Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spin Excitation Spectrum of Iron Pnictide Superconductors

Li Ze-Zong Hong Wen-Shan Xie Tao Liu Chang Luo Hui-Qian

Citation:

Spin Excitation Spectrum of Iron Pnictide Superconductors

Li Ze-Zong, Hong Wen-Shan, Xie Tao, Liu Chang, Luo Hui-Qian
PDF
Get Citation
  • Spin fluctuations are generally believed as the most possible candidate for the medium of superconducting electron pairing in unconventional superconductors. The iron-base superconductors provide extensive opportunities for the mechanism research of unconventional superconductivity, as they have so many systems with different structures and rice magnetisms. Taking the iron pnictide superconductors as examples, this review summarizes the inelastic neutron scattering results on the spin excitation spectrum of iron-based superconductors, especially for their common features.
    First, we introduce the direct connection between the low energy spin excitations and superconductivity, which is so called as the neutron spin resonance mode. This mode is widely present in the superconducting states of all iron-based superconductors, where the resonance energy ER is linearly proportional to the critical temperature Tc: ER=4.9 kB Tc, and it has a universal c-axis preferred characteristic. The in-plane dispersion of spin resonance modes is not limited by the superconducting energy gap, which contradicts the traditional spin exciton model. The out of plane dispersion of spin resonance modes is determined by the Fe-As interplanar distance, indicating that the three-dimensional spin correlation effect cannot be ignored, which may be the key to clarifying the role of spin fluctuations in superconductivity.
    Second, we summarize the energy dispersion, intensity distribution and total fluctuating moments for high energy spin excitations. Although the Heisenberg model can roughly describe the similar dispersions in different systems based on the anisotropic in-plane nearest neighbor effective exchange couplings and the similar second nearest neighbor effective exchange coupling, the correlated Hubbard model based on itinerant magnetism can more accurately describe the spin wave behavior after degeneracy, thus the spin excitations are more likely understood from the perspective of itinerant magnetism. The spin excitation intensity varies greatly with energy in different systems, indicating a competitive relationship between itinerant and localized magnetic interactions. However, the total fluctuating moments are generally the same, indicating that the effective spin S=1/2. The spin excitation bandwidth is around 100-200 meV, probably is correlated with the height of As away from the Fe-Fe plane.
    Finally, we make a full comparison for the spin excitations in iron-based superconductors and copper oxide superconductors. The spin excitation spectrum of iron-based superconductors has much richer physics than cuprates, due to the complex physics on multiple orbitals, Fermi surfaces, and energy gaps. These phenomena lead to the diversity of spin excitations, especially for the prominent three-dimensional spin correlation effect. This indicates that interlayer pairing and intra layer pairing driven by spin interactions are equally important and must be fully considered in microscopic theories of high-Tc superconductivity.
  • [1]

    Stewart G R 2017 Adv. in Phys. 66 75

    [2]

    Norman M R 2011 Science 332 196

    [3]

    Zhou X, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Torma P, Eremets M 2021 Nat. Rev. Phys. 3 462

    [4]

    Tran H, Vu T N 2023 Phys. Rev. Materials 7, 054805

    [5]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73

    [6]

    Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, Eremets E I 2019 Nature 569 528

    [7]

    Zhong X, Tse J S, Hemley R J, Liu H 2022 The Innovation 3 100226

    [8]

    Shan P F, Wang N N, Sun J P, Cheng J G 2021 Physics 50 217

    [9]

    Sun Y, Liu H Y, Ma Y M 2021 Acta Phys. Sin. 70 017407

    [10]

    Li Z W, He X, Zhang C L, Lu K, Min B, Zhang J, Zhang S J, Zhao J F, Shi L C, Peng Y, Feng S M, Deng Z,Song J, Liu Q Q, Wang X C, Yu R C, Wang L H, Li Y Z, Bass J D, Prakapenka V, Chariton S, Liu H Z, Jin C Q 2023 Sci. China Phys. Mech. Astron. 66 267411

    [11]

    Zhang K, Chen W, Zhang Y, Guo J, Chen S, Huang X, Cui T 2024 Sci. China Phys. Mech. Astron. 67 238211

    [12]

    Gao M, Lu Z Y, Xiang T 2015 Physics 44 421 (高淼, 卢仲毅, 向涛 2015 物理 44 421)

    [13]

    Stockert O, Steglich F 2011 Annu. Rev. Condens.Matter Phys. 2 79

    [14]

    Yang Y F 2014 Physics 43 80 (杨义峰 2014 物理 43 80)

    [15]

    White B D, Thompson J D and Maple M B 2015 Physica C 514 246

    [16]

    Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17

    [17]

    Chen X H, Dai P C, Feng D L, Xiang T and Zhang F C 2014 Nat. Sci. Rev. 1 371

    [18]

    Si Q M, Yu R and Abrahams E 2016 Nat. Rev. Mater. 1 16017

    [19]

    Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y, Luo J L 2014 Nat. Commun. 5 5508

    [20]

    Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, Uwatoko Y 2015 Phys. Rev. Lett. 114 117001

    [21]

    Liu Z Y, Dong Q X, Yang P T, Shan P F, Wang B S, Sun J P, Dun Z L, Uwatoko Y, Chen G F, Dong X L, Zhao Z X and Chenget J-G 2022 Phys. Rev. Lett. 128 187001

    [22]

    Yang P T, Dong Q X, Shan P F, Liu Z Y, Sun J P, Dun Z L, Uwatoko Y, Chen G F, Wang B S and Cheng J G 2022 Chin. Phys. Lett. 39 067401

    [23]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y and Hwang H Y 2019 Nature 572 624

    [24]

    Gu Q Q, Wen H-H 2022 The Innovation 3 100202.

    [25]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M and Wang M 2023 Nature 621 493

    [26]

    Ding X, Shen S C, Leng H Q, Xu M H, Zhao Y, Zhao J R, Sui X L, Wu X Q, Xiao H Y, Zu X T, Huang B, Luo H Q, Yu P and Qiao L 2022 Sci. China Phys. Mech. Astron. 65 267411

    [27]

    Wang M 2023 Physics 52 663 (王猛 2023 物理 52 663)

    [28]

    Wang M, Wen H-H, Wu T, Yao D-X, Xiang T 2024 Chinese Phys. Lett. 41 077402

    [29]

    Luo H Q 2024 Modern Physics 36 46 (罗会仟 2024 现代物理知识 36 46)

    [30]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G and Zhao J 2024 Nature 631 531

    [31]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y and Cheng J G 2024 Nature 634 579

    [32]

    Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L and Yuan H Q 2024 Nat. Phys. 20 1269

    [33]

    Wu W, Luo Z, Yao D-X, Wang M 2024 Sci. China Phys. Mech. Astron. 67 117402

    [34]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [35]

    Dai P C 2015 Rev. Mod. Phys. 87 855

    [36]

    Gong D L, Luo H Q 2018 Acta Physica Sinica 67 207407 (龚冬良,罗会仟 2018 物理学报 67 207407)

    [37]

    Luo H Q 2017 Chin. Sci. Bull. 62 3955

    [38]

    Gong D L, Yi M, Wang M, Xie T, Zhang W L, Danilkin S, Deng G C, Liu X Z, Park J T, Ikeuchi K, Kamazawa K, Mo S K, Hashimoto M, Lu D H, Zhang R, Dai P C, Birgeneau R J, Li S L, Luo H Q 2022 Front. Phys. 10 886459

    [39]

    Dai P C, Hu J P, Dagotto E 2012 Nat. Phys. 8 709

    [40]

    Luo H Q, Zhang R, Laver M, Yamani Z, Wang M, Lu X Y, Wang M Y, Chen Y C, Li S L, Chang S, Lynn J W, Dai P C 2012 Phys. Rev. Lett. 108 247002

    [41]

    Lu X Y, Gretarsson H, Zhang R, Liu X R, Luo H Q, Tian W, Laver M, Yamani Z, Kim Y J, Nevidomskyy A H, Si Q M, Dai P C 2013 Phys. Rev. Lett. 110 257001

    [42]

    Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S Y, Fujihisa H, Gotoh Y, Kihou K, Eisaki H, Yoshida Y 2016 J. Am. Chem. Soc. 138 3410

    [43]

    Meier W R, Kong T, Bud’ko S L, Canfield P C 2017 Phys. Rev. Mater. 1, 013401

    [44]

    Kreyssig A, Wilde J M, Böhmer A E, Tian W, Meier W R, Li B, Ueland B G, Xu M Y, Bud’ko S L, Canfield P C, McQueeney R J, Goldman A I 2018 Phys. Rev. B 97 224521

    [45]

    Wang Z-C, He C-Y, Wu S-Q, Tang Z-T, Liu Y, Ablimit A, Feng C-M, Cao G-H 2016 J. Am. Chem. Soc. 138 7856

    [46]

    Wang T, Chu J, Jin H, Feng J X, Wang L L, Song Y K, Zhang C, Li W, Li Z J, Hu T, Jiang D, Peng W, Liu X S, Mu G 2019 J. Phys. Chem. C 123 13925

    [47]

    Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Tao Q, Feng C M, Xu Z A, Cao G-H 2017 J. Phys. Condens. Matter 29 11LT01

    [48]

    Wang Z, He C, Wu S, Tang Z, Liu Y, Cao G-H 2017 Chem. Mater. 29 1805

    [49]

    Wu S, Wang Z, He C, Tang Z, Liu Y, Cao G-H 2017 Phys. Rev. Mater. 1, 044804

    [50]

    Sun Y L, Jiang H, Zhai H F, Bao J K, Jiao W H, Tao Q, Shen C Y, Zeng Y W, Xu Z A, Cao G H 2012 J. Am. Chem. Soc. 134 12893

    [51]

    Zhang C, Wu Q Y, Hong W S, Liu H, Zhu S X, Song J J, Zhao Y Z, Wu F Y, Liu Z T, Liu S Y, Yuan Y H, Huang H, He J, Li S L, Liu H Y, Duan Y X, Luo H Q, Meng J Q 2022 Sci. China Phys. Mech. Astron. 65 237411

    [52]

    Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296

    [53]

    de la Cruz C, Huang Q, Lynn J W, Li J Y, Ratcliff W II, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L, Dai P C 2008 Nature 453 899

    [54]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [55]

    Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G, Chen X H 2008 Phys. Rev. Lett. 101 257003

    [56]

    Rotter M, Tegel M, Johrendt D 2008 Phys. Rev. Lett. 101 107006

    [57]

    Luo H Q, Wang Z S, Yang H, Cheng P, Zhu X Y and Wen H-H 2008 Supercond.Sci. Technol. 21 125014

    [58]

    Chen Y C, Lu X Y, Wang M, Luo H Q and Li S L 2011 Supercond. Sci. Technol. 24 065004

    [59]

    Katayama N, Kudo K, Onari S, Mizukami T, Sugawara K, Sugiyama Y, Kitahama Y, Iba K, Fujimura K, Nishimoto N, Nohara M, Sawa H 2013 J. Phys. Soc. Japan 82 123702

    [60]

    Xie T, Gong D L, Zhang W L, Gu Y H, Huesges Z, Chen D F, Liu Y T, Hao L J, Meng S Q, Lu Z L, Li S L and Luo H Q 2017 Supercond. Sci. Technol. 30 095002

    [61]

    Ni N, Straszheim W E, Williams D J, Tanatar M A, Prozorov R, Bauer E D, Ronning F, Thompson J D, Cava R J 2013 Phys. Rev. B 87 060507

    [62]

    Jiang S, Liu C, Cao H B, Birol T, Allred J M, Tian W, Liu L, Cho K, Krogstad M J, Ma J, Taddei K M, Tanatar M A, Hoesch M, Prozorov R, Rosenkranz S, Uemura Y J, Kotliar G, Ni N 2016 Phys. Rev. B 93 054522

    [63]

    Jiang S, Liu L, Schütt M, Hallas A M, Shen B, Tian W, Emmanouilidou E, Shi A S, Luke G M, Uemura Y J, Fernandes R M, Ni N 2016 Phys. Rev. B 93 174513

    [64]

    Sun Y, Ablimit A, Bao J, Jiang H, Zhou J, Cao G-H 2013 Sci. Technol. Adv. Mater. 14 055008

    [65]

    Ni N, Allred J M, Chan B C, Cava R J 2011 Proc. Natl Acad. Sci. USA 108 E1019

    [66]

    Ni N, Straszheim W E, Williams D J, Tanatar M A, Prozorov R, Bauer E D, Ronning F, Thompson J D, Cava R J 2013 Phys. Rev. B 87 060507

    [67]

    Sapkota A, Tucker G S, Ramazanoglu M, Tian W, Ni N, Cava R J, McQueeney R J, Goldman A I, Kreyssig A 2014 Phys. Rev. B 90 100504(R)

    [68]

    Wu Q Y, Zhang C, Li Z Z, Hong W S, Liu H, Song J J, Zhao Y Z, Yuan Y H, Meng J Q 2023 Phys. Rev. B 108 205136

    [69]

    Sato M, Kawamata T, Kobayashi Y, Yasui Y, Iida T, Suzuki K, Itoh M, Moyoshi T, Motoya K, Kajimoto R, Nakamura M, Inamura Y, Arai M 2011 J. Phys. Soc. Jpn. 80 093709

    [70]

    Ikeuchi K, Kobayashi Y, Suzuki K, Itoh M, Kajimoto R, Bourges P, Christianson A D, Nakamura H, Machida M, Sato M 2014 JPS Conf. Proc. 3, 015043

    [71]

    R. M. Fernandes, S. A. Kivelson, E. Berg 2016 Phys. Rev. B 93 014511

    [72]

    de la Cruz C, Huang Q, Lynn J W, Li J Y, Ratcliff W II, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L, Dai P C 2008 Nature 453 899

    [73]

    Allred J M, Taddei K M, Bugaris D E, Krogstad M J, Lapidus S H, Chung D Y, Claus H, Kanatzidis M G, Brown D E, Kang J, Fernandes R M, Eremin I, Rosenkranz S, Chmaissem O, Osborn R 2016 Nat. Phys. 12 493

    [74]

    Böhmer A E, Hardy F, Wang L, Wolf T, Schweiss P, Meingast C 2015 Nat. Commun. 6 7911

    [75]

    Taddei K M, Allred J M, Bugaris D E, Lapidus S, Krogstad M, Claus H, Chung D Y, Kanatzidis M, Osborn R, Rosenkranz S, Chmaissem O 2017 Phys. Rev. B 95 064508

    [76]

    Taddei K M, Allred J M, Bugaris D E, Lapidus S, Krogstad M J, Stadel R, Claus H, Chung D Y, Kanatzidis M G, Rosenkranz S, Osborn R, Chmaissem O 2016 Phys. Rev. B 93 134510

    [77]

    Meier W R, Ding Q P, Kreyssig A, Bud’ko S L, Sapkota A, Kothapalli K, Borisov V, Valentí R, Batista C D, Orth P P, Fernandes R M, Goldman A I, Furukawa Y, Böhmer A E, Canfield P C 2018 npj Quantum Mater. 3, 5

    [78]

    Xie T, Wei Y, Gong D L, Fennell T, Stuhr U, Kajimoto R, Ikeuchi K, Li S L, Hu J P, Luo H Q 2008 Phys. Rev. Lett 120 267003

    [79]

    Xie T, Liu C, Bourdarot F, Regnault L-P, Li S L, Luo H Q 2020 Phys. Rev. Research 2, 022018(R)

    [80]

    Liu C, Bourges P, Sidis Y, Xie T, He G H, Bourdarot F, Danilkin S, Ghosh H, Ghosh S, Ma X Y, Li S L, Li Y, Luo H Q 2022 Phys. Rev. Lett. 128 137003

    [81]

    Hong W S, Song L X, Liu B, Li Z Z, Zeng Z Y, Li Y, Wu D S, Sui Q T, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J P, Zhao L, Zhou X J, Qiu X G, Li S L, Luo H Q 2020 Phys. Rev. Lett. 125 117002

    [82]

    Lu X Y, Scherer D D, Tam D W, Zhang W L, Zhang R, Luo H Q, Harriger L W, Walker H C, Adroja D T, Andersen B M, Dai P C 2018 Phys. Rev. Lett. 121 067002

    [83]

    Canfield P C, Bud’ko S L 2010 Annu. Rev. Condens. Matter Phys. 1 27

    [84]

    Zhou H L, Zhang Y H, Li Y, Li S L, Hong W S, Luo H Q 2022 Chin. Phys. B 31 117401

    [85]

    Wang L, Hardy F, Böhmer A E, Wolf T, Schweiss P, Meingast C 2016 Phys. Rev. B 93 014514

    [86]

    Goko T, Aczel A A, Baggio-Saitovitch E, Bud’ko S L, Canfield P C, Carlo J P, Chen G F, Dai P C, Hamann A C, Hu W Z, Kageyama H, Luke G M, Luo J L, Nachumi B, Ni N, Reznik D, Sanchez-Candela D R, Savici A T, Sikes K J, Wang N L, Wiebe C R, Williams T J, Yamamoto T, Yu W, Uemura Y J 2009 Phys. Rev. B 80 024508

    [87]

    Li L J, Luo Y K, Wang Q B, Chen H, Ren Z, Tao Q, Li Y K, Lin X, He M, Zhu Z W 2009 New J. Phys. 11 025008

    [88]

    Ni N, Thaler A, Yan J Q, Kracher A, Colombier E, Bud’ko S L, Canfield P C, Hannahs S T 2010 Phys. Rev. B 82 024519

    [89]

    Jiang S, Xing H, Xuan G F, Wang C, Ren Z, Feng C, Dai J H, Xu Z A, Cao G H 2009 J. Phys.: Condens. Matter 21 382203

    [90]

    Hu D, Lu X Y, Zhang W L, Luo H Q, Li S L, Wang P P, Chen G F, Han F, Banjara S R, Sapkota A, Kreyssig A, Goldman A I, Yamani Z, Niedermayer C, Skoulatos M, Georgii R, Keller T, Wang P, Yu W Q, Dai P C 2015 Phys. Rev. Lett. 114, 157002

    [91]

    Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Ikeda H, Takeya H, Hirata K, Terashima T, Matsuda Y 2010 Phys. Rev. B 81 184519

    [92]

    Zhang C L, Wang M, Luo H Q, Wang M Y, Liu M S, Zhao J, Abernathy D L, Maier T A, Marty K, Lumsden M D, Chi S X, Chang S, Rodriguez-Rivera J A, Lynn J W, Xiang T, Hu J P, Dai P C 2011 Sci. Rep. 1 115

    [93]

    Wang M, Zhang C L, Lu X Y, Tan G T, Luo H Q, Song Y, Wang M Y, Zhang X T, Goremychkin E A, Perring T G, Maier T A, Yin Z P, Haule K, Kotliar G, Dai P C 2013 Nat. Commun. 4 2874

    [94]

    Luo H Q, Lu X Y, Zhang R, Wang M, Goremychkin E A, Adroja D T, Danilkin S, Deng G C, Yamani Z, Dai P C 2013 Phys. Rev. B 88 144516

    [95]

    Lipscombe O J, Harriger L W, Freeman P G, Enderle M, Zhang C L, Wang M Y, Egami T, Hu J P, Xiang T, Norman M R, Dai P C 2010 Phys. Rev. B 82 064515

    [96]

    Steffens P, Lee C H, Qureshi N, Kihou K, Iyo A, Eisaki H, Braden M 2013 Phys. Rev. Lett. 110 137001

    [97]

    Luo H Q, Wang M, Zhang C L, Lu X Y, Regnault L-P, Zhang R, Li S L, Hu J P, Dai P C 2013 Phys. Rev. Lett. 111 107006

    [98]

    Zhang C L, Song Y, Regnault L P, Su Y X, Enderle M, Kulda J, Tan G T, Sims Z C, Egami T, Si Q M, Dai P C 2014 Phys. Rev. B 90 140502(R)

    [99]

    Song Y, Wang W Y, Zhang C L, Gu Y H, Lu X Y, Tan G T, Su Y X, Bourdarot F, Christianson A D, Li S L, Dai P C 2017 Phys. Rev. B 96 184512

    [100]

    Song Y, Man H R, Zhang R, Lu X Y, Zhang C L, Wang M, Tan G T, Regnault L P, Su Y X, Kang J, Fernandes R M, Dai P C 2016 Phys. Rev. B 94 214516

    [101]

    Waßer F, Park J T, Aswartham S, Wurmehl S, Sidis Y, Steffens P, Schmalzl K, Büchner B, Braden M 2019 npj Quantum Mater. 4 59

    [102]

    Rossat-Mignod J, Regnault L-P, Vettier C, Bourges P, Burlet P, Bossy J, Henry J Y, Lapertot G 1991 Phys. C: Supercond. 185 86

    [103]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383

    [104]

    Sidis Y, Pailhès S, Hinkov V, Fauqué B, Ulrich C, Capogna L, Ivanov A, Regnault L-P, Keimer B, Bourges P 2007 C. R. Phys. 8, 745

    [105]

    Yu G, Li Y, Motoyama E M, Greven M 2009 Nat. Phys. 5 873

    [106]

    Xie T, Gong D L, Ghosh H, Ghosh A, Soda M, Masuda T, Itoh S, Bourdarot F, Regnault L P, Danilkin S, Li S L, Luo H Q 2008 Phys. Rev. Lett 120 137001

    [107]

    Adroja D T, Blundell S J, Lang F, Luo H, Wang Z, Cao G 2020 J. Phys.: Condens.Matter 32 435603

    [108]

    Inosov D S, Park J T, Bourges P, Sun D L, Sidis Y, Schneidewind A, Hradil K, Haug D, Lin C T, Keimer B, Hinkov V 2010 Nat. Phys. 6 178

    [109]

    Liu T J, Hu J, Qian B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J, Prokes K, Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Qiu Y, Thampy V, Savici A T, Rodriguez J A, Broholm C 2010 Nat. Mater. 9 718

    [110]

    Zhao J, Rotundu C R, Marty K, Matsuda M, Zhao Y, Setty C, Bourret-Courchesne E, Hu J, Birgeneau R J 2013 Phys. Rev. Lett. 110 147003

    [111]

    Zhang C L, Li H F, Song Y, Su Y X, Tan G T, Netherton T, Redding C, Carr S V, Sobolev O, Schneidewind A, Faulhaber E, Harriger L W, Li S L, Lu X Y, Yao D X, Das T, Balatsky A V, Brückel T, Lynn J W, Dai P C 2013 Phys. Rev. B 88 064504

    [112]

    Wang Q, Shen Y, Pan B Y, Hao Y Q, Ma M W, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X J, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H B, Zhao J 2016 Nat. Mater. 15 159

    [113]

    Ma M, Wang L, Bourges P, Sidis Y, Danilkin S, Li Y 2017 Phys. Rev. B 95 100504(R)

    [114]

    Wang M, Luo H Q, Zhao J, Zhang C L, Wang M, Marty K, Chi S X, Lynn J W, Schneidewind A, Li S L, Dai P C 2010 Phys. Rev. B 81 174524

    [115]

    Park J T, Inosov D S, Yaresko A, Graser S, Sun D L, Bourges Ph, Sidis Y, Li Y, Kim J H, Haug D, Ivanov A, Hradil K, Schneidewind A, Link P, Faulhaber E, Glavatskyy I, Lin C T, Keimer B, Hinkov V 2010 Phys. Rev. B 82134503

    [116]

    Christianson A D, Goremychkin E A, Osborn R, Rosenkranz S, Lumsden M D, Malliakas C D, Todorov I S, Claus H, Chung D Y, Kanatzidis M G, Bewley R I, Guidi T 2008 Nature 456 930

    [117]

    Qiu Y M, Bao W, Zhao Y, Broholm C, Stanev V, Tesanovic Z, Gasparovic Y C, Chang S, Hu J, Qian B, Fang M H, Mao Z Q 2009 Phys. Rev. Lett. 103 067008

    [118]

    Shen S, Zhang X, Wo H, Shen Y, Feng Y, Schneidewind A, Čermák P, Wang W, Zhao J 2020 Phys. Rev. Lett. 124 017001

    [119]

    Ma M, Bourges P, Sidis Y, Ivanov A, Chen G, Ren Z, Li Y 2023 Phys. Rev. B 107 184516

    [120]

    Harriger L W, Lipscombe O J, Zhang C L, Luo H Q, Wang M, Marty K, Lumsden M D, Dai P C 2012 Phys. Rev. B 85, 054511

    [121]

    Guo J, Yue L, Iida K, Kamazawa K, Chen L, Han T, Zhang Y, Li Y 2019 Phys. Rev. Lett. 122 017001

    [122]

    Chubukov A V, Efremov D V, Eremin I 2008 Phys. Rev. B 78 134512

    [123]

    Maier T A, Scalapino D J 2008 Phys. Rev. B 78 020514(R)

    [124]

    Maier T A, Graser S, Scalapino D J, Hirschfeld P 2009 Phys. Rev. B 79 134520

    [125]

    Das T, Balatsky A V 2011 Phys. Rev. Lett. 106 157004

    [126]

    Mazin I I, Schmalian J, 2009 Physica C 469 614

    [127]

    Richard P, Sato T, Nakayama K, Takahashi T, Ding H 2011 Rep. Prog. Phys. 74 124512

    [128]

    Seo K, Bernevig B A, Hu J 2008 Phys. Rev. Lett. 101 206404

    [129]

    Hirschfeld P J, Korshunov M M, Mazin I I 2011 Rep. Prog. Phys. 74 124508

    [130]

    Wang F, Lee D H 2011 Science 332 200

    [131]

    Parish M M, Hu J, Bernevig B A 2008 Phys. Rev. B 78 144514

    [132]

    Onari S, Kontani H, Sato M 2010 Phys. Rev. B 81 060504(R)

    [133]

    Onari S, Kontani H 2012 Phys. Rev. Lett. 109 137001

    [134]

    Kontani H, Onari S 2010 Phys. Rev. Lett. 104 157001

    [135]

    Takeuchi L, Yamakawa Y, Kontani H 2018 Phys. Rev. B 98 165143

    [136]

    Kim M G, Tucker G S, Pratt D K 2013 Phys. Rev. Lett. 110 177002

    [137]

    Zhang R, Wang W Y, Maier T A, Wang M, Stone M B, Chi S, Winn B, Dai P C 2018 Phys. Rev. B 98 060502(R)

    [138]

    Hu D, Yin Z P, Zhang W L, Ewings R A, Ikeuchi K, Nakamura M, Roessli B, Wei Y, Zhao L X, Chen G F, Li S L, Luo H Q, Haule K 2016 Phys. Rev. B 94 094504

    [139]

    Xie T, Liu C, Fennell T, Stuhr U, Li S L, Luo H Q 2020 Chinese Phys. B 30 127402

    [140]

    Zhang C, Yu R, Su Y, Song Y, Wang M, Tan G, Egami T, Fernandez-Baca JA, Faulhaber E, Si Q M, Dai P C 2013 Phys. Rev. Lett. 111 207002

    [141]

    Wang M, Yi M, Sun H L, Valdivia P, Kim M G, Xu Z J, Berlijn T, Christianson A D, Chi S X, Hashimoto M, Lu D H, Li X D, Bourret-Courchesne E, Dai P C 2016 Phys. Rev. B 93 205149

    [142]

    Hong W S, Zhou H L, Li Z Z, Li Y, Stuhr U, Pokhriyal A, Ghosh H, Tao Z, Lu X Y, Hu J P, Li S L, Luo H Q 2023 Phys. Rev. B 107 224514

    [143]

    Ye Z R, Zhang Y, Chen F, Xu M, Jiang J, Niu X H, Wen C H P, Xing L Y, Wang X C, Jin C Q, Xie B P, Feng D L 2014 Phys. Rev. X 4 031041

    [144]

    Xie T, Liu C, Kajimoto R, Ikeuchi K, Li S, Luo H Q 2022 J. Phys.: Condens. Matter 34 474001

    [145]

    Luo H Q, Yamani Z, Chen Y C, Lu X Y, Wang M, Li S L, Maier T A, Danilkin S, Adroja D T and Dai P C 2012 Phys. Rev. B 86 024508

    [146]

    Zhang C, Harriger L W, Yin Z P, Lv W C, Wang M, Tan G T, Song Y, Abernathy D L, Tian W, Egami T, Haule K, Kotliar G, Dai P C 2014 Phys. Rev. Lett. 112 217202

    [147]

    Zhao J, Adroja D T, Yao D X, Bewley R, Li S L, Wang X F, Wu G, Chen X H, Dai P C 2009 Nat. Phys. 5 555

    [148]

    Zhao J, Ratcliff W, Lynn J W, Chen G F, Luo J L, Wang N L, Hu J P, Dai P C 2008 Phys. Rev. B 78 140504(R)

    [149]

    Harriger L W, Luo H Q, Liu M S, Frost C, Hu J P, Norman M R, Dai P C 2011 Phys. Rev. B 84 054544

    [150]

    Harriger L W, Liu M S, Luo H Q, Ewings R A, Frost C D, Perring T G, Dai P C 2012 Phys. Rev. B 86 140403(R)

    [151]

    Liu M S, Harriger L W, Luo H Q, Wang M, Ewings R A, Guidi T, Park H W, Haule K, Kotliar G, Hayden S M, Dai P C 2012 Nat. Phys. 8 376

    [152]

    Lu X Y, Park J T, Zhang R, Luo H Q, Nevidomskyy A N, Si Q M, Dai P C 2014 Science 345 657

    [153]

    Song Y, Lu X Y, Abernathy D L, Tam D W, Niedziela J L, Tian W, Luo H Q, Si Q M, Dai P C 2015 Phys. Rev. B 92 180504(R)

    [154]

    Zhang C L Park J T, Lu X Y, Yu R, Li Y, Zhang W L, Zhao Y, Lynn J W, Si Q M, Dai P C 2015 Phys. Rev. B 91 104520

    [155]

    Zhang W L, Park J T, Lu X Y, Wei Y, Ma X Y, Hao L J, Dai P C, Meng Z Y, Yang Y F, Luo H Q, Li S L 2016 Phys. Rev. Lett. 117 227003

    [156]

    Tam D W, Yin Z P, Xie Y F, Wang W Y, Stone M B, Adroja D T, Walker H C, Yi M, Dai P C 2020 Phys. Rev. B 102 054430

    [157]

    Tam D W, Wang W Y, Zhang L, Song Y, Zhang R, Carr S V, Walker H C, Perring T G, Adroja D T, Dai P C 2019 Phys. Rev. B 99 134519

    [158]

    Tranquada J M, Xu G and Zaliznyak I A 2014 J. Magn. Magn. Mater. 350 148

    [159]

    Fujita M, Hiraka H, Matsuda M, Matsuura M, Tranquada J M, Wakimoto S, Xu G, Yamada K 2012 J. Phys. Soc. Jpn. 81 011007

    [160]

    Zhu Z H, Pan B L, Nie L P, Ni J M, Yang Y X, Chen C S, Jiang C Y, Huang Y Y, Cheng E J, Yu Y J, Miao J J, Hillier A D, Chen X H, Wu T, Zhou Y, Li S Y, Shu L 2023 The Innovation 4 100459

    [161]

    Zeng Z Y, Zhou C K, Zhou H L, Han L K, Chi R Z, Li K, Kofu M, Nakajima K, Wei Y, Zhang W L, Mazzone D G, Meng Z Y, Li S L 2024 Nat. Phys. 20 1097

    [162]

    Sheng J M, Wang L, Jiang W R, Ge H, Zhao N, Li T T, Kofu M, Yu D H, Zhu W, Mei J W, Wang Z T, Wu L S 2024 arXiv: 2402.07730

    [163]

    Wu D S, Jia J J, Yang J G, Hong W S, Shu Y J, Miao T M, Yan H T, Rong H T, Ai P, Zhang X, Yin C H, Li C L, Zhang S J, Zhang F F, Yang F, Wang Z M, Zong N, Liu L J, Li R K, Wang X Y, Peng Q J, Mao H Q, Liu G D, Li S L, Luo H Q, Wu X X, Xu Z Y, Zhao L, Zhou X J 2024 Nat. Phys. 20 571

    [164]

    Headings N S, Hayden S M, Coldea R and Perring T G 2010 Phys. Rev. Lett. 105 247001

    [165]

    Hayden S M, Aeppli G, Mook H A, Perring T G, Mason T E, Cheong S-W and Fisk Z 1996 Phys. Rev. Lett. 76 1344

  • [1] Hu Ze, Yuan Yuan, Li Li-Si, Ren Qing-Yong, Feng Yu, Shen Jun-Ying, Luo Wei, Tong Xin. Inelastic Neutron Scattering Spectrometer and Applications. Acta Physica Sinica, doi: 10.7498/aps.74.20241412
    [2] Li Geng, Ding Hong, Wang Zi-Qiang, Gao Hong-Jun. Majorana zero mode and its lattice construction in iron-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.73.20232022
    [3] Li Miao-Cong, Tao Qian, Xu Zhu-An. The transport properties of iron-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.70.20201836
    [4] Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang. Angle-resolved photoemission spectroscopy studies on the electronic structure and superconductivity mechanism for high temperature superconductors. Acta Physica Sinica, doi: 10.7498/aps.70.20201913
    [5] Wang Zhi-Cheng, Cao Guang-Han. Self-doped iron-based superconductors with intergrowth structures. Acta Physica Sinica, doi: 10.7498/aps.67.20181355
    [6] Lin Tong, Hu Die, Shi Li-Yu, Zhang Si-Jie, Liu Yan-Qi, Lv Jia-Lin, Dong Tao, Zhao Jun, Wang Nan-Lin. Infrared spectroscopy study of ironbased superconductor Li0.8Fe0.2 ODFeSe. Acta Physica Sinica, doi: 10.7498/aps.67.20181401
    [7] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.67.20181818
    [8] Wang Nai-Zhou, Shi Meng-Zhu, Lei Bin, Chen Xian-Hui. Exploration and physical investigation of FeSe-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.67.20181496
    [9] Guo Jing, Wu Qi, Sun Li-Ling. Pressure-induced phenomena and physics in iron-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.67.20181651
    [10] Li Shi-Liang, Liu Zhao-Yu, Gu Yan-Hong. Nematic fluctuations in iron-based superconductors studied by resistivity change under uniaxial pressure. Acta Physica Sinica, doi: 10.7498/aps.67.20180627
    [11] Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang. Angle-resolved photoemission studies on iron based high temperature superconductors. Acta Physica Sinica, doi: 10.7498/aps.67.20181768
    [12] Gong Dong-Liang, Luo Hui-Qian. Antiferromagnetic order and spin dynamics in iron-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.67.20181543
    [13] Yu Rong. Electron correlations and orbital selectivities in multiorbital models for iron-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.64.217102
    [14] Zhao Jing-Long, Dong Zheng-Chao, Zhong Chong-Gui, Li Cheng-Di. Tunneling spectra for quantum wire/iron-based superconductor junction. Acta Physica Sinica, doi: 10.7498/aps.64.057401
    [15] Du Zeng-Yi, Fang De-Long, Wang Zhen-Yu, Du Guan, Yang Xiong, Yang Huan, Gu Gen-Da, Wen Hai-Hu. Investigation of scanning tunneling spectra on iron-based superconductor FeSe0.5Te0.5. Acta Physica Sinica, doi: 10.7498/aps.64.097401
    [16] Li Shi-Chao, Gan Yuan, Wang Jing-Hui, Ran Ke-Jing, Wen Jin-Sheng. Magnetic neutron scattering studies on the Fe-based superconductor system Fe1+yTe1-xSex. Acta Physica Sinica, doi: 10.7498/aps.64.097503
    [17] Li Zheng, Zhou Rui, Zheng Guo-Qing. Quantum criticalities in carrier-doped iron-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.64.217404
    [18] Jiang Jian-Jun, Yang Cui-Hong, Liu Yong-Jun. A kind of ferromagnetic-antiferromagnetic alternating spin chain equivalent to the mixed spin Heisenberg chain. Acta Physica Sinica, doi: 10.7498/aps.61.067502
    [19] Liu Su, Li Bin, Wang Wei, Wang Jun, Liu Mei. Electronic structure and magnetism of SrFeAsF and Co-doped superconductor SrFe0.875Co0.125AsF. Acta Physica Sinica, doi: 10.7498/aps.59.4245
    [20] Cao Tian-De, Huang Qing-Long. . Acta Physica Sinica, doi: 10.7498/aps.51.1600
Metrics
  • Abstract views:  101
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  05 December 2024

/

返回文章
返回