Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The transport properties of iron-based superconductors

Li Miao-Cong Tao Qian Xu Zhu-An

Citation:

The transport properties of iron-based superconductors

Li Miao-Cong, Tao Qian, Xu Zhu-An
PDF
HTML
Get Citation
  • There are a variety of order states in iron-based pnictides, such as electronic nematic phase, spin density wave, and so on, which leads to plenty of novel physical phenomena. The measurements of transport properties can provide extremely useful information for understanding of the low-energy excitations of iron-based superconductors. Due to the multi-band electronic structure in iron-based pnictides, the temperature dependence of resistivity and Hall coefficient varies with different systems, however, there are no evidence for the pseudo-gap opening in the normal state which is a common feature in underdoped high-$T_{\rm{c}}$ cuprates. In the hole-doped iron-based superconductors, the Hall coefficient changes its sign in low temperatures, and meanwhile the resistivity shows a broad hump in the same temperature range. Such a behavior is proposed as a crossover from incoherent to coherent transport. The Seebeck coefficients of iron-based superconductors also show remarkable differences from the cuprates. In iron-based superconductors, the absolute value of Seebeck coefficients in the normal state becomes the largest at the optimally doping point with highest $T_{\rm{c}}$, which is probably related to the strong inter-band scattering. The Nernst effect in the normal state of iron-based superconductors indicates that superconducting phase fluctuations is not obvious above $T_{\rm{c}}$, which is also significantly different from the cuprates. These unusual thermoelectric properties observed in iron-based superconductors have not been observed in the nickel-based pnictide superconductors with the analogous structure, i.e., LaNiAsO, and the nickel-based superconductors behave more like a usual metal. All these results above illustrate that these unusual transport properties of iron-based superconductors are inherently associated with their high temperature superconductivity, and these factors should be taken into account in the theory on its superconducting mechanism.
      Corresponding author: Xu Zhu-An, zhuan@zju.edu.cn
    • Funds: Project supported by the National Key Projects for Research & Development of China (Grant No. 2016YFA0300402), and the National Natural Science Foundation of China (Grant No.11774305)
    [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [2]

    Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K, Takahashi T 2014 Phys. Rev. Lett. 113 237001Google Scholar

    [3]

    Kushnirenko Y, Fedorov A, Haubold E, Thirupathaiah S, Wolf T, Aswartham S, Morozov I, Kim T, Büchner B, Borisenko S 2018 Phys. Rev. B 97 180501Google Scholar

    [4]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2015 Nat. Mater. 14 325Google Scholar

    [5]

    Dong X L, Jin K, Yuan D D, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F, Zhao Z X 2015 Phys. Rev. B 92 064515Google Scholar

    [6]

    Shi M C, Wang N Z, Lei B, Shang C, Meng F B, Ma L K, Zhang F X, Kuang D Z, Chen X H 2018 Phys. Rev. Mater. 2 074801Google Scholar

    [7]

    Shi M Z, Wang N Z, Lei B, Ying J J, Zhu C S, Sun Z L, Cui J H, Meng F B, Shang C, Ma L K, Chen X H 2018 New J. Phys. 20 123007Google Scholar

    [8]

    Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H, Yoshida Y 2016 J. Am. Chem. Soc. 138 3410Google Scholar

    [9]

    Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M, Cao G H 2016 J. Am. Chem. Soc. 138 7856Google Scholar

    [10]

    Klauss H H, Luetkens H, Klingeler R, Hess C, Litterst F J, Kraken M, Korshunov M M, Eremin I, Drechsler S L, Khasanov R, Amato A, Hamann-Borrero J, Leps N, Kondrat A, Behr G, Werner J, Büchner B 2008 Phys. Rev. Lett. 101 077005Google Scholar

    [11]

    Wen H H, Mu G, Fang L, Yang H, Zhu X 2008 Europhys. Lett. 82 17009Google Scholar

    [12]

    Mu G, Fang L, Yang H, Zhu X, Cheng P, Wen H H 2008 J. Phys. Soc. Jpn. 77 15Google Scholar

    [13]

    Wang C, Jiang S, Tao Q, Ren Z, Li Y K, Li L J, Feng C M, Dai J H, Cao G H, Xu Z A 2009 Europhys. Lett. 86 47002Google Scholar

    [14]

    Lai K, Takemori A, Miyasaka S, Engetsu F, Mukuda H, Tajima S 2014 Phys. Rev. B 90 064504Google Scholar

    [15]

    Hess C, Kondrat A, Narduzzo A, Hamann-Borrero J, Klingeler R, Werner J, Behr G, Büchner B 2009 Europhys. Lett. 87 17005Google Scholar

    [16]

    Suzuki S, Miyasaka S, Tajima S, Kida T, Hagiwara M 2009 J. Phys. Soc. Jpn. 78 114712Google Scholar

    [17]

    Haule K, Kotliar G 2009 New J. Phys. 11 025021Google Scholar

    [18]

    Sefat A S, Huq A, McGuire M A, Jin R, Sales B C, Mandrus D, Cranswick L M, Stephens P W, Stone K H 2008 Phys. Rev. B 78 104505Google Scholar

    [19]

    Ishida S, Nakajima M, Liang T, Kihou K, Lee C H, Iyo A, Eisaki H, Kakeshita T, Tomioka Y, Ito T, Uchida S 2013 J. Am. Chem. Soc. 135 3158Google Scholar

    [20]

    Nakajima M, Ishida S, Tanaka T, Kihou K, Tomioka Y, Saito T, Lee C H, Fukazawa H, Kohori Y, Kakeshita T, Iyo A, Ito T, Eisaki H, Uchida S 2014 Sci. Rep. 4 5873

    [21]

    Wu Y P, Zhao D, Wang A F, Wang N Z, Xiang Z J, Luo X G, Wu T, Chen X H 2016 Phys. Rev. Lett. 116 147001Google Scholar

    [22]

    Shen B, Yang H, Wang Z S, Han F, Zeng B, Shan L, Ren C, Wen H H 2011 Phys. Rev. B 84 184512Google Scholar

    [23]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Shishido H, Ikeda H, Takeya H, Hirata K, Terashima T, Matsuda Y 2010 Phys. Rev. B 81 184519Google Scholar

    [24]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14262Google Scholar

    [25]

    Yeh K W, Huang T W, Huang Y L, Chen T K, Hsu F C, Wu P M, Lee Y C, Chu Y Y, Chen C L, Luo J Y, Yan D C, Wu M K 2008 Europhys. Lett. 84 37002Google Scholar

    [26]

    Mizuguchi Y, Tomioka F, Tsuda S, Yamaguchi T, Takano Y 2009 J. Phys. Soc. Jpn. 78 074712Google Scholar

    [27]

    Katayama N, Ji S, Louca D, Lee S, Fujita M, J. Sato T, Wen J S, Xu Z J, Gu G D, Xu G Y, Lin Z W, Enoki M, Chang S, Yamada K, Tranquada J M 2010 J. Phys. Soc. Jpn. 79 113702Google Scholar

    [28]

    Chu J H, Analytis J G, De Greve K, McMahon P L, Islam Z, Yamamoto Y, Fisher I R 2010 Science 329 824Google Scholar

    [29]

    Ying J, Wang X, Wu T, Xiang Z, Liu R, Yan Y, Wang A, Zhang M, Ye G, Cheng P, Hu J P, Chen X H 2011 Phys. Rev. Lett. 107 067001Google Scholar

    [30]

    Xu X F, Jiao W H, Zhou N, Li Y K, Chen B, Cao C, Dai J H, Bangura A F, Cao G H 2014 Phys. Rev. B 89 104517Google Scholar

    [31]

    Blomberg E, Tanatar M, Fernandes R, Mazin I, Shen B, Wen H H, Johannes M, Schmalian J, Prozorov R 2013 Nat. Commun. 4 1914

    [32]

    Ma J Q, Luo X G, Cheng P, Zhu N, Liu D Y, Chen F, Ying J J, Wang A F, Lu X F, Lei B, Chen X H 2014 Phys. Rev. B 89 174512Google Scholar

    [33]

    Malinowski P, Jiang Q, Sanchez J J, Mutch J, Liu Z, Went P, Liu J, Ryan P J, Kim J W, Chu J H 2020 Nat. Phys. 16 1189

    [34]

    Jesche A, Nitsche F, Probst S, Doert T, Müller P, Ruck M 2012 Phys. Rev. B 86 134511Google Scholar

    [35]

    Tanatar M A, Böhmer A E, Timmons E I, Schütt M, Drachuck G, Taufour V, Kothapalli K, Kreyssig A, Bud'ko S L, Canfield P C, Fernandes R M, Prozorov R 2016 Phys. Rev. Lett. 117 127001Google Scholar

    [36]

    Fang L, Luo H Q, Cheng P, Wang Z S, Jia Y, Mu G, Shen B, Mazin I I, Shan L, Ren C, Wen H H 2009 Phys. Rev. B 80 140508Google Scholar

    [37]

    Iida K, Grinenko V, Kurth F, Ichinose A, Tsukada I, Ahrens E, Pukenas A, Chekhonin P, Skrotzki W, Teresiak A, Hühne R, Aswartham S, Wurmehl S, Mönch I, Erbe M, Hänisch J, Holzapfel B, Drechsler S L, Efremov D V 2016 Sci. Rep. 6 1Google Scholar

    [38]

    Ohgushi K, Kiuchi Y 2012 Phys. Rev. B 85 064522Google Scholar

    [39]

    Shimojima T, Sakaguchi F, Ishizaka K, Ishida Y, Kiss T, Okawa M, Togashi T, Chen C T, Watanabe S, Arita M, Shimada K, Namatame H, Taniguchi M, Ohgushi K, Kasahara S, Terashima T, Shibauchi T, Matsuda Y, Chainani A, Shin S 2011 Science 332 564Google Scholar

    [40]

    Liu Y, Lograsso T A 2014 Phys. Rev. B 90 224508Google Scholar

    [41]

    Xu N, Richard P, Shi X, van Roekeghem A, Qian T, Razzoli E, Rienks E, Chen G F, Ieki E, Nakayama K, Sato T, Takahashi T, Shi M, Ding H 2013 Phys. Rev. B 88 220508Google Scholar

    [42]

    Hayes I M, Maksimovic N, Lopez G N, Chan M K, Ramshaw B, McDonald R D, Analytis J G 2020 Nat. Phys. 10.1038/s41567-020-0982-x

    [43]

    Obertelli S, Cooper J, Tallon J 1992 Phys. Rev. B 46 14928Google Scholar

    [44]

    Tallon J L, Bernhard C, Shaked H, Hitterman R, Jorgensen J 1995 Phys. Rev. B 51 12911Google Scholar

    [45]

    Wang C, Li Y, Zhu Z, Jiang S, Lin X, Luo Y, Chi S, Li L, Ren Z, He M, Chen H, Wang Y T, Tao Q, Cao G H, Xu Z A 2009 Phys. Rev. B 79 054521Google Scholar

    [46]

    Li L J, Li Y K, Ren Z, Luo Y K, Lin X, He M, Tao Q, Zhu Z W, Cao G H, Xu Z A 2008 Phys. Rev. B 78 132506Google Scholar

    [47]

    Li L J, Luo Y K, Wang Q B, Chen H, Ren Z, Tao Q, Li Y K, Lin X, He M, Zhu Z W, Cao G H, Xu Z A 2009 New J. Phys. 11 025008Google Scholar

    [48]

    Pallecchi I, Lamura G, Tropeano M, Putti M, Viennois R, Giannini E, Van Der Marel D 2009 Phys. Rev. B 80 214511Google Scholar

    [49]

    Zhu Z W, Xu Z A, Lin X, Cao G H, Feng C M, Chen G F, Li Z, Luo J L, Wang N L 2008 New J. Phys. 10 063021Google Scholar

    [50]

    Lin X, Guo H J, Shen C Y, Luo Y K, Tao Q, Cao G H, Xu Z A 2011 Phys. Rev. B 83 014503Google Scholar

    [51]

    Wu M K, Wang M J, Yeh K W 2013 Sci. Technol. Adv. Mater. 14 014402Google Scholar

    [52]

    Li Y K, Lin X, Zhou T, Shen J Q, Tao Q, Cao G H, Xu Z A 2009 J. Phys. Condens. Matter 21 355702Google Scholar

    [53]

    Gooch M, Lv B, Lorenz B, Guloy A M, Chu C W 2009 Phys. Rev. B 79 104504Google Scholar

    [54]

    Gooch M, Lv B, Lorenz B, Guloy A M, Chu C W 2010 J. Appl. Phys. 107 09E145Google Scholar

    [55]

    Lv B, Gooch M, Lorenz B, Chen F, Guloy A, Chu C 2009 New J. Phys. 11 025013Google Scholar

    [56]

    Tao Q, Zhu Z W, Lin X, Cao G H, Xu Z A, Chen G F, Luo J L, Wang N L 2010 J. Phys. Condens. Matter. 22 072201Google Scholar

    [57]

    Matusiak M, Plackowski T, Bukowski Z, Zhigadlo N, Karpinski J 2009 Phys. Rev. B 79 212502Google Scholar

    [58]

    Xu Z A, Ong N P, Wang Y, Kakeshita T, Uchida S 2000 Nature 406 486Google Scholar

    [59]

    Sondheimer E 1948 Proc. R. Soc. Lond. A. Math. Phys. Sci. 193 484

    [60]

    Matusiak M, Bukowski Z, Karpinski J 2010 Phys. Rev. B 81 020510Google Scholar

    [61]

    Matusiak M, Bukowski Z, Karpinski J 2011 Phys. Rev. B 83 224505Google Scholar

    [62]

    Richard P, Nakayama K, Sato T, Neupane M, Xu Y M, Bowen J H, Chen G F, Luo J L, Wang N L, Dai X, Fang Z, Ding H, Takahashi T 2010 Phys. Rev. Lett. 104 137001Google Scholar

    [63]

    Harrison N, Sebastian S 2009 Phys. Rev. B 80 224512Google Scholar

    [64]

    Chen L, Xiang Z J, Tinsman C, Lei B, Chen X H, Gu G D, Li L 2020 Phys. Rev. B 102 054503Google Scholar

    [65]

    Arsenijević S, Hodovanets H, Gaál R, Forró L, Bud'ko S L, Canfield P C 2013 Phys. Rev. B 87 224508Google Scholar

    [66]

    Zhou R, Li Z, Yang J, Sun D L, Lin C T, Zheng G Q 2013 Nat. Commun. 4 1

    [67]

    Analytis J G, Kuo H, McDonald R D, Wartenbe M, Hussey N, Fisher I 2014 Nat. Phys. 10 194Google Scholar

    [68]

    Shishido H, Bangura A, Coldea A, Tonegawa S, Hashimoto K, Kasahara S, Ikeda H, Terashima T, Settai R, Ōnuki Y, Vignolles D, Proust C, Vignolle B, McCollam A, Matsuda Y, Shibauchi T, Carrington A 2010 Phys. Rev. Lett. 104 057008Google Scholar

    [69]

    Walmsley P, Putzke C, Malone L, Guillamón I, Vignolles D, Proust C, Badoux S, Coldea A, Watson M D, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y, Carrington A 2013 Phys. Rev. Lett. 110 257002Google Scholar

    [70]

    Hashimoto K, Cho K, Shibauchi T, Kasahara S, Mizukami Y, Katsumata R, Tsuruhara Y, Terashima T, Ikeda H, Tanatar M A, Kitano H, Salovich N, Giannetta R W, Walmsley P, Carrington A, Prozorov R, Matsuda Y 2012 Science 336 1554Google Scholar

    [71]

    Hayes I M, McDonald R D, Breznay N P, Helm T, Moll P J, Wartenbe M, Shekhter A, Analytis J G 2016 Nat. Phys. 12 916Google Scholar

    [72]

    Hayes I M, Hao Z, Maksimovic N, Lewin S K, Chan M K, McDonald R D, Ramshaw B, Moore J E, Analytis J G 2018 Phys. Rev. Lett. 121 197002Google Scholar

    [73]

    Maiwald J, Jeevan H, Gegenwart P 2012 Phys. Rev. B 85 024511Google Scholar

    [74]

    Böhmer A, Burger P, Hardy F, Wolf T, Schweiss P, Fromknecht R, Reinecker M, Schranz W, Meingast C 2014 Phys. Rev. Lett. 112 047001Google Scholar

  • 图 1  各掺杂浓度下的面内电阻率随温度变化的曲线, 分别为以下样品: (a) Ba(Fe1–xCox)2As2, (b) BaFe2(As1–xPx)2, (c) Ba1–xKxFe2As2[19]

    Figure 1.  Doping evolution of the temperature dependence of the in-plane resistivity for (a) Ba(Fe1–xCox)2As2, (b) BaFe2(As1–xPx)2, and (c) Ba1–xKxFe2As2[19]

    图 2  空穴掺杂的“122”体系的霍尔系数随温度的变化[38]

    Figure 2.  The temperature dependence of Hall coefficients for hole-doping “122”-type iron-based superconductors[38]

    图 3  (a) 样品SmFe1–xCoxAsO随温度变化的热电势, (b) 热电势绝对值及超导转变温度随掺杂浓度的变化[45]

    Figure 3.  (a) The temperature dependence of Seebeck coefficients for SmFe1–xCoxAsO, (b) Doping dependence of thermopower, |S(300 K)|, |S'(300 K)| and superconducting transition temperature $T^{\rm{mid}}_{{\rm{c}}}$ for SmFe1–xCoxAsO samples[45]

    图 4  多个体系铁基超导体的热电势最大值与$T_{\rm{c}}$之间的关系. 图中未加引文的部分为本文作者尚未发表的数据

    Figure 4.  The relation between the maximum of thermopower and the $T_{\rm{c}}$ for various iron-based superconductors. The unreferenced portion of the figure is the unpublished data

    图 5  能斯特系数与温度之间的曲线, 分别为: (a) “1111”体系[49]; (b) “122”体系中. 图中BaFe2As2的结果与文献[60]一致

    Figure 5.  The temperature dependence of Nernst coefficients for (a) “1111”-type[49]; (b) “122”-type. The result of BaFe2As2 is consistent with the report in the Ref. [60]

  • [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [2]

    Nakayama K, Miyata Y, Phan G N, Sato T, Tanabe Y, Urata T, Tanigaki K, Takahashi T 2014 Phys. Rev. Lett. 113 237001Google Scholar

    [3]

    Kushnirenko Y, Fedorov A, Haubold E, Thirupathaiah S, Wolf T, Aswartham S, Morozov I, Kim T, Büchner B, Borisenko S 2018 Phys. Rev. B 97 180501Google Scholar

    [4]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2015 Nat. Mater. 14 325Google Scholar

    [5]

    Dong X L, Jin K, Yuan D D, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F, Zhao Z X 2015 Phys. Rev. B 92 064515Google Scholar

    [6]

    Shi M C, Wang N Z, Lei B, Shang C, Meng F B, Ma L K, Zhang F X, Kuang D Z, Chen X H 2018 Phys. Rev. Mater. 2 074801Google Scholar

    [7]

    Shi M Z, Wang N Z, Lei B, Ying J J, Zhu C S, Sun Z L, Cui J H, Meng F B, Shang C, Ma L K, Chen X H 2018 New J. Phys. 20 123007Google Scholar

    [8]

    Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H, Yoshida Y 2016 J. Am. Chem. Soc. 138 3410Google Scholar

    [9]

    Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M, Cao G H 2016 J. Am. Chem. Soc. 138 7856Google Scholar

    [10]

    Klauss H H, Luetkens H, Klingeler R, Hess C, Litterst F J, Kraken M, Korshunov M M, Eremin I, Drechsler S L, Khasanov R, Amato A, Hamann-Borrero J, Leps N, Kondrat A, Behr G, Werner J, Büchner B 2008 Phys. Rev. Lett. 101 077005Google Scholar

    [11]

    Wen H H, Mu G, Fang L, Yang H, Zhu X 2008 Europhys. Lett. 82 17009Google Scholar

    [12]

    Mu G, Fang L, Yang H, Zhu X, Cheng P, Wen H H 2008 J. Phys. Soc. Jpn. 77 15Google Scholar

    [13]

    Wang C, Jiang S, Tao Q, Ren Z, Li Y K, Li L J, Feng C M, Dai J H, Cao G H, Xu Z A 2009 Europhys. Lett. 86 47002Google Scholar

    [14]

    Lai K, Takemori A, Miyasaka S, Engetsu F, Mukuda H, Tajima S 2014 Phys. Rev. B 90 064504Google Scholar

    [15]

    Hess C, Kondrat A, Narduzzo A, Hamann-Borrero J, Klingeler R, Werner J, Behr G, Büchner B 2009 Europhys. Lett. 87 17005Google Scholar

    [16]

    Suzuki S, Miyasaka S, Tajima S, Kida T, Hagiwara M 2009 J. Phys. Soc. Jpn. 78 114712Google Scholar

    [17]

    Haule K, Kotliar G 2009 New J. Phys. 11 025021Google Scholar

    [18]

    Sefat A S, Huq A, McGuire M A, Jin R, Sales B C, Mandrus D, Cranswick L M, Stephens P W, Stone K H 2008 Phys. Rev. B 78 104505Google Scholar

    [19]

    Ishida S, Nakajima M, Liang T, Kihou K, Lee C H, Iyo A, Eisaki H, Kakeshita T, Tomioka Y, Ito T, Uchida S 2013 J. Am. Chem. Soc. 135 3158Google Scholar

    [20]

    Nakajima M, Ishida S, Tanaka T, Kihou K, Tomioka Y, Saito T, Lee C H, Fukazawa H, Kohori Y, Kakeshita T, Iyo A, Ito T, Eisaki H, Uchida S 2014 Sci. Rep. 4 5873

    [21]

    Wu Y P, Zhao D, Wang A F, Wang N Z, Xiang Z J, Luo X G, Wu T, Chen X H 2016 Phys. Rev. Lett. 116 147001Google Scholar

    [22]

    Shen B, Yang H, Wang Z S, Han F, Zeng B, Shan L, Ren C, Wen H H 2011 Phys. Rev. B 84 184512Google Scholar

    [23]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Shishido H, Ikeda H, Takeya H, Hirata K, Terashima T, Matsuda Y 2010 Phys. Rev. B 81 184519Google Scholar

    [24]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14262Google Scholar

    [25]

    Yeh K W, Huang T W, Huang Y L, Chen T K, Hsu F C, Wu P M, Lee Y C, Chu Y Y, Chen C L, Luo J Y, Yan D C, Wu M K 2008 Europhys. Lett. 84 37002Google Scholar

    [26]

    Mizuguchi Y, Tomioka F, Tsuda S, Yamaguchi T, Takano Y 2009 J. Phys. Soc. Jpn. 78 074712Google Scholar

    [27]

    Katayama N, Ji S, Louca D, Lee S, Fujita M, J. Sato T, Wen J S, Xu Z J, Gu G D, Xu G Y, Lin Z W, Enoki M, Chang S, Yamada K, Tranquada J M 2010 J. Phys. Soc. Jpn. 79 113702Google Scholar

    [28]

    Chu J H, Analytis J G, De Greve K, McMahon P L, Islam Z, Yamamoto Y, Fisher I R 2010 Science 329 824Google Scholar

    [29]

    Ying J, Wang X, Wu T, Xiang Z, Liu R, Yan Y, Wang A, Zhang M, Ye G, Cheng P, Hu J P, Chen X H 2011 Phys. Rev. Lett. 107 067001Google Scholar

    [30]

    Xu X F, Jiao W H, Zhou N, Li Y K, Chen B, Cao C, Dai J H, Bangura A F, Cao G H 2014 Phys. Rev. B 89 104517Google Scholar

    [31]

    Blomberg E, Tanatar M, Fernandes R, Mazin I, Shen B, Wen H H, Johannes M, Schmalian J, Prozorov R 2013 Nat. Commun. 4 1914

    [32]

    Ma J Q, Luo X G, Cheng P, Zhu N, Liu D Y, Chen F, Ying J J, Wang A F, Lu X F, Lei B, Chen X H 2014 Phys. Rev. B 89 174512Google Scholar

    [33]

    Malinowski P, Jiang Q, Sanchez J J, Mutch J, Liu Z, Went P, Liu J, Ryan P J, Kim J W, Chu J H 2020 Nat. Phys. 16 1189

    [34]

    Jesche A, Nitsche F, Probst S, Doert T, Müller P, Ruck M 2012 Phys. Rev. B 86 134511Google Scholar

    [35]

    Tanatar M A, Böhmer A E, Timmons E I, Schütt M, Drachuck G, Taufour V, Kothapalli K, Kreyssig A, Bud'ko S L, Canfield P C, Fernandes R M, Prozorov R 2016 Phys. Rev. Lett. 117 127001Google Scholar

    [36]

    Fang L, Luo H Q, Cheng P, Wang Z S, Jia Y, Mu G, Shen B, Mazin I I, Shan L, Ren C, Wen H H 2009 Phys. Rev. B 80 140508Google Scholar

    [37]

    Iida K, Grinenko V, Kurth F, Ichinose A, Tsukada I, Ahrens E, Pukenas A, Chekhonin P, Skrotzki W, Teresiak A, Hühne R, Aswartham S, Wurmehl S, Mönch I, Erbe M, Hänisch J, Holzapfel B, Drechsler S L, Efremov D V 2016 Sci. Rep. 6 1Google Scholar

    [38]

    Ohgushi K, Kiuchi Y 2012 Phys. Rev. B 85 064522Google Scholar

    [39]

    Shimojima T, Sakaguchi F, Ishizaka K, Ishida Y, Kiss T, Okawa M, Togashi T, Chen C T, Watanabe S, Arita M, Shimada K, Namatame H, Taniguchi M, Ohgushi K, Kasahara S, Terashima T, Shibauchi T, Matsuda Y, Chainani A, Shin S 2011 Science 332 564Google Scholar

    [40]

    Liu Y, Lograsso T A 2014 Phys. Rev. B 90 224508Google Scholar

    [41]

    Xu N, Richard P, Shi X, van Roekeghem A, Qian T, Razzoli E, Rienks E, Chen G F, Ieki E, Nakayama K, Sato T, Takahashi T, Shi M, Ding H 2013 Phys. Rev. B 88 220508Google Scholar

    [42]

    Hayes I M, Maksimovic N, Lopez G N, Chan M K, Ramshaw B, McDonald R D, Analytis J G 2020 Nat. Phys. 10.1038/s41567-020-0982-x

    [43]

    Obertelli S, Cooper J, Tallon J 1992 Phys. Rev. B 46 14928Google Scholar

    [44]

    Tallon J L, Bernhard C, Shaked H, Hitterman R, Jorgensen J 1995 Phys. Rev. B 51 12911Google Scholar

    [45]

    Wang C, Li Y, Zhu Z, Jiang S, Lin X, Luo Y, Chi S, Li L, Ren Z, He M, Chen H, Wang Y T, Tao Q, Cao G H, Xu Z A 2009 Phys. Rev. B 79 054521Google Scholar

    [46]

    Li L J, Li Y K, Ren Z, Luo Y K, Lin X, He M, Tao Q, Zhu Z W, Cao G H, Xu Z A 2008 Phys. Rev. B 78 132506Google Scholar

    [47]

    Li L J, Luo Y K, Wang Q B, Chen H, Ren Z, Tao Q, Li Y K, Lin X, He M, Zhu Z W, Cao G H, Xu Z A 2009 New J. Phys. 11 025008Google Scholar

    [48]

    Pallecchi I, Lamura G, Tropeano M, Putti M, Viennois R, Giannini E, Van Der Marel D 2009 Phys. Rev. B 80 214511Google Scholar

    [49]

    Zhu Z W, Xu Z A, Lin X, Cao G H, Feng C M, Chen G F, Li Z, Luo J L, Wang N L 2008 New J. Phys. 10 063021Google Scholar

    [50]

    Lin X, Guo H J, Shen C Y, Luo Y K, Tao Q, Cao G H, Xu Z A 2011 Phys. Rev. B 83 014503Google Scholar

    [51]

    Wu M K, Wang M J, Yeh K W 2013 Sci. Technol. Adv. Mater. 14 014402Google Scholar

    [52]

    Li Y K, Lin X, Zhou T, Shen J Q, Tao Q, Cao G H, Xu Z A 2009 J. Phys. Condens. Matter 21 355702Google Scholar

    [53]

    Gooch M, Lv B, Lorenz B, Guloy A M, Chu C W 2009 Phys. Rev. B 79 104504Google Scholar

    [54]

    Gooch M, Lv B, Lorenz B, Guloy A M, Chu C W 2010 J. Appl. Phys. 107 09E145Google Scholar

    [55]

    Lv B, Gooch M, Lorenz B, Chen F, Guloy A, Chu C 2009 New J. Phys. 11 025013Google Scholar

    [56]

    Tao Q, Zhu Z W, Lin X, Cao G H, Xu Z A, Chen G F, Luo J L, Wang N L 2010 J. Phys. Condens. Matter. 22 072201Google Scholar

    [57]

    Matusiak M, Plackowski T, Bukowski Z, Zhigadlo N, Karpinski J 2009 Phys. Rev. B 79 212502Google Scholar

    [58]

    Xu Z A, Ong N P, Wang Y, Kakeshita T, Uchida S 2000 Nature 406 486Google Scholar

    [59]

    Sondheimer E 1948 Proc. R. Soc. Lond. A. Math. Phys. Sci. 193 484

    [60]

    Matusiak M, Bukowski Z, Karpinski J 2010 Phys. Rev. B 81 020510Google Scholar

    [61]

    Matusiak M, Bukowski Z, Karpinski J 2011 Phys. Rev. B 83 224505Google Scholar

    [62]

    Richard P, Nakayama K, Sato T, Neupane M, Xu Y M, Bowen J H, Chen G F, Luo J L, Wang N L, Dai X, Fang Z, Ding H, Takahashi T 2010 Phys. Rev. Lett. 104 137001Google Scholar

    [63]

    Harrison N, Sebastian S 2009 Phys. Rev. B 80 224512Google Scholar

    [64]

    Chen L, Xiang Z J, Tinsman C, Lei B, Chen X H, Gu G D, Li L 2020 Phys. Rev. B 102 054503Google Scholar

    [65]

    Arsenijević S, Hodovanets H, Gaál R, Forró L, Bud'ko S L, Canfield P C 2013 Phys. Rev. B 87 224508Google Scholar

    [66]

    Zhou R, Li Z, Yang J, Sun D L, Lin C T, Zheng G Q 2013 Nat. Commun. 4 1

    [67]

    Analytis J G, Kuo H, McDonald R D, Wartenbe M, Hussey N, Fisher I 2014 Nat. Phys. 10 194Google Scholar

    [68]

    Shishido H, Bangura A, Coldea A, Tonegawa S, Hashimoto K, Kasahara S, Ikeda H, Terashima T, Settai R, Ōnuki Y, Vignolles D, Proust C, Vignolle B, McCollam A, Matsuda Y, Shibauchi T, Carrington A 2010 Phys. Rev. Lett. 104 057008Google Scholar

    [69]

    Walmsley P, Putzke C, Malone L, Guillamón I, Vignolles D, Proust C, Badoux S, Coldea A, Watson M D, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y, Carrington A 2013 Phys. Rev. Lett. 110 257002Google Scholar

    [70]

    Hashimoto K, Cho K, Shibauchi T, Kasahara S, Mizukami Y, Katsumata R, Tsuruhara Y, Terashima T, Ikeda H, Tanatar M A, Kitano H, Salovich N, Giannetta R W, Walmsley P, Carrington A, Prozorov R, Matsuda Y 2012 Science 336 1554Google Scholar

    [71]

    Hayes I M, McDonald R D, Breznay N P, Helm T, Moll P J, Wartenbe M, Shekhter A, Analytis J G 2016 Nat. Phys. 12 916Google Scholar

    [72]

    Hayes I M, Hao Z, Maksimovic N, Lewin S K, Chan M K, McDonald R D, Ramshaw B, Moore J E, Analytis J G 2018 Phys. Rev. Lett. 121 197002Google Scholar

    [73]

    Maiwald J, Jeevan H, Gegenwart P 2012 Phys. Rev. B 85 024511Google Scholar

    [74]

    Böhmer A, Burger P, Hardy F, Wolf T, Schweiss P, Fromknecht R, Reinecker M, Schranz W, Meingast C 2014 Phys. Rev. Lett. 112 047001Google Scholar

  • [1] LI Zezhong, HONG Wenshan, XIE Tao, LIU Chang, LUO Huiqian. Spin excitation spectra of iron pnictide superconductors. Acta Physica Sinica, 2025, 74(1): 017401. doi: 10.7498/aps.74.20241534
    [2] Li Geng, Ding Hong, Wang Zi-Qiang, Gao Hong-Jun. Majorana zero mode and its lattice construction in iron-based superconductors. Acta Physica Sinica, 2024, 73(3): 030302. doi: 10.7498/aps.73.20232022
    [3] Yu Ze-Hao, Zhang Li-Fa, Wu Jing, Zhao Yun-Shan. Recent progress of 2-dimensional layered thermoelectric materials. Acta Physica Sinica, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [4] Wei Jiang-Tao, Yang Liang-Liang, Qin Yuan-Hao, Song Pei-Shuai, Zhang Ming-Liang, Yang Fu-Hua, Wang Xiao-Dong. Methodology of teasting thermoelectric properties of low-dimensional nanomaterials. Acta Physica Sinica, 2021, 70(4): 047301. doi: 10.7498/aps.70.20201175
    [5] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [6] Wang Zhi-Cheng, Cao Guang-Han. Self-doped iron-based superconductors with intergrowth structures. Acta Physica Sinica, 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [7] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [8] Lin Tong, Hu Die, Shi Li-Yu, Zhang Si-Jie, Liu Yan-Qi, Lv Jia-Lin, Dong Tao, Zhao Jun, Wang Nan-Lin. Infrared spectroscopy study of ironbased superconductor Li0.8Fe0.2 ODFeSe. Acta Physica Sinica, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [9] Wang Nai-Zhou, Shi Meng-Zhu, Lei Bin, Chen Xian-Hui. Exploration and physical investigation of FeSe-based superconductors. Acta Physica Sinica, 2018, 67(20): 207408. doi: 10.7498/aps.67.20181496
    [10] Gong Dong-Liang, Luo Hui-Qian. Antiferromagnetic order and spin dynamics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [11] Guo Jing, Wu Qi, Sun Li-Ling. Pressure-induced phenomena and physics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [12] Hao Ning, Hu Jiang-Ping. Research progress of topological quantum states in iron-based superconductor. Acta Physica Sinica, 2018, 67(20): 207101. doi: 10.7498/aps.67.20181455
    [13] Du Zeng-Yi, Fang De-Long, Wang Zhen-Yu, Du Guan, Yang Xiong, Yang Huan, Gu Gen-Da, Wen Hai-Hu. Investigation of scanning tunneling spectra on iron-based superconductor FeSe0.5Te0.5. Acta Physica Sinica, 2015, 64(9): 097401. doi: 10.7498/aps.64.097401
    [14] Yu Rong. Electron correlations and orbital selectivities in multiorbital models for iron-based superconductors. Acta Physica Sinica, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [15] Li Shi-Chao, Gan Yuan, Wang Jing-Hui, Ran Ke-Jing, Wen Jin-Sheng. Magnetic neutron scattering studies on the Fe-based superconductor system Fe1+yTe1-xSex. Acta Physica Sinica, 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [16] Zhao Jing-Long, Dong Zheng-Chao, Zhong Chong-Gui, Li Cheng-Di. Tunneling spectra for quantum wire/iron-based superconductor junction. Acta Physica Sinica, 2015, 64(5): 057401. doi: 10.7498/aps.64.057401
    [17] Wu Hai-Na, Sun Xue, Gong Wei-Jiang, Yi Guang-Yu. Influences of electron-phonon interaction on the thermoelectric effect in a parallel double quantum dot system. Acta Physica Sinica, 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [18] Li Zheng, Zhou Rui, Zheng Guo-Qing. Quantum criticalities in carrier-doped iron-based superconductors. Acta Physica Sinica, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [19] Liu Su, Li Bin, Wang Wei, Wang Jun, Liu Mei. Electronic structure and magnetism of SrFeAsF and Co-doped superconductor SrFe0.875Co0.125AsF. Acta Physica Sinica, 2010, 59(6): 4245-4252. doi: 10.7498/aps.59.4245
    [20] Yu Min, Yang Hong-Shun, Cai Yi-Sheng, Ruan Ke-Qing, Li Peng-Cheng, Li Zhi-Quan, Chen Zhao-Jia, Cao Lie-Zhao. . Acta Physica Sinica, 2002, 51(3): 674-678. doi: 10.7498/aps.51.674
Metrics
  • Abstract views:  9311
  • PDF Downloads:  605
  • Cited By: 0
Publishing process
  • Received Date:  04 November 2020
  • Accepted Date:  25 December 2020
  • Available Online:  24 December 2020
  • Published Online:  05 January 2021

/

返回文章
返回