搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米氧化锡负极材料锂化反应机理的原位透射电镜研究

熊雨薇 尹奎波 文一峰 辛磊 姚利兵 朱重阳 孙立涛

引用本文:
Citation:

纳米氧化锡负极材料锂化反应机理的原位透射电镜研究

熊雨薇, 尹奎波, 文一峰, 辛磊, 姚利兵, 朱重阳, 孙立涛

In situ observation of lithiation mechanism of SnO2 nanoparticles

Xiong Yu-Wei, Yin Kui-Bo, Wen Yi-Feng, Xin Lei, Yao Li-Bing, Zhu Chong-Yang, Sun Li-Tao
PDF
HTML
导出引用
  • 二氧化锡(SnO2)材料因具有储量丰富、理论容量高、嵌脱锂电位安全等一系列优点, 在锂离子电池负极材料研究中受到广泛关注. 然而, SnO2纳米材料在锂化反应过程中的机理, 尤其是第一步转化反应是否可逆尚存在争议. 本文利用常规水热法成功制备了平均粒径为4.4 nm的SnO2纳米颗粒, 并在透射电子显微镜中构建了微型锂离子电池原型器件, 对SnO2纳米颗粒在充放电过程中的微观形貌和物相演变进行原位表征. 实验结果表明, SnO2纳米颗粒在嵌锂过程中率先生成了纳米尺寸的中间相Sn, 随后发生了合金化反应转变为Li22Sn5相. 脱锂反应后, Li22Sn5相转变为SnO2. 分析认为, 纳米晶界阻碍了Sn颗粒的聚集长大, 使得Sn和Li2O能够充分接触, 进而使脱锂反应能够完全进行, 生成SnO2. 研究结果对于如何提高SnO2基电极材料可逆比容量和循环性能具有一定的指导意义.
    Tin oxide (SnO2) has attracted a lot of attention among lithium ion battery anode materials due to its rich reserves, high theoretical capacity, and safe potential. However, the mechanism of the SnO2 nano materials in the lithiation-delithiation reaction, especially whether the first-step conversion reaction is reversible, is still controversial. In this paper, SnO2 nanoparticles with an average particle size of 4.4 nm are successfully prepared via a simple hydrothermal method. A nanosized lithium ion battery that enables the in situ electrochemical experiments of SnO2 nanoparticles is constructed to investigate the electrochemical behavior of SnO2 in lithiation-delithiation process. Briefly, the nanosized electrochemical cell consists of a SnO2 working electrode, a metal lithium (Li) counter electrode on a sharp tungsten probe, and a solid electrolyte of lithium oxide (Li2O) layer naturally grown on the surface of metal Li. Then, the whole lithiation-delithiation process of SnO2 nanocrystals is tracked in real time. When a constant potential of –2 V is applied to the SnO2 with respect to lithium, lithium ions begin to diffuse from one side of the nanoparticles, which is in contact with the Li/Li2O layer, and gradually propagate to the other side. Upon the lithiation, a two-step conversion reaction mechanism is revealed: SnO2 is first converted into intermediate phase of Sn with an average diameter of 4.2 nm which is then further converted into Li22Sn5. Upon the delithiation, a potential of 2 V is applied and Li22Sn5 phase can be reconverted into SnO2 phase when completely delithiated. It is because the interfaces and grain boundaries of nano-sized SnO2 may impede the Sn diffusing from one grain into another during lithiation/delithiation and then suppress the coarsening of Sn, and enable the Li2O and Sn to be sufficiently contacted with each other and then converted into SnO2. This work provides a valuable insight into an understanding of phase evolution in the lithiation-delithiation process of SnO2 and the results are of great significance for improving the reversible capacity and cycle performance of lithium ion batteries with SnO2 electrodes.
      通信作者: 尹奎波, yinkuibo@seu.edu.cn ; 孙立涛, slt@seu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2017YFA0204800)和国家自然科学基金(批准号: 11674052, 11525415, 51420105003)资助的课题.
      Corresponding author: Yin Kui-Bo, yinkuibo@seu.edu.cn ; Sun Li-Tao, slt@seu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2017YFA0204800) and the National Natural Science Foundation of China (Grant Nos. 11674052, 11525415, 51420105003).
    [1]

    Paek S M, Yoo E, Honma I 2009 Nano Lett. 9 72Google Scholar

    [2]

    Kojima T, Ishizu T, Horiba T, Yoshikawa M 2009 J. Power Sources 189 859Google Scholar

    [3]

    Nitta N, Yushin G 2014 Part. Part. Syst. Charact. 31 317Google Scholar

    [4]

    Armand M, Tarascon J M 2008 Nature 451 652Google Scholar

    [5]

    Shao-Horn Y, Croguennec L, Delmas C, Nelson E C, O'Keefe M A 2003 Nat. Mater. 2 464Google Scholar

    [6]

    季怡汝, 张庆华, 谷林 2018 电子显微学报 37 532Google Scholar

    Ji Y R, Zhang Q H, Gu L 2018 J. Chin. Electron Microsc. Soc. 37 532Google Scholar

    [7]

    侯贤华, 余洪文, 胡社军 2010 物理学报 59 8226Google Scholar

    Hou X H, Yu H W, Hu S J 2010 Acta Phys. Sin. 59 8226Google Scholar

    [8]

    侯贤华, 胡社军, 石璐 2009 物理学报 59 2109Google Scholar

    Hou X H, Hu S J, Shi L 2009 Acta Phys. Sin. 59 2109Google Scholar

    [9]

    Wu F, Li X, Wang Z, Guo H J, He Z J, Zhang Q, Xiong X H, Yue P 2012 J. Power Sources 202 374Google Scholar

    [10]

    Wu F, Li X, Wang Z, Guo H J 2013 Nanoscale 5 6936Google Scholar

    [11]

    Sun L, Gao Y M, Xiao B, Li Y F, Wang G L 2013 J. Alloy. Compd. 579 457Google Scholar

    [12]

    Tian Q H, Tian Y, Zhang Z X, Yang L, Hirano S I 2014 J. Power Sources 269 479Google Scholar

    [13]

    Guo X W, Fang X P, Sun Y, Shen L Y, Wang Z X, Chen L Q 2013 J. Power Sources 226 75Google Scholar

    [14]

    Chen L, Wu P, Wang H, Ye Y, Xu B, Cao G P, Zhou Y M, Lu T H, Yang Y S 2014 J. Power Sources 247 178Google Scholar

    [15]

    Han Q Y, Zai J T, Xiao Y L, Li B, Xu M, Qian X F 2013 RSC Adv. 3 20573Google Scholar

    [16]

    Chen J S, Lou X W 2013 Small 9 1877Google Scholar

    [17]

    Ye H J, Li H Q, Jiang F Q, Yin J, Zhu H 2018 Electrochim. Acta 266 170Google Scholar

    [18]

    刘美梅, 钱翔英 2018 电子显微学报 37 15Google Scholar

    Xiu M M, Qian X Y 2018 J. Chin. Electron Microsc. Soc. 37 15Google Scholar

    [19]

    Youn S G, Lee I H, Yoon C S, Kim C K, Sun Y K, Lee Y S, Yoshio M 2002 J. Power Sources 108 97Google Scholar

    [20]

    Kraytsberg A, Ein-Eli Y 2011 J. Power Sources 196 886Google Scholar

    [21]

    Thackeray M M, Johnson C S, Kahaian A J, Kepler K D, Vaughey J T, Shao-Horn Y, Hackney S A 1999 J. Power Sources 81-82 60Google Scholar

    [22]

    Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T 1997 Science 276 1395Google Scholar

    [23]

    Hu R Z, Sun W, Liu H, Zeng M Q, Zhu M 2013 Nanoscale 5 11971Google Scholar

    [24]

    Brousse T, Retoux R, Herterich U, Schleich D M 1998 J. Electrochem. Soc. 145 1Google Scholar

    [25]

    Retoux R, Brousse T, Schleich D M 1999 J. Electrochem. Soc. 146 2472Google Scholar

    [26]

    Lou X W, Li C M, Archer L A 2009 Adv. Mat. 21 2536Google Scholar

    [27]

    Holmberg V C, Panthani M G, Korgel B A 2009 Science 326 405Google Scholar

    [28]

    Zheng H M, Smith R K, Jun Y W, Kisielowski C, Dahmen U, Alivisatos A P 2009 Science 324 1309Google Scholar

    [29]

    Huang J Y, Zhong L, Wang C M, Sullivan J P, Xu W, Zhang L Q, Mao Scott X, Hudak N S, Liu X H, Subramanian A, Fan H Y, Qi L, Kushima A, Li J 2010 Science 330 1515Google Scholar

    [30]

    Hu R Z, Zhang H P, Lu Z C, Liu J, Zeng M Q, Yang L C, Yuan B, Zhu M 2018 Nano Energy 45 255Google Scholar

    [31]

    Hu R Z, Chen D C, Waller G, Ouyang Y P, Chen Y, Zhao B, Rainwater B, Yang C H, Zhu M, Liu M L 2016 Energy Environ. Sci. 9 595Google Scholar

    [32]

    Li B S, Feng J K, Qian Y T, Xiong S L 2015 J. Mater. Chem. A 3 10336Google Scholar

    [33]

    Wang C M, Xu W, Liu J, Zhang J G, Saraf L V, Arey B W, Choi D, Yang Z G, Xiao J, Thevuthasan S, Baer D R 2011 Nano Lett. 11 1874Google Scholar

    [34]

    Meduri P, Clark E, Dayalan E, Sumanasekera G U, Sunkara M K 2011 Energy Environ. Sci. 4 1695Google Scholar

    [35]

    Meduri P, Pendyala C, Kumar V, Sumanasekera G U, Sunkara M K 2009 Nano Lett. 9 612Google Scholar

    [36]

    Haines J, Leger J M 1997 Phys. Rev. B 55 11144Google Scholar

    [37]

    Liu L G 1978 Science 199 422Google Scholar

    [38]

    Chen Z W, Lai J K L, Shek C H 2006 Appl. Phys. Lett. 89 231902Google Scholar

    [39]

    Carvalho M H, Pereira E C, de Oliveira A J A 2018 RSC Adv. 8 3958Google Scholar

  • 图 1  基于透射电镜的锂离子电池原型器件原位测试示意图

    Fig. 1.  Schematic diagram of a prototype device for a lithium ion battery in the transmission electron microscope.

    图 2  SnO2纳米颗粒的表征 (a) SnO2纳米颗粒的XRD图谱; (b) 低倍率下的SnO2纳米颗粒的TEM像, 比例尺为50 nm; (c) SnO2纳米颗粒的高分辨像, 比例尺为2 nm; (d) SnO2纳米颗粒的SAED图像; (e) 四方相SnO2纳米颗粒的晶体结构; (f) SnO2纳米颗粒粒径尺寸分布

    Fig. 2.  Characterization of SnO2 nanoparticles: (a) XRD pattern of the as-prepared SnO2 nanoparticles; (b) TEM image of SnO2 nanopaticles; (c) HRTEM of SnO2 nanoparticles; (d) SAED of SnO2 nanoparticles; (e) crystal structure of the tetracoral SnO2; (f) distribution of SnO2 nanoparticles size.

    图 3  SnO2纳米颗粒第一次嵌锂前后的变化 (a) SnO2嵌锂前的形貌, 比例尺为15 nm; (b) SnO2第一次嵌锂后的形貌, 比例尺为15 nm; (c) SnO2嵌锂一段时间后的HRTEM像, 比例尺为1 nm; (d) SnO2嵌锂一段时间后的SAED图; (e) SnO2第一次嵌锂结束后的HRTEM图, 比例尺为5 nm; (f) SnO2第一次嵌锂结束后的SAED图; (g)−(k) SnO2纳米颗粒第一次锂化过程, 比例尺为10 nm

    Fig. 3.  Changes of SnO2 nanoparticles during the first lithiation: (a) Morphology of SnO2 before lithiation; (b) morphology of SnO2 after first lithiation; (c) HRTEM image of SnO2 after a moment; (d) SAED pattern of SnO2 after a moment; (e) HRTEM image of SnO2 after first completely lithiated; (f) SAED pattern of SnO2 after first completely lithiated; (g)−(k) SnO2 nanoparticle first lithiation process.

    图 4  SnO2纳米颗粒脱锂前后的变化 (a) SnO2第一次脱锂前的形貌, 比例尺为40 nm; (b) SnO2第一次脱锂后的形貌, 比例尺为40 nm; (c) SnO2第一次脱锂结束后的HRTEM图, 比例尺为1 nm; (d) SnO2第一次脱锂结束后的SAED图; (e)—(l) SnO2纳米颗粒第一次脱锂过程, 比例尺为40 nm; (m) SnO2纳米颗粒第二次嵌锂后的HRTEM图, 比例尺为1 nm; (n) SnO2纳米颗粒第二次嵌锂后的SAED图; (o) SnO2纳米颗粒第二次脱锂后的HRTEM图, 比例尺为1 nm; (p) SnO2纳米颗粒第二次脱锂后的SAED图

    Fig. 4.  Changes of SnO2 nanoparticles during the delithiation: (a) Morphology of SnO2 before delithiation; (b) morphology of SnO2 after first delithiated; (c) HRTEM image of SnO2 after completely first delithiated; (d) SAED pattern of SnO2 after first completely delithiated; (e)–(l) SnO2 nanoparticle first delithiation process; (m) HRTEM image of SnO2 after second lithiated; (n) SAED pattern of SnO2 after second lithiated; (o) HRTEM image of SnO2 after second delithiated; (p) SAED pattern of SnO2 after second delithiated.

  • [1]

    Paek S M, Yoo E, Honma I 2009 Nano Lett. 9 72Google Scholar

    [2]

    Kojima T, Ishizu T, Horiba T, Yoshikawa M 2009 J. Power Sources 189 859Google Scholar

    [3]

    Nitta N, Yushin G 2014 Part. Part. Syst. Charact. 31 317Google Scholar

    [4]

    Armand M, Tarascon J M 2008 Nature 451 652Google Scholar

    [5]

    Shao-Horn Y, Croguennec L, Delmas C, Nelson E C, O'Keefe M A 2003 Nat. Mater. 2 464Google Scholar

    [6]

    季怡汝, 张庆华, 谷林 2018 电子显微学报 37 532Google Scholar

    Ji Y R, Zhang Q H, Gu L 2018 J. Chin. Electron Microsc. Soc. 37 532Google Scholar

    [7]

    侯贤华, 余洪文, 胡社军 2010 物理学报 59 8226Google Scholar

    Hou X H, Yu H W, Hu S J 2010 Acta Phys. Sin. 59 8226Google Scholar

    [8]

    侯贤华, 胡社军, 石璐 2009 物理学报 59 2109Google Scholar

    Hou X H, Hu S J, Shi L 2009 Acta Phys. Sin. 59 2109Google Scholar

    [9]

    Wu F, Li X, Wang Z, Guo H J, He Z J, Zhang Q, Xiong X H, Yue P 2012 J. Power Sources 202 374Google Scholar

    [10]

    Wu F, Li X, Wang Z, Guo H J 2013 Nanoscale 5 6936Google Scholar

    [11]

    Sun L, Gao Y M, Xiao B, Li Y F, Wang G L 2013 J. Alloy. Compd. 579 457Google Scholar

    [12]

    Tian Q H, Tian Y, Zhang Z X, Yang L, Hirano S I 2014 J. Power Sources 269 479Google Scholar

    [13]

    Guo X W, Fang X P, Sun Y, Shen L Y, Wang Z X, Chen L Q 2013 J. Power Sources 226 75Google Scholar

    [14]

    Chen L, Wu P, Wang H, Ye Y, Xu B, Cao G P, Zhou Y M, Lu T H, Yang Y S 2014 J. Power Sources 247 178Google Scholar

    [15]

    Han Q Y, Zai J T, Xiao Y L, Li B, Xu M, Qian X F 2013 RSC Adv. 3 20573Google Scholar

    [16]

    Chen J S, Lou X W 2013 Small 9 1877Google Scholar

    [17]

    Ye H J, Li H Q, Jiang F Q, Yin J, Zhu H 2018 Electrochim. Acta 266 170Google Scholar

    [18]

    刘美梅, 钱翔英 2018 电子显微学报 37 15Google Scholar

    Xiu M M, Qian X Y 2018 J. Chin. Electron Microsc. Soc. 37 15Google Scholar

    [19]

    Youn S G, Lee I H, Yoon C S, Kim C K, Sun Y K, Lee Y S, Yoshio M 2002 J. Power Sources 108 97Google Scholar

    [20]

    Kraytsberg A, Ein-Eli Y 2011 J. Power Sources 196 886Google Scholar

    [21]

    Thackeray M M, Johnson C S, Kahaian A J, Kepler K D, Vaughey J T, Shao-Horn Y, Hackney S A 1999 J. Power Sources 81-82 60Google Scholar

    [22]

    Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T 1997 Science 276 1395Google Scholar

    [23]

    Hu R Z, Sun W, Liu H, Zeng M Q, Zhu M 2013 Nanoscale 5 11971Google Scholar

    [24]

    Brousse T, Retoux R, Herterich U, Schleich D M 1998 J. Electrochem. Soc. 145 1Google Scholar

    [25]

    Retoux R, Brousse T, Schleich D M 1999 J. Electrochem. Soc. 146 2472Google Scholar

    [26]

    Lou X W, Li C M, Archer L A 2009 Adv. Mat. 21 2536Google Scholar

    [27]

    Holmberg V C, Panthani M G, Korgel B A 2009 Science 326 405Google Scholar

    [28]

    Zheng H M, Smith R K, Jun Y W, Kisielowski C, Dahmen U, Alivisatos A P 2009 Science 324 1309Google Scholar

    [29]

    Huang J Y, Zhong L, Wang C M, Sullivan J P, Xu W, Zhang L Q, Mao Scott X, Hudak N S, Liu X H, Subramanian A, Fan H Y, Qi L, Kushima A, Li J 2010 Science 330 1515Google Scholar

    [30]

    Hu R Z, Zhang H P, Lu Z C, Liu J, Zeng M Q, Yang L C, Yuan B, Zhu M 2018 Nano Energy 45 255Google Scholar

    [31]

    Hu R Z, Chen D C, Waller G, Ouyang Y P, Chen Y, Zhao B, Rainwater B, Yang C H, Zhu M, Liu M L 2016 Energy Environ. Sci. 9 595Google Scholar

    [32]

    Li B S, Feng J K, Qian Y T, Xiong S L 2015 J. Mater. Chem. A 3 10336Google Scholar

    [33]

    Wang C M, Xu W, Liu J, Zhang J G, Saraf L V, Arey B W, Choi D, Yang Z G, Xiao J, Thevuthasan S, Baer D R 2011 Nano Lett. 11 1874Google Scholar

    [34]

    Meduri P, Clark E, Dayalan E, Sumanasekera G U, Sunkara M K 2011 Energy Environ. Sci. 4 1695Google Scholar

    [35]

    Meduri P, Pendyala C, Kumar V, Sumanasekera G U, Sunkara M K 2009 Nano Lett. 9 612Google Scholar

    [36]

    Haines J, Leger J M 1997 Phys. Rev. B 55 11144Google Scholar

    [37]

    Liu L G 1978 Science 199 422Google Scholar

    [38]

    Chen Z W, Lai J K L, Shek C H 2006 Appl. Phys. Lett. 89 231902Google Scholar

    [39]

    Carvalho M H, Pereira E C, de Oliveira A J A 2018 RSC Adv. 8 3958Google Scholar

  • [1] 刘玄玄, 国洪轩, 徐涛, 尹奎波, 孙立涛. 原位液相透射电子显微镜及其在纳米粒子表征方面的应用. 物理学报, 2021, 70(8): 086701. doi: 10.7498/aps.70.20201899
    [2] 龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文. 尺寸调控SnO2量子点的阻变性能及调控机理. 物理学报, 2021, 70(19): 197301. doi: 10.7498/aps.70.20210608
    [3] 曹文卓, 李泉, 王胜彬, 李文俊, 李泓. 金属锂在固态电池中的沉积机理、策略及表征. 物理学报, 2020, 69(22): 228204. doi: 10.7498/aps.69.20201293
    [4] 陈亚琦, 许华慨, 唐东升, 余芳, 雷乐, 欧阳钢. 单根SnO2纳米线器件的电输运性能及其机理研究. 物理学报, 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [5] 冯秋菊, 潘德柱, 邢研, 石笑驰, 杨毓琪, 李芳, 李彤彤, 郭慧颖, 梁红伟. 图形化蓝宝石衬底上有序微米半球形SnO2的生长、结构和光学特性研究. 物理学报, 2017, 66(3): 038101. doi: 10.7498/aps.66.038101
    [6] 雷洁梅, 吕柳, 刘玲, 许小亮. 多孔SiO2包裹磁性纳米颗粒Fe3O4的制备与表征. 物理学报, 2011, 60(1): 017501. doi: 10.7498/aps.60.017501
    [7] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征. 物理学报, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [8] 曾广根, 黎兵, 郑家贵, 武莉莉, 张静全, 雷智, 李卫, 冯良桓. CdTe太阳电池前电极SnO2:F/SnO2复合薄膜性能分析. 物理学报, 2010, 59(10): 7437-7441. doi: 10.7498/aps.59.7437
    [9] 林涛, 万能, 韩敏, 徐骏, 陈坤基. SnO2纳米晶体的制备、结构与发光性质. 物理学报, 2009, 58(8): 5821-5825. doi: 10.7498/aps.58.5821
    [10] 贾曦, 刘爱萍, 刘洋溢, 唐为华, 王君伟. SnO2微纳米材料的合成及其生长机理研究. 物理学报, 2009, 58(4): 2572-2577. doi: 10.7498/aps.58.2572
    [11] 徐 剑, 黄水平, 王占山, 鲁大学, 苑同锁. F掺杂SnO2电子结构的模拟计算. 物理学报, 2007, 56(12): 7195-7200. doi: 10.7498/aps.56.7195
    [12] 曾春来, 唐东升, 刘星辉, 海 阔, 羊 亿, 袁华军, 解思深. 化学气相沉积法中SnO2一维纳米结构的控制生长. 物理学报, 2007, 56(11): 6531-6536. doi: 10.7498/aps.56.6531
    [13] 罗宇峰, 钟 澄, 张 莉, 严学俭, 李 劲, 蒋益明. 方块电阻法原位表征Cu薄膜氧化反应动力学规律. 物理学报, 2007, 56(11): 6722-6726. doi: 10.7498/aps.56.6722
    [14] 丁 硕, 刘玉龙, 萧季驹. 不同晶粒尺寸SnO2纳米粒子的拉曼光谱研究. 物理学报, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [15] 季振国, 何振杰, 宋永梁. p型导电掺In的SnO2薄膜的制备及表征. 物理学报, 2004, 53(12): 4330-4333. doi: 10.7498/aps.53.4330
    [16] 康俊勇, S.TSUNEKAWA, A.KASUYA. 超细SnO2纳米晶粒带边光吸收的线度效应. 物理学报, 2001, 50(11): 2198-2202. doi: 10.7498/aps.50.2198
    [17] 娄坚鑫, 刘宜华, 黄宝歆, 张 林, 张汝贞, 张维缄, 张连生. Fe/SnO2非晶多层膜的磁特性. 物理学报, 1998, 47(3): 508-513. doi: 10.7498/aps.47.508
    [18] 余保龙, 张桂兰, 汤国庆, 吴晓春, 陈文驹. 纳米材料SnO2表面声子模的红外光谱研究. 物理学报, 1996, 45(6): 1003-1009. doi: 10.7498/aps.45.1003
    [19] 余保龙, 吴晓春, 陈文驹, 邹炳琐, 张桂兰, 汤国庆. 半导体SnO2纳米微粒的光学特性. 物理学报, 1995, 44(4): 660-665. doi: 10.7498/aps.44.660
    [20] 张道元, 王大志, 王根苗, 王征, 吴泳华. 纳米SnO2材料的穆斯堡尔谱研究. 物理学报, 1991, 40(5): 844-848. doi: 10.7498/aps.40.844
计量
  • 文章访问数:  10926
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-27
  • 修回日期:  2019-05-23
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回