 10.7498/aps.56.2175
    [14] He Guang-Qiang, Yi Zhi, Zhu Jun, Zeng Gui-Hua. Quantum key distribution using two-mode squeezd states. Acta Physica Sinica, 2007, 56(11): 6427-6433. doi: 10.7498/aps.56.6427
    [15] Feng Fa-Yong, Zhang Qiang. Quantum key distribution based on hyperentanglement swapping. Acta Physica Sinica, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [16] Chen Jie, Li Yao, Wu Guang, Zeng He-Ping. Stable quantum key distribution with polarization control. Acta Physica Sinica, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [17] Chen Xia, Wang Fa-Qiang, Lu Yi-Qun, Zhao Feng, Li Ming-Ming, Mi Jing-Long, Liang Rui-Sheng, Liu Song-Hao. A phase modulated QKD system with two quantum cryptography protocols. Acta Physica Sinica, 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
    [18] Li Ming-Ming, Wang Fa-Qiang, Lu Yi-Qun, Zhao Feng, Chen Xia, Liang Rui-Sheng, Liu Song-Hao. A highly stable differential phase shift key distribution QKD system. Acta Physica Sinica, 2006, 55(9): 4642-4646. doi: 10.7498/aps.55.4642
    [19] Wu Guang, Zhou Chun-Yuan, Chen Xiu-Liang, Han Xiao-Hong, Zeng He-Ping. A stable long-distance quantum key distribution system. Acta Physica Sinica, 2005, 54(8): 3622-3626. doi: 10.7498/aps.54.3622
    [20] Ma Hai-Qiang, Li Ya-Ling, Zhao Huan, Wu Ling-An. A quantum key distribution system based on two polarization beam splitters. Acta Physica Sinica, 2005, 54(11): 5014-5017. doi: 10.7498/aps.54.5014
Metrics
  • Abstract views:  1397
  • PDF Downloads:  57
  • Cited By: 0
Publishing process
  • Received Date:  11 June 2024
  • Accepted Date:  14 July 2024
  • Available Online:  29 July 2024
  • Published Online:  05 September 2024

/

返回文章
返回