-
Lithium (Li) metal is regarded as one of the most promising anodes in the next-generation high-energy-density rechargeable batteries due to its ultrahigh theoretical specific capacity and low reduction potential. Nevertheless, the unstable solid electrolyte interphase on the surface of Li metal anode and the nonuniform Li deposition seriously hinder its practical applications. Currently, mild conditions are employed in the researches of Li metal anode, which is of great significance for fundamentally understanding the physicochemical features of the anode interface and the mechanisms of Li deposition. However, practical conditions including ultrathin Li metal anode (< 50 μm), low negative/positive electrode areal capacity ratio (< 3.0), and lean electrolyte (< 3.0 g·Ah–1) are the premise to realize high energy density of Li metal batteries (> 350 W·h·kg–1). Herein, the gaps of Li metal anode under mild and practical conditions in terms of the cycling stability and surface morphology are compared and the reasons for the gaps are analyzed carefully. The total quantity of active Li metal decreases and the utilization depth of Li per cycle has been greatly improved under practical conditions. Therefore, the huge volume fluctuation and uneven Li deposition result in ceaseless destruction and regeneration of solid electrolyte interphase, and thus consuming the lean electrolyte and generating a large quantity of dead Li rapidly. Consequently, the polarization voltage of Li metal anode increases rapidly and the cycling stability of Li metal batteries deteriorates evidently under practical conditions. Moreover, the electrochemical reaction of Li metal anode is accelerated while fast charge/discharge process is employed, which further aggravates the stability of Li metal anode. This work reveals the challenges of Li metal anode under practical conditions and present the perspectives for the further researches in practical Li metal anode, which conduces to the solid development of high-energy-density Li metal batteries.
-
Keywords:
- Li metal anode /
- solid electrolyte interphase /
- rechargeable batteries /
- practical conditions
[1] Cheng X, Zhang R, Zhao C, Zhang Q 2017 Chem. Rev. 117 10403Google Scholar
[2] Lu Y, Zhang Q, Li L, Niu Z, Chen J 2018 Chem. 4 2786Google Scholar
[3] Sun T, Li Z, Zhang X 2018 Research 2018 1Google Scholar
[4] Guan P, Zhou L, Yu Z, Sun Y, Liu Y, Wu F, Jiang Y, Chu D 2020 J. Energy Chem. 43 220Google Scholar
[5] Li H 2019 Joule 3 911Google Scholar
[6] Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J 2014 Energy Environ. Sci. 7 513Google Scholar
[7] Zhang X, Zhao C, Huang J, Zhang Q 2018 Engineering 4 831Google Scholar
[8] Tikekar M D, Choudhury S, Tu Z, Archer L A 2016 Nat. Energy 1 16114Google Scholar
[9] Jie Y, Ren X, Cao R, Cai W, Jiao S 2020 Adv. Funct. Mater. 30 1910777Google Scholar
[10] Zhang X, Wang X, Li B, Shi P, Huang J, Chen A, Zhang Q 2020 J. Mater. Chem. A 8 4283Google Scholar
[11] Yang H, Guo C, Naveed A, Lei J, Yang J, Nuli Y, Wang J 2018 Energy Storage Mater. 14 199Google Scholar
[12] Chen J, Zhang X, Li B, Wang X, Shi P, Zhu W, Chen A, Jin Z, Xiang R, Huang J, Zhang Q 2020 J. Energy Chem. 47 128Google Scholar
[13] Chen S, Zheng J, Mei D, Han K S, Engelhard M H, Zhao W, Xu W, Liu J, Zhang J G 2018 Adv. Mater. 30 1706102Google Scholar
[14] Zhang X, Li T, Li B, Zhang R, Shi P, Yan C, Huang J, Zhang Q 2020 Angew. Chem. Int. Ed. 59 3252Google Scholar
[15] Ma Y, Zhou Z, Li C, Wang L, Wang Y, Cheng X, Zuo P, Du C, Huo H, Gao Y, Yin G 2018 Energy Storage Mater. 11 197Google Scholar
[16] Zhang W D, Zhuang H L, Fan L, Gao L N, Lu Y Y 2018 Sci. Adv. 4 eaar4410Google Scholar
[17] He M, Guo R, Hobold G M, Gao H, Gallant B M 2020 Proc. Natl. Acad. Sci. U.S.A. 117 73Google Scholar
[18] Wang Z, Qi F, Yin L, Shi Y, Sun C, An B, Cheng H, Li F 2020 Adv. Energy Mater. 10 1903843Google Scholar
[19] Liu J, Wang Y, Liu F, Cheng F, Chen J 2020 J. Energy Chem. 42 1Google Scholar
[20] Xu R, Xiao Y, Zhang R, Cheng X, Zhao C, Zhang X, Yan C, Zhang Q, Huang J 2019 Adv. Mater. 31 1808392Google Scholar
[21] Yuan Y, Wu F, Chen G, Bai Y, Wu C 2019 J. Energy Chem. 37 197Google Scholar
[22] Li N, Yin Y X, Yang C P, Guo Y 2016 Adv. Mater. 28 1853Google Scholar
[23] Zhang S, Gao Z, Wang W, Lu Y, Deng Y, You J, Li J, Zhou Y, Huang L, Zhou X, Sun S 2018 Small 14 1801054Google Scholar
[24] Lei D, He Y, Huang H, Yuan Y, Zhong G, Zhao Q, Hao X, Zhang D, Lai C, Zhang S, Ma J, Wei Y, Yu Q, Lü W, Yu Y, Li B, Yang Q, Yang Y, Lu J, Kang F 2019 Nat. Commun. 10 4244Google Scholar
[25] Ma Q, Sun X, Liu P, Xia Y, Liu X, Luo J 2019 Angew. Chem. Int. Ed. 58 6200Google Scholar
[26] Liang J, Zeng X, Zhang X, Zuo T, Yan M, Yin Y, Shi J, Wu X, Guo Y, Wan L 2019 J. Am. Chem. Soc. 141 9165Google Scholar
[27] Zhang H, Liao X, Guan Y, Xiang Y, Li M, Zhang W, Zhu X, Ming H, Lu L, Qiu J, Huang Y, Cao G, Yang Y, Mai L, Zhao Y, Zhang H 2018 Nat. Commun. 9 3729Google Scholar
[28] Shen X, Cheng X, Shi P, Huang J, Zhang X, Yan C, Li T, Zhang Q 2019 J. Energy Chem. 37 29Google Scholar
[29] Duan H, Zhang J, Chen X, Zhang X, Li J, Huang L, Zhang X, Shi J, Yin Y, Zhang Q, Guo Y, Jiang L, Wan L 2018 J. Am. Chem. Soc. 140 18051Google Scholar
[30] Shi P, Zhang X, Shen X, Zhang R, Liu H, Zhang Q 2020 Adv. Mater. Technol. 5 1900806Google Scholar
[31] Jin C, Sheng O, Luo J, Yuan H, Fang C, Zhang W, Huang H, Gan Y, Xia Y, Liang C, Zhang J, Tao X 2017 Nano Energy 37 177Google Scholar
[32] Li B, Chen X, Xiang C, Zhao C, Zhang R, Cheng X, Zhang Q 2019 Research 2019 1Google Scholar
[33] Pei F, Fu A, Ye W, Peng J, Fang X, Wang M S, Zheng N 2019 ACS Nano 13 8337Google Scholar
[34] Gao Z, Zhang S, Huang Z, Lu Y, Wang W, Wang K, Li J, Zhou Y, Huang L, Sun S 2019 Chin. Chem. Lett. 30 525Google Scholar
[35] Liu Y, Qin X, Zhang S, Huang Y, Kang F, Chen G, Li B 2019 Energy Storage Mater. 18 320Google Scholar
[36] Chen J, Yang Z, Liu G, Li C, Yi J, Fan M, Tan H, Lu Z, Yang C 2020 Energy Storage Mater. 25 305Google Scholar
[37] Xing Y, Chen N, Luo M, Sun Y, Yang Y, Qian J, Li L, Guo S, Chen R, Wu F 2020 Energy Storage Mater. 24 707Google Scholar
[38] Xu D, Su J, Jin J, Sun C, Ruan Y, Chen C, Wen Z 2019 Adv. Energy Mater. 9 1900611Google Scholar
[39] Yu X, Wang L, Ma J, Sun X, Zhou X, Cui G 2020 Adv. Energy Mater. 10 1903939Google Scholar
[40] Li G, Guan X, Wang A, Wang C, Luo J 2020 Energy Storage Mater. 24 574Google Scholar
[41] Shen Y, Zhang Y, Han S, Wang J, Peng Z, Chen L 2018 Joule 2 1674Google Scholar
[42] Zhao Q, Liu X, Stalin S, Khan K, Archer L A 2019 Nat. Energy 4 365Google Scholar
[43] Zhang Y, Chen R, Wang S, Liu T, Xu B, Zhang X, Wang X, Shen Y, Lin Y, Li M, Fan L, Li L, Nan C 2020 Energy Storage Mater. 25 145Google Scholar
[44] Zhang J, Zheng C, Li L, Xia Y, Huang H, Gan Y, Liang C, He X, Tao X, Zhang W 2020 Adv. Energy Mater. 10 1903311Google Scholar
[45] Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu Y S, Guo X, Li H, Huang X, Yang Y, Nan C W, Chen L 2018 ACS Energy Lett. 3 1212Google Scholar
[46] Umeshbabu E, Zheng B, Yang Y 2019 Electrochem. Energy Rev. 2 199Google Scholar
[47] 肖睿娟, 李泓, 陈立泉 2018 物理学报 67 128801Google Scholar
Xiao R J, Li H, Chen L Q 2018 Acta Phys. Sin. 67 128801Google Scholar
[48] 王其钰, 褚赓, 张杰男, 王怡, 周格, 聂凯会, 郑杰允, 禹习谦, 李泓 2018 储能科学与技术 7 327Google Scholar
Wang Q Y, Chu G, Zhang J N, Wang Y, Zhou G, Nie K H, Zheng J Y, Yu X Q, Li H 2018 Energy Storage Sci. Technol. 7 327Google Scholar
[49] Xiang J, Yang L, Yuan L, Yuan K, Zhang Y, Huang Y, Lin J, Pan F, Huang Y 2019 Joule 3 2334Google Scholar
[50] Ghazi Z A, Sun Z, Sun C, Qi F, An B, Li F, Cheng H 2019 Small 15 1900687Google Scholar
[51] Louli A J, Genovese M, Weber R, Hames S G, Logan E R, Dahn J R 2019 J. Electrochem. Soc. 166 A1291Google Scholar
[52] Niu C, Lee H, Chen S, Li Q, Du J, Xu W, Zhang J, Whittingham M S, Xiao J, Liu J 2019 Nat. Energy 4 551Google Scholar
[53] Chae S, Ko M, Kim K, Ahn K, Cho J 2017 Joule 1 47Google Scholar
[54] Zheng H, Li J, Song X, Liu G, Battaglia V S 2012 Electrochim. Acta 71 258Google Scholar
[55] Huang W, Attia P M, Wang H, Renfrew S E, Jin N, Das S, Zhang Z, Boyle D T, Li Y, Bazant M Z, McCloskey B D, Chueh W C, Cui Y 2019 Nano Lett. 19 5140Google Scholar
[56] Zhang X, Cheng X, Zhang Q 2018 Adv. Mater. Interfaces 5 1701097Google Scholar
[57] Liu J, Bao Z, Cui Y, Dufek E J, Goodenough J B, Khalifah P, Li Q, Liaw B Y, Liu P, Manthiram A, Meng Y S, Subramanian V R, Toney M F, Viswanathan V V, Whittingham M S, Xiao J, Xu W, Yang J, Yang X, Zhang J 2019 Nat. Energy 4 180Google Scholar
[58] Pei A, Zheng G, Shi F, Li Y, Cui Y 2017 Nano Lett. 17 1132Google Scholar
[59] Biswal P, Stalin S, Kludze A, Choudhury S, Archer L A 2019 Nano Lett. 19 8191Google Scholar
[60] Shi P, Cheng X B, Li T, Zhang R, Liu H, Yan C, Zhang X Q, Huang J Q, Zhang Q 2019 Adv. Mater. 31 1902785Google Scholar
[61] Liu Y, Lin D, Li Y, Chen G, Pei A, Nix O, Li Y, Cui Y 2018 Nat. Commun. 9 3656Google Scholar
[62] Gao Y, Yan Z, Gray J L, He X, Wang D, Chen T, Huang Q, Li Y C, Wang H, Kim S H, Mallouk T E, Wang D 2019 Nat. Mater. 18 384Google Scholar
-
图 1 金属锂负极厚度对电池循环的影响 (a)不同锂负极厚度条件下电池结构示意图; (b) Li | NCM523全电池的循环性能; (c) Li | NCM523全电池第3圈和第60圈对应的充放电曲线
Figure 1. The effect of the thickness of Li metal anode on the cycling of batteries: (a) The schematics of batteries with Li metal anode in different thicknesses; (b) the cycling performance of Li | NCM523 batteries; (c) the corresponding charge and discharge curves of Li | NCM523 batteries at the 3rd and 60th cycle.
图 2 金属锂厚度对锂负极沉积形貌的影响 (a) 锂负极厚度为600 μm, 电流密度为1.0 mA·cm–2, 循环容量为1.0 mA·h·cm–2条件下, Li | Li对称电池的沉积形貌; (b) 锂负极厚度为50 μm, 电流密度为1.0 mA· cm–2, 循环容量为1.0 mA·h·cm–2条件下, Li | Li对称电池的沉积形貌; (c) 锂负极厚度为600 μm, 电流密度为3.0 mA·cm–2, 循环容量为3.0 mA·h·cm–2条件下, Li | Li对称电池的沉积形貌; (d)锂负极厚度为50 μm, 电流密度为3.0 mA·cm–2, 循环容量为3.0 mA·h·cm–2条件下, Li | Li对称电池的沉积形貌
Figure 2. The effect of the thickness of Li metal anode on the morphology of Li deposition: The morphology of the deposited Li in Li | Li symmetrical cells at (a, b) a current density of 1.0 mA·cm–2 and a capacity of 1.0 mA·h·cm–2, and (c, d) a current density of 3.0 mA·cm–2 and a capacity of 3.0 mA·h·cm–2. The thickness of the Li anode is 600 μm in (a, c) and 50 μm in (b, d).
图 3 N/P比对电池循环的影响 (a)不同N/P比条件下的电池示意图; (b) Li | NCM523全电池循环性能; (c) Li | NCM523全电池第3圈和第50圈对应的充放电曲线
Figure 3. The effect of the N/P ratio on the cycling of batteries: (a) The schematics of batteries with different N/P ratios; (b) the cycling performance of Li | NCM523 batteries; (c) the corresponding charge and discharge curves of Li | NCM523 batteries at the 3rd and 50th cycle.
图 4 电解液量对电池循环的影响 (a)不同电解液量下的电池示意图; (b) Li | NCM523全电池的循环性能; (c) Li | NCM523电池第3圈和第40圈对应的充放电曲线
Figure 4. The effect of the amount of electrolyte on the cycling of batteries: (a) The schematics of batteries with different amounts of electrolyte; (b) the cycling performance of Li | NCM523 batteries; (c) the corresponding charge and discharge curves of Li | NCM523 batteries at the 3rd and 40th cycle.
图 5 循环倍率对电池循环的影响 (a)不同循环倍率下的电池示意图; (b) Li | NCM523全电池的循环性能; (c) Li | NCM523电池第3圈和第70圈对应的充放电曲线
Figure 5. The effect of the rate on the cycling of batteries: (a) The schematics of batteries with different rates; (b) the cycling performance of Li | NCM523 batteries; (c) the corresponding charge and discharge curves of Li | NCM523 batteries at the 3rd and 70th cycle.
-
[1] Cheng X, Zhang R, Zhao C, Zhang Q 2017 Chem. Rev. 117 10403Google Scholar
[2] Lu Y, Zhang Q, Li L, Niu Z, Chen J 2018 Chem. 4 2786Google Scholar
[3] Sun T, Li Z, Zhang X 2018 Research 2018 1Google Scholar
[4] Guan P, Zhou L, Yu Z, Sun Y, Liu Y, Wu F, Jiang Y, Chu D 2020 J. Energy Chem. 43 220Google Scholar
[5] Li H 2019 Joule 3 911Google Scholar
[6] Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J 2014 Energy Environ. Sci. 7 513Google Scholar
[7] Zhang X, Zhao C, Huang J, Zhang Q 2018 Engineering 4 831Google Scholar
[8] Tikekar M D, Choudhury S, Tu Z, Archer L A 2016 Nat. Energy 1 16114Google Scholar
[9] Jie Y, Ren X, Cao R, Cai W, Jiao S 2020 Adv. Funct. Mater. 30 1910777Google Scholar
[10] Zhang X, Wang X, Li B, Shi P, Huang J, Chen A, Zhang Q 2020 J. Mater. Chem. A 8 4283Google Scholar
[11] Yang H, Guo C, Naveed A, Lei J, Yang J, Nuli Y, Wang J 2018 Energy Storage Mater. 14 199Google Scholar
[12] Chen J, Zhang X, Li B, Wang X, Shi P, Zhu W, Chen A, Jin Z, Xiang R, Huang J, Zhang Q 2020 J. Energy Chem. 47 128Google Scholar
[13] Chen S, Zheng J, Mei D, Han K S, Engelhard M H, Zhao W, Xu W, Liu J, Zhang J G 2018 Adv. Mater. 30 1706102Google Scholar
[14] Zhang X, Li T, Li B, Zhang R, Shi P, Yan C, Huang J, Zhang Q 2020 Angew. Chem. Int. Ed. 59 3252Google Scholar
[15] Ma Y, Zhou Z, Li C, Wang L, Wang Y, Cheng X, Zuo P, Du C, Huo H, Gao Y, Yin G 2018 Energy Storage Mater. 11 197Google Scholar
[16] Zhang W D, Zhuang H L, Fan L, Gao L N, Lu Y Y 2018 Sci. Adv. 4 eaar4410Google Scholar
[17] He M, Guo R, Hobold G M, Gao H, Gallant B M 2020 Proc. Natl. Acad. Sci. U.S.A. 117 73Google Scholar
[18] Wang Z, Qi F, Yin L, Shi Y, Sun C, An B, Cheng H, Li F 2020 Adv. Energy Mater. 10 1903843Google Scholar
[19] Liu J, Wang Y, Liu F, Cheng F, Chen J 2020 J. Energy Chem. 42 1Google Scholar
[20] Xu R, Xiao Y, Zhang R, Cheng X, Zhao C, Zhang X, Yan C, Zhang Q, Huang J 2019 Adv. Mater. 31 1808392Google Scholar
[21] Yuan Y, Wu F, Chen G, Bai Y, Wu C 2019 J. Energy Chem. 37 197Google Scholar
[22] Li N, Yin Y X, Yang C P, Guo Y 2016 Adv. Mater. 28 1853Google Scholar
[23] Zhang S, Gao Z, Wang W, Lu Y, Deng Y, You J, Li J, Zhou Y, Huang L, Zhou X, Sun S 2018 Small 14 1801054Google Scholar
[24] Lei D, He Y, Huang H, Yuan Y, Zhong G, Zhao Q, Hao X, Zhang D, Lai C, Zhang S, Ma J, Wei Y, Yu Q, Lü W, Yu Y, Li B, Yang Q, Yang Y, Lu J, Kang F 2019 Nat. Commun. 10 4244Google Scholar
[25] Ma Q, Sun X, Liu P, Xia Y, Liu X, Luo J 2019 Angew. Chem. Int. Ed. 58 6200Google Scholar
[26] Liang J, Zeng X, Zhang X, Zuo T, Yan M, Yin Y, Shi J, Wu X, Guo Y, Wan L 2019 J. Am. Chem. Soc. 141 9165Google Scholar
[27] Zhang H, Liao X, Guan Y, Xiang Y, Li M, Zhang W, Zhu X, Ming H, Lu L, Qiu J, Huang Y, Cao G, Yang Y, Mai L, Zhao Y, Zhang H 2018 Nat. Commun. 9 3729Google Scholar
[28] Shen X, Cheng X, Shi P, Huang J, Zhang X, Yan C, Li T, Zhang Q 2019 J. Energy Chem. 37 29Google Scholar
[29] Duan H, Zhang J, Chen X, Zhang X, Li J, Huang L, Zhang X, Shi J, Yin Y, Zhang Q, Guo Y, Jiang L, Wan L 2018 J. Am. Chem. Soc. 140 18051Google Scholar
[30] Shi P, Zhang X, Shen X, Zhang R, Liu H, Zhang Q 2020 Adv. Mater. Technol. 5 1900806Google Scholar
[31] Jin C, Sheng O, Luo J, Yuan H, Fang C, Zhang W, Huang H, Gan Y, Xia Y, Liang C, Zhang J, Tao X 2017 Nano Energy 37 177Google Scholar
[32] Li B, Chen X, Xiang C, Zhao C, Zhang R, Cheng X, Zhang Q 2019 Research 2019 1Google Scholar
[33] Pei F, Fu A, Ye W, Peng J, Fang X, Wang M S, Zheng N 2019 ACS Nano 13 8337Google Scholar
[34] Gao Z, Zhang S, Huang Z, Lu Y, Wang W, Wang K, Li J, Zhou Y, Huang L, Sun S 2019 Chin. Chem. Lett. 30 525Google Scholar
[35] Liu Y, Qin X, Zhang S, Huang Y, Kang F, Chen G, Li B 2019 Energy Storage Mater. 18 320Google Scholar
[36] Chen J, Yang Z, Liu G, Li C, Yi J, Fan M, Tan H, Lu Z, Yang C 2020 Energy Storage Mater. 25 305Google Scholar
[37] Xing Y, Chen N, Luo M, Sun Y, Yang Y, Qian J, Li L, Guo S, Chen R, Wu F 2020 Energy Storage Mater. 24 707Google Scholar
[38] Xu D, Su J, Jin J, Sun C, Ruan Y, Chen C, Wen Z 2019 Adv. Energy Mater. 9 1900611Google Scholar
[39] Yu X, Wang L, Ma J, Sun X, Zhou X, Cui G 2020 Adv. Energy Mater. 10 1903939Google Scholar
[40] Li G, Guan X, Wang A, Wang C, Luo J 2020 Energy Storage Mater. 24 574Google Scholar
[41] Shen Y, Zhang Y, Han S, Wang J, Peng Z, Chen L 2018 Joule 2 1674Google Scholar
[42] Zhao Q, Liu X, Stalin S, Khan K, Archer L A 2019 Nat. Energy 4 365Google Scholar
[43] Zhang Y, Chen R, Wang S, Liu T, Xu B, Zhang X, Wang X, Shen Y, Lin Y, Li M, Fan L, Li L, Nan C 2020 Energy Storage Mater. 25 145Google Scholar
[44] Zhang J, Zheng C, Li L, Xia Y, Huang H, Gan Y, Liang C, He X, Tao X, Zhang W 2020 Adv. Energy Mater. 10 1903311Google Scholar
[45] Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu Y S, Guo X, Li H, Huang X, Yang Y, Nan C W, Chen L 2018 ACS Energy Lett. 3 1212Google Scholar
[46] Umeshbabu E, Zheng B, Yang Y 2019 Electrochem. Energy Rev. 2 199Google Scholar
[47] 肖睿娟, 李泓, 陈立泉 2018 物理学报 67 128801Google Scholar
Xiao R J, Li H, Chen L Q 2018 Acta Phys. Sin. 67 128801Google Scholar
[48] 王其钰, 褚赓, 张杰男, 王怡, 周格, 聂凯会, 郑杰允, 禹习谦, 李泓 2018 储能科学与技术 7 327Google Scholar
Wang Q Y, Chu G, Zhang J N, Wang Y, Zhou G, Nie K H, Zheng J Y, Yu X Q, Li H 2018 Energy Storage Sci. Technol. 7 327Google Scholar
[49] Xiang J, Yang L, Yuan L, Yuan K, Zhang Y, Huang Y, Lin J, Pan F, Huang Y 2019 Joule 3 2334Google Scholar
[50] Ghazi Z A, Sun Z, Sun C, Qi F, An B, Li F, Cheng H 2019 Small 15 1900687Google Scholar
[51] Louli A J, Genovese M, Weber R, Hames S G, Logan E R, Dahn J R 2019 J. Electrochem. Soc. 166 A1291Google Scholar
[52] Niu C, Lee H, Chen S, Li Q, Du J, Xu W, Zhang J, Whittingham M S, Xiao J, Liu J 2019 Nat. Energy 4 551Google Scholar
[53] Chae S, Ko M, Kim K, Ahn K, Cho J 2017 Joule 1 47Google Scholar
[54] Zheng H, Li J, Song X, Liu G, Battaglia V S 2012 Electrochim. Acta 71 258Google Scholar
[55] Huang W, Attia P M, Wang H, Renfrew S E, Jin N, Das S, Zhang Z, Boyle D T, Li Y, Bazant M Z, McCloskey B D, Chueh W C, Cui Y 2019 Nano Lett. 19 5140Google Scholar
[56] Zhang X, Cheng X, Zhang Q 2018 Adv. Mater. Interfaces 5 1701097Google Scholar
[57] Liu J, Bao Z, Cui Y, Dufek E J, Goodenough J B, Khalifah P, Li Q, Liaw B Y, Liu P, Manthiram A, Meng Y S, Subramanian V R, Toney M F, Viswanathan V V, Whittingham M S, Xiao J, Xu W, Yang J, Yang X, Zhang J 2019 Nat. Energy 4 180Google Scholar
[58] Pei A, Zheng G, Shi F, Li Y, Cui Y 2017 Nano Lett. 17 1132Google Scholar
[59] Biswal P, Stalin S, Kludze A, Choudhury S, Archer L A 2019 Nano Lett. 19 8191Google Scholar
[60] Shi P, Cheng X B, Li T, Zhang R, Liu H, Yan C, Zhang X Q, Huang J Q, Zhang Q 2019 Adv. Mater. 31 1902785Google Scholar
[61] Liu Y, Lin D, Li Y, Chen G, Pei A, Nix O, Li Y, Cui Y 2018 Nat. Commun. 9 3656Google Scholar
[62] Gao Y, Yan Z, Gray J L, He X, Wang D, Chen T, Huang Q, Li Y C, Wang H, Kim S H, Mallouk T E, Wang D 2019 Nat. Mater. 18 384Google Scholar
Catalog
Metrics
- Abstract views: 8276
- PDF Downloads: 427
- Cited By: 0