搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

力载作用下基于CT原位表征的TATB造型粉颗粒体系力学行为演化研究

陶杰 李海宁 戴斌 蓝林钢 郭菲 张伟斌 聂福德

引用本文:
Citation:

力载作用下基于CT原位表征的TATB造型粉颗粒体系力学行为演化研究

陶杰, 李海宁, 戴斌, 蓝林钢, 郭菲, 张伟斌, 聂福德

Mechanical behavior evolution of TATB particle system based on CT in-situ characterization under load

TAO Jie, LI Haining, DAI Bin, LAN Lingang, GUO Fei, ZHANG Weibin, NIE Fude
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • TATB是目前安全性能最好的炸药, TATB造型粉颗粒经压制成型的高聚物黏结炸药(PBX)在军事中具有重要的应用. 在应力作用下, TATB造型粉颗粒体系的演化决定了成型药柱的细观结构和整体质量. TATB造型粉颗粒体系在力载作用下的结构演化和力学特性变化难以表征. 本研究采用X-μCT层析成像与同步原位力载相结合的方法, 通过对CT图像处理与分析, 建立了TATB造型粉颗粒体系的三维孔隙网络模型, 基于该模型获得了接触数量、接触面积、接触强弱、配位数等关键特征参量的演化特性. 结果表明, 0—5 MPa下, 随着应力的增加, TATB造型粉颗粒体系中颗粒接触数量呈下降趋势, 减少率为53.3%; 总接触面积减少率为31.5%, 但强弱接触占比几乎维持不变; 颗粒体积平均增加率为45.50%, 平均配位数由7.27增至9.44. 本研究揭示了颗粒在成型过程初期的力学行为演化规律, 实现了颗粒体系力载过程的三维、定量、原位分析, 对炸药颗粒压制过程的力学特性的认识有重要科学意义和工程意义.
    TATB is currently the safest explosive in terms of safety performance. Polymer bonded explosive (PBX) formed by pressing TATB particles has important applications in military. Under the action of stress, the evolution of TATB particle system determines the microstructure and overall quality of molding grain. The molding method of PBX is usually realized by molding technology. In the process of molding, the structural evolution and mechanical properties of TATB particle system are very complex under the action of loading, and the high discreteness, strong non-linearity and bonding characteristics are difficult to characterize.In this study, a set of image processing technologies is developed for the TATB particle system by using X-μ CT tomography and synchronous in-situ force loading. The TATB particles are a special composite material with multile components, irregularities, multiple particle sizes, heterogeneity, and viscoelasticity . High-quality CT images of TATB particles under force loading are obtained. A three-dimensional pore network model (PNM) of the TATB particle system is established by CT image processing and analysis. Based on the model, the evolution characteristics of key parameters such as contact number, contact area, contact strength and coordination number are obtained.The results indicate the evolutionary characteristics below. At 0—5 MPa, with the press proceeding, the stress of TATB particle system increases continuously, and the number of particle contacts in the particle system decreases, with a reduction rate of 53.3%. The total contact area decreases by31.5%, but the average contact area of a single particle continues to increase; The strong contact and weak contact of the entire particle system show a decreasing trend, but the ratio of strong contact to weak contact remains almost unchanged, reflecting the stability characteristics of the TATB molding particle system in the external stable, linear, and slow loading process, and the average proportion of strong contact is 37.74%. The average increase rate of particle volume is 45.50%, and the curve of equivalent radius is very consistent with the curve of average particle volume. The average coordination number of the entire particle system increases from 7.27 to 9.44, and the highest coordination number is in a range of 6–10. The morphological distribution shows the characteristics of approximately normal distribution, double-peak nearly normal distribution, and flat-peak nearly normal distribution. At 5 MPa, some particles show the characteristics of rotation and adaptive rearrangement, which are consistent with the quantitative analysis of the trend of particle contact number.This study reveals the movement, deformation and fusion rules of particles in the initial stage of the forming process, achieving the three-dimensional, quantitative and in-situ analysis of the force loading process of the particle system. These results are of important scientific and engineering significance for understanding the mechanical characteristics of the explosive particle pressing process.
  • 图 1  TATB造型粉颗粒

    Fig. 1.  TATB particles.

    图 2  TATB造型粉颗粒原位加载

    Fig. 2.  The in-situ loading of TATB particles.

    图 3  CT图像处理算法流程

    Fig. 3.  Flow chart of CT image processing algorithm.

    图 4  TATB造型粉颗粒体系的图像处理(切片) (a)感兴趣区域; (b)交互式阈值分割; (c)孔隙填充; (d)移除噪点; (e)中值滤波及双边滤波; (f)目标分离

    Fig. 4.  Image processing of TATB particle system (slice): (a) ROI; (b) interactive thresholding; (c) fill holes; (d) remove small spots; (e) median filter and bilateral filter; (f) separate object.

    图 5  TATB造型粉颗粒体系的图像处理(3D) (a)感兴趣区域; (b)交互式阈值分割; (c)孔隙填充; (d)移除噪点; (e)中值滤波及双边滤波; (f)目标分离

    Fig. 5.  Image processing of TATB particle system (3D): (a) ROI; (b) interactive thresholding; (c) fill holes; (d) remove small spots; (e) median filter and bilateral filter; (f) separate object.

    图 6  标记规则(标记后的骨架及相邻点)

    Fig. 6.  Rule of labeling (marked skeleton and neighbour point).

    图 7  骨架与图的关联

    Fig. 7.  Relationship between skeleton and graph.

    图 8  TATB造型粉颗粒体系孔隙网络模型

    Fig. 8.  The PNM of TATB particle system.

    图 9  Z方向TATB造型粉颗粒体系的演化

    Fig. 9.  Evolution of TATB particle system in Z direction.

    图 10  X方向TATB造型粉颗粒体系的演化

    Fig. 10.  Evolution of TATB particle system in X direction.

    图 11  颗粒体系接触数量变化

    Fig. 11.  Change of particle system contact number.

    图 12  颗粒体系接触面积变化

    Fig. 12.  Change of particle system contact area.

    图 13  颗粒强弱接触变化 (a) 强弱接触数量变化; (b)强弱接触占比变化

    Fig. 13.  Change of strong and weak particle contact: (a) Changes in the number of strong and weak contacts; (b) changes in the proportion of strong and weak contacts.

    图 14  颗粒体积、等效半径变化

    Fig. 14.  Change of particle volume and equal radius.

    图 15  目标颗粒的配位数

    Fig. 15.  Coordination number of target particle.

    图 16  0—5 MPa下颗粒体系配位数统计学分布 (a) 0 MPa; (b) 1 MPa; (c) 2 MPa; (d) 3 MPa; (e) 4 MPa; (f) 5 MPa

    Fig. 16.  Statistical distribution of coordination number of particle system at 0—5 MPa: (a) 0 MPa; (b) 1 MPa; (c) 2 MPa; (d) 3 MPa; (e) 4 MPa; (f) 5 MPa.

    图 17  力载过程平均配位数数量分布演化

    Fig. 17.  Evolution of mean coordination number distribution in load process.

    图 18  力载过程平均配位数百分比演化

    Fig. 18.  Evolution of mean coordination percentage in loading process.

  • [1]

    董海山, 周芬芬 1989 高能炸药及相关物性能 (北京: 科学出版社) 第20-32页

    Dong H S, Zhou F F 1989 Performance of High-energy Explosives and Related Substances (Beijing: Science Press) pp20-32

    [2]

    范航, 何冠松, 杨志剑, 聂福德, 陈鹏万 2019 物理学报 68 106201Google Scholar

    Fan H, He G S, Yang Z J, Nie F D, Chen P W 2019 Acta Phys. Sin. 68 106201Google Scholar

    [3]

    Hamilton B W, Kroonblawd M P, Isiam M M, Strachan A 2019 Journal of Physical Chemistry C 123 21969Google Scholar

    [4]

    Steele B A, Clarke S M, Kroonblawd M P, Kuo I F, Pagoria P F, Tkachev S N, Smith J S, Bastea S, Fried L E, Zaug J M, Stavrou E, Tschauner O 2019 Appl. Phys. Lett. 114 191901Google Scholar

    [5]

    Hertz H 1882 J. Reine Angew. Math. 1882 156Google Scholar

    [6]

    Chang C S, Liao C L 1990 Int. J. Solids Structures. 26 437Google Scholar

    [7]

    Tordesillas A, Peters J F, Gardiner B S 2004 Int. J. Numer. Anal. Met. 28 981Google Scholar

    [8]

    Andrade J E, Cacute V, Lim K W, Jerves A 2012 Géotechn. Lett. 2 135

    [9]

    Coppersmith S N, Liu C H, Majumdar S, Narayan O, Witten T A 1996 Phys. Rev. E 53 4673Google Scholar

    [10]

    Silva M D, Rajchenbach J 2000 Nature 406 708Google Scholar

    [11]

    Andrade J E, Avila C F 2012 Granul. Matter 14 51Google Scholar

    [12]

    Hurley R, Marteau E, Ravichandran G, Andrade J E 2014 J. Mech. Phys. Solids 63 154Google Scholar

    [13]

    Zhai C P, Herbold E B, Hurley R C 2020 PNAS 117 6234

    [14]

    陈琼, 王青花, 赵闯, 张祺, 厚美瑛 2015 物理学报 64 154502Google Scholar

    Chen Q, Wang Q H, Zhao C, Zhang Q, Hou M Y 2015 Acta Phys. Sin. 64 154502Google Scholar

    [15]

    Løvoll G. Måløy K J, Flekkøy E G 1999 Phys. Rev. E 60 5872

    [16]

    苗天德, 宜晨虹, 齐艳丽, 慕青松, 刘源 2007 物理学报 56 4713Google Scholar

    Miao T D, Yi C H, Qi Y L, Mu Q S, Liu Y 2007 Acta Phys. Sin. 56 4713Google Scholar

    [17]

    杨荣伟 2009 硕士学位论文 (北京: 清华大学)

    Yang R W 2007 Ph. D. Dissertation (Beijing: Tsinghua University

    [18]

    Zhou J, Long S, Wang Q, Dinsmore A D 2006 Science 312 1631Google Scholar

    [19]

    Sanfratello L, Fukushima E, Behringer R P 2009 Granul. Matter 11 1Google Scholar

    [20]

    Xing Y, Zheng J, Li J D, Cao Y X, Pan W, Zhang J, Wang Y J 2021 Phys. Rev. Lett. 126 048002Google Scholar

    [21]

    Baur M, Claussen J, Gerth S, Kollmer J, Shreve T, Uhlmann N, Pöschel T 2019 Powder Technol. 356 439Google Scholar

    [22]

    Nguyen C D, Benahmed N, Andò E, Sibille L, Philippe P 2019 Acta Geotech. 14 749Google Scholar

    [23]

    Brisard S, Serdar M, Monteiro P J M 2020 Cement Concrete Res. 128 105824Google Scholar

    [24]

    Ramesh S, Thyagaraj T 2022 Geomech. Geophys. Geo. 8 11Google Scholar

    [25]

    Fonseca J, O’Sullivan C, Coop M R, Lee P D 2012 Soils Found. 52 712Google Scholar

    [26]

    马寅翔, 刘晨, 王慧, 张才鑫, 陈华, 张伟斌 2020 含能材料 28 960Google Scholar

    Ma Y X, Liu C, Wang H, Zhang C X, Chen H, Zhang W B 2020 Chin. J. Energ. Mater. 28 960Google Scholar

    [27]

    戴斌 2015 硕士学位论文 (北京: 中国工程物理研究院研究生院)

    Dai B 2015 M. S. Thesis (Beijing: Graduate School of China Academy of Engineering Physics

    [28]

    Koyuncu C F, Durmaz I, Cetin-Atalay R, Gunduz D C 2014 22nd Signal Processing and Communications Applications Conference Trabzon, April 23-25, 2014 p1971

    [29]

    Mouelhi A, Sayadi M, Fnaiech F, Mrad K 2013 Biomed. Signal Proces. 8 421Google Scholar

    [30]

    Li Z T, Liu D M, Cai Y D, Ranjith P G, Yao Y B 2017 Fuel 209 43Google Scholar

    [31]

    Jing H L, Dan H C, Shan H Y, Liu X 2023 Materials 16 7426Google Scholar

    [32]

    Harshini D R D G, Gamage R P, Kumari W G P 2024 Gas Sci. Eng. 125 205280Google Scholar

    [33]

    Zakirov T R, Galeev A A, Korolev E A, Statsenko E O 2016 Curr. Sci. 110 2142Google Scholar

    [34]

    任显卓, Linden Joost van der, Narsilio G 2019 地球科学 33 345

    Ren X Z, Linden J V D, Narsilio G 2019 Geoscience 33 345

    [35]

    尹升华, 陈勋, 刘超, 王雷鸣, 严荣富 2020 工程科学学报 42 972

    Yin S H, Chen X, Liu C, Wang L M, Yan R F 2020 Chin. J. Eng. 42 972

  • [1] 刘瀚扬, 华南, 王一诺, 梁俊卿, 马鸿洋. 基于量子随机行走和多维混沌的三维图像加密算法. 物理学报, doi: 10.7498/aps.71.20220466
    [2] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20210324
    [3] 易军. 非晶纤维的制备和力学行为. 物理学报, doi: 10.7498/aps.66.178102
    [4] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究. 物理学报, doi: 10.7498/aps.66.066201
    [5] 刘晓宇, 张国华, 孙其诚, 赵雪丹, 刘尚. 二维圆盘颗粒体系声学行为的数值研究. 物理学报, doi: 10.7498/aps.66.234501
    [6] 赵信文, 李欣竹, 张航, 王学军, 宋萍, 张汉钊, 康强, 黄金, 吴强. 冲击波作用下微米尺度金属颗粒群的动力学行为. 物理学报, doi: 10.7498/aps.66.104701
    [7] 蒋文灿, 陈华, 张伟斌. TATB晶体声子谱及比热容的第一性原理研究. 物理学报, doi: 10.7498/aps.65.126301
    [8] 吴迪平, 李星祥, 秦勤, 管奔, 臧勇. 离散颗粒层被横向推移过程中的力学行为研究. 物理学报, doi: 10.7498/aps.63.098201
    [9] 李兰凯, 王厚生, 倪志鹏, 程军胜, 王秋良. 超导线圈绕制过程的力学行为研究. 物理学报, doi: 10.7498/aps.62.058403
    [10] 寻之朋, 唐刚, 夏辉, 郝大鹏. 1+1 维抛射沉积模型内部结构动力学行为的数值研究. 物理学报, doi: 10.7498/aps.62.010503
    [11] 季颖, 毕勤胜. 高维广义蔡氏电路中的快慢动力学行为及其分岔分析. 物理学报, doi: 10.7498/aps.61.010202
    [12] 胡孝平, 郭红. 原子质心运动对型三能级原子动力学行为的影响. 物理学报, doi: 10.7498/aps.58.272.1
    [13] 姜泽辉, 郑瑞华, 赵海发, 吴 晶. 完全非弹性蹦球的动力学行为. 物理学报, doi: 10.7498/aps.56.3727
    [14] 汪 敏, 胡小方, 伍小平. 物体内部三维位移场分析的数字图像相关方法. 物理学报, doi: 10.7498/aps.55.5135
    [15] 唐 军, 杨先清, 仇 康. 反应限制聚集模型的动力学行为的研究. 物理学报, doi: 10.7498/aps.54.3307
    [16] 何岱海, 徐健学, 陈永红. 一两维平面映射系统奇怪动力学行为. 物理学报, doi: 10.7498/aps.48.1611
    [17] 杨援, 戴建华, 张洪钧. 光学双稳态离散模型的动力学行为. 物理学报, doi: 10.7498/aps.43.699
    [18] 滕保华. 三维Ising模型的Green函数方法处理. 物理学报, doi: 10.7498/aps.40.826
    [19] 汪子丹, 姚希贤. Josephson结的动力学行为(Ⅱ). 物理学报, doi: 10.7498/aps.34.1149
    [20] 汪子丹, 姚希贤. Josephson结的动力学行为(Ⅰ). 物理学报, doi: 10.7498/aps.34.1140
计量
  • 文章访问数:  195
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-04
  • 修回日期:  2025-05-23
  • 上网日期:  2025-06-06

/

返回文章
返回