-
TATB是目前安全性能最好的炸药, TATB造型粉颗粒经压制成型的高聚物黏结炸药(PBX)在军事中具有重要的应用. 在应力作用下, TATB造型粉颗粒体系的演化决定了成型药柱的细观结构和整体质量. TATB造型粉颗粒体系在力载作用下的结构演化和力学特性变化难以表征. 本研究采用X-μCT层析成像与同步原位力载相结合的方法, 通过对CT图像处理与分析, 建立了TATB造型粉颗粒体系的三维孔隙网络模型, 基于该模型获得了接触数量、接触面积、接触强弱、配位数等关键特征参量的演化特性. 结果表明, 0—5 MPa下, 随着应力的增加, TATB造型粉颗粒体系中颗粒接触数量呈下降趋势, 减少率为53.3%; 总接触面积减少率为31.5%, 但强弱接触占比几乎维持不变; 颗粒体积平均增加率为45.50%, 平均配位数由7.27增至9.44. 本研究揭示了颗粒在成型过程初期的力学行为演化规律, 实现了颗粒体系力载过程的三维、定量、原位分析, 对炸药颗粒压制过程的力学特性的认识有重要科学意义和工程意义.
TATB is currently the safest explosive in terms of safety performance. Polymer bonded explosive (PBX) formed by pressing TATB particles has important applications in military. Under the action of stress, the evolution of TATB particle system determines the microstructure and overall quality of molding grain. The molding method of PBX is usually realized by molding technology. In the process of molding, the structural evolution and mechanical properties of TATB particle system are very complex under the action of loading, and the high discreteness, strong non-linearity and bonding characteristics are difficult to characterize. In this study, a set of image processing technologies is developed for the TATB particle system by using X-μ CT tomography and synchronous in-situ force loading. The TATB particles are a special composite material with multile components, irregularities, multiple particle sizes, heterogeneity, and viscoelasticity . High-quality CT images of TATB particles under force loading are obtained. A three-dimensional pore network model (PNM) of the TATB particle system is established by CT image processing and analysis. Based on the model, the evolution characteristics of key parameters such as contact number, contact area, contact strength and coordination number are obtained. The results indicate the evolutionary characteristics below. At 0—5 MPa, with the press proceeding, the stress of TATB particle system increases continuously, and the number of particle contacts in the particle system decreases, with a reduction rate of 53.3%. The total contact area decreases by31.5%, but the average contact area of a single particle continues to increase; The strong contact and weak contact of the entire particle system show a decreasing trend, but the ratio of strong contact to weak contact remains almost unchanged, reflecting the stability characteristics of the TATB molding particle system in the external stable, linear, and slow loading process, and the average proportion of strong contact is 37.74%. The average increase rate of particle volume is 45.50%, and the curve of equivalent radius is very consistent with the curve of average particle volume. The average coordination number of the entire particle system increases from 7.27 to 9.44, and the highest coordination number is in a range of 6–10. The morphological distribution shows the characteristics of approximately normal distribution, double-peak nearly normal distribution, and flat-peak nearly normal distribution. At 5 MPa, some particles show the characteristics of rotation and adaptive rearrangement, which are consistent with the quantitative analysis of the trend of particle contact number. This study reveals the movement, deformation and fusion rules of particles in the initial stage of the forming process, achieving the three-dimensional, quantitative and in-situ analysis of the force loading process of the particle system. These results are of important scientific and engineering significance for understanding the mechanical characteristics of the explosive particle pressing process. -
Keywords:
- TATB /
- three-dimensional particle system /
- CT image processing /
- mechanical behavior
-
-
[1] 董海山, 周芬芬 1989 高能炸药及相关物性能 (北京: 科学出版社) 第20-32页
Dong H S, Zhou F F 1989 Performance of High-energy Explosives and Related Substances (Beijing: Science Press) pp20-32
[2] 范航, 何冠松, 杨志剑, 聂福德, 陈鹏万 2019 物理学报 68 106201
Google Scholar
Fan H, He G S, Yang Z J, Nie F D, Chen P W 2019 Acta Phys. Sin. 68 106201
Google Scholar
[3] Hamilton B W, Kroonblawd M P, Isiam M M, Strachan A 2019 Journal of Physical Chemistry C 123 21969
Google Scholar
[4] Steele B A, Clarke S M, Kroonblawd M P, Kuo I F, Pagoria P F, Tkachev S N, Smith J S, Bastea S, Fried L E, Zaug J M, Stavrou E, Tschauner O 2019 Appl. Phys. Lett. 114 191901
Google Scholar
[5] Hertz H 1882 J. Reine Angew. Math. 1882 156
Google Scholar
[6] Chang C S, Liao C L 1990 Int. J. Solids Structures. 26 437
Google Scholar
[7] Tordesillas A, Peters J F, Gardiner B S 2004 Int. J. Numer. Anal. Met. 28 981
Google Scholar
[8] Andrade J E, Cacute V, Lim K W, Jerves A 2012 Géotechn. Lett. 2 135
[9] Coppersmith S N, Liu C H, Majumdar S, Narayan O, Witten T A 1996 Phys. Rev. E 53 4673
Google Scholar
[10] Silva M D, Rajchenbach J 2000 Nature 406 708
Google Scholar
[11] Andrade J E, Avila C F 2012 Granul. Matter 14 51
Google Scholar
[12] Hurley R, Marteau E, Ravichandran G, Andrade J E 2014 J. Mech. Phys. Solids 63 154
Google Scholar
[13] Zhai C P, Herbold E B, Hurley R C 2020 PNAS 117 6234
[14] 陈琼, 王青花, 赵闯, 张祺, 厚美瑛 2015 物理学报 64 154502
Google Scholar
Chen Q, Wang Q H, Zhao C, Zhang Q, Hou M Y 2015 Acta Phys. Sin. 64 154502
Google Scholar
[15] Løvoll G. Måløy K J, Flekkøy E G 1999 Phys. Rev. E 60 5872
[16] 苗天德, 宜晨虹, 齐艳丽, 慕青松, 刘源 2007 物理学报 56 4713
Google Scholar
Miao T D, Yi C H, Qi Y L, Mu Q S, Liu Y 2007 Acta Phys. Sin. 56 4713
Google Scholar
[17] 杨荣伟 2009 硕士学位论文 (北京: 清华大学)
Yang R W 2007 Ph. D. Dissertation (Beijing: Tsinghua University
[18] Zhou J, Long S, Wang Q, Dinsmore A D 2006 Science 312 1631
Google Scholar
[19] Sanfratello L, Fukushima E, Behringer R P 2009 Granul. Matter 11 1
Google Scholar
[20] Xing Y, Zheng J, Li J D, Cao Y X, Pan W, Zhang J, Wang Y J 2021 Phys. Rev. Lett. 126 048002
Google Scholar
[21] Baur M, Claussen J, Gerth S, Kollmer J, Shreve T, Uhlmann N, Pöschel T 2019 Powder Technol. 356 439
Google Scholar
[22] Nguyen C D, Benahmed N, Andò E, Sibille L, Philippe P 2019 Acta Geotech. 14 749
Google Scholar
[23] Brisard S, Serdar M, Monteiro P J M 2020 Cement Concrete Res. 128 105824
Google Scholar
[24] Ramesh S, Thyagaraj T 2022 Geomech. Geophys. Geo. 8 11
Google Scholar
[25] Fonseca J, O’Sullivan C, Coop M R, Lee P D 2012 Soils Found. 52 712
Google Scholar
[26] 马寅翔, 刘晨, 王慧, 张才鑫, 陈华, 张伟斌 2020 含能材料 28 960
Google Scholar
Ma Y X, Liu C, Wang H, Zhang C X, Chen H, Zhang W B 2020 Chin. J. Energ. Mater. 28 960
Google Scholar
[27] 戴斌 2015 硕士学位论文 (北京: 中国工程物理研究院研究生院)
Dai B 2015 M. S. Thesis (Beijing: Graduate School of China Academy of Engineering Physics
[28] Koyuncu C F, Durmaz I, Cetin-Atalay R, Gunduz D C 2014 22nd Signal Processing and Communications Applications Conference Trabzon, April 23-25, 2014 p1971
[29] Mouelhi A, Sayadi M, Fnaiech F, Mrad K 2013 Biomed. Signal Proces. 8 421
Google Scholar
[30] Li Z T, Liu D M, Cai Y D, Ranjith P G, Yao Y B 2017 Fuel 209 43
Google Scholar
[31] Jing H L, Dan H C, Shan H Y, Liu X 2023 Materials 16 7426
Google Scholar
[32] Harshini D R D G, Gamage R P, Kumari W G P 2024 Gas Sci. Eng. 125 205280
Google Scholar
[33] Zakirov T R, Galeev A A, Korolev E A, Statsenko E O 2016 Curr. Sci. 110 2142
Google Scholar
[34] 任显卓, Linden Joost van der, Narsilio G 2019 地球科学 33 345
Ren X Z, Linden J V D, Narsilio G 2019 Geoscience 33 345
[35] 尹升华, 陈勋, 刘超, 王雷鸣, 严荣富 2020 工程科学学报 42 972
Yin S H, Chen X, Liu C, Wang L M, Yan R F 2020 Chin. J. Eng. 42 972
计量
- 文章访问数: 195
- PDF下载量: 2
- 被引次数: 0