Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Inelastic Neutron Scattering Spectrometer and Applications

Hu Ze Yuan Yuan Li Li-Si Ren Qing-Yong Feng Yu Shen Jun-Ying Luo Wei Tong Xin

Citation:

Inelastic Neutron Scattering Spectrometer and Applications

Hu Ze, Yuan Yuan, Li Li-Si, Ren Qing-Yong, Feng Yu, Shen Jun-Ying, Luo Wei, Tong Xin
PDF
HTML
Get Citation
  • Inelastic neutron scattering is a pivotal technique in materials science and physics research, revealing the microscopic dynamic properties of materials by observing the changes in energy and momentum of neutrons interacting with matter. This technique provides important information for quantitatively describing the phonon dispersion and magnetic excitations of materials. Inelastic neutron scattering spectrometers can be classified into triple-axis spectrometers and time-of-flight spectrometers based on the method of selecting monochromatic neutrons. The former has high signal-to-noise ratio, flexibility, and precise tracking capabilities for specific measurement points, while the latter significantly improves experimental efficiency through various measures. The application of inelastic neutron scattering spectrometers is quite extensive, playing an indispensable role in advancing frontier scientific research in the study of mechanisms in various materials such as magnetism, superconductivity, thermoelectrics, and catalysis. The high-energy inelastic spectrometer at the China Spallation Neutron Source is the first time-of-flight neutron inelastic spectrometer in China, achieving high resolution and multi-energy coexistence with its innovative Fermi chopper design. Additionally, the number of neutron beams available for experiments at this facility is at the forefront internationally.
  • 图 1  (a) 三轴谱仪平面图; (b) CMRR的“鲲鹏”冷三轴谱仪[17]; (c) “翠竹”热中子谱仪的构造图[18]; (d) “翠竹”热中子谱仪的照片[19]

    Figure 1.  (a) Triple-axis spectrometer plane diagram; (b) The cold triple-axis spectrometer Kunpeng at CMRR[17]; (c) Construction diagram of the thermal triple-axis spectrometer IOP-CIAE[18]; (d) Photograph of the thermal triple-axis spectrometer IOP-CIAE[19].

    图 2  直接几何飞行时间谱仪的构造图

    Figure 2.  The construction diagram of a direct geometry time-of-flight spectrometer.

    图 3  中国散裂中子源的高能直接几何飞行时间谱仪HD的外观图[50]

    Figure 3.  The photograph of the high-energy direct geometry time-of-flight spectrometer HD at the CSNS[50].

    图 4  费米斩波器的构造. 分别为Sloppy斩波器(a)和钆斩波器(b)

    Figure 4.  The construction of the Fermi chopper. (a) The Sloppy chopper. (b) Gd chopper.

    图 5  通过费米斩波器的中子飞行时间-距离图. 其中虚线表示相邻两支单色中子的能量分析区间存在重叠. 颜色的透明度代表了费米斩波器在该能量的透过率

    Figure 5.  The neutron flight time-distance diagram of the Fermi chopper. The dashed lines indicate that there is an overlap in the energy analysis ranges of two adjacent monochromatic neutrons. The transparency of the colors represents the transmission rate of the Fermi chopper at that energy.

    图 6  费米斩波器不同转速下能量分辨率随波长的变化. 其中红色区域为RRM模式禁区

    Figure 6.  The energy resolution of the Fermi chopper varies with wavelength at different rotation speeds. The red area indicates the forbidden zone for the RRM mode.

    图 7  使用弯通道费米斩波器的中子飞行时间图

    Figure 7.  The neutron time-of-flight diagram with a curved channel Fermi chopper.

    图 8  SnS声子色散和动态磁化率$ (\chi''(Q, E)) $随结构相变的演化. (a)—(d)为Pnma相, (e)—(h)为Cmcm相. 在Pnma相中用谐波近似计算的低能色散[51]

    Figure 8.  The SnS phonon dispersion and dynamic magnetic susceptibility $ (\chi''(Q, E)) $ evolve with structural phase transitions. (a)–(d) correspond to the Pnma phase, while (e)–(h) correspond to the Cmcm phase. The low-energy dispersion calculated using harmonic approximation in the Pnma phase is shown[51].

    图 9  (a)为通过非弹性中子散射测量$ {\mathrm{La}}_3 $$ {\mathrm{Ni}}_2 $$ {\mathrm{O}}_{7-\delta} $的能谱, 强度为低温减去高温数据, (b)为通过自旋波计算得到的自旋激发谱[55]

    Figure 9.  The energy spectrum of ${\mathrm{La}}_3 $${\mathrm{Ni}} _2 $${\mathrm{O}} _{7-\delta} $ was measured through inelastic neutron scattering, with intensity being the low-temperature data subtracted from the high-temperature data, (b) The spin excitation spectrum obtained through spin wave calculations[55].

    图 10  (a)为通过非弹性中子散射测量的$ {\mathrm{PbCuTe}}_2 $${\mathrm{O}} _6 $粉末的磁激发, (b)为$ {\mathrm{PbCuTe}}_2 $${\mathrm{ O}}_6 $单晶的磁激发谱[74].

    Figure 10.  (a) The magnetic excitations of ${\mathrm{PbCuTe}} _2 $$ {\mathrm{O}}_6 $ powder measured by inelastic neutron scattering, (b) The magnetic excitation spectrum of $ {\mathrm{PbCuTe}}_2 $${\mathrm{O}} _6 $ single crystal[74].

    表 1  各个非弹谱仪的参数对比. 其中L1、L2和L3分别为慢化器到费米斩波器的距离、样品到费米斩波器的距离和样品到探测器的距离

    Table 1.  Parameter comparison of various non-elastic spectrometers. Among them, L1, L2 and L3 are the distance from the moderator to the Fermi chopper, the distance from the sample to the Fermi chopper and the distance from the sample to the detector respectively.

    谱仪 HRC 4SEASONS SEQUOIA ARCS MERLIN HD
    中子源 J-PARC J-PARC SNS SNS ISIS CSNS
    慢化器 DHM CHM DWM DWM DWM DWM
    Ei(meV) 1$ \sim $2000 5$ \sim $300 8$ \sim $2000 10$ \sim $1500 7$ \sim $2000 10$ \sim $1500
    Q(Å-1) 0.15$ \sim $22 0.1$ \sim $41.5
    水平角度 –31°$ \sim $62° –35°$ \sim $130° –30°$ \sim $60° –28°$ \sim $135° –45°$ \sim $135° –30$ \sim $130°
    前期(-30°$ \sim $60°)
    垂直角度 20°$ \sim $20° –25°$ \sim $27° –18°$ \sim $18° –27°$ \sim $26° –30° $ \sim $30° –30$ \sim $30°
    分辨率 >2% >5 % 1%$ \sim $5% 3%$ \sim $5% 4%$ \sim $7% 3%$ \sim $10%
    L1/L2/L3 14/1/4 16.3/1.7/2.5 18/2/5.53 11.6/2/3$ \sim $3.4 10/1.8.2.5 16/2/2.5
    样品尺寸 5*5 cm2 4.5*4.5 cm2
    or 2*2 cm2
    5*5 cm2 5*5 cm2 5*5 cm2 5*5 cm2
    or 3*3 cm2
    DownLoad: CSV
  • [1]

    Rutherford E 1920 Proc. R. Soc. London, Ser. A 97 374Google Scholar

    [2]

    Chadwick J 1932 Nature 129 312

    [3]

    Von Halban H 1936 Acad. Sci. Paris 203 73

    [4]

    Elsasser W 1936 CR Acad. Sci 202 1029

    [5]

    Mitchell D P, Powers P N 1936 Phys. Rev. 50 486

    [6]

    Bloch F 1936 Phys. Rev. 50 259Google Scholar

    [7]

    Alvarez L W, Bloch F 1940 Phys. Rev. 57 111Google Scholar

    [8]

    Shull C G, Smart J S 1949 Phys. Rev. 76 1256

    [9]

    Brockhouse B, Hurst D 1952 Phys. Rev. 88 542Google Scholar

    [10]

    Brockhouse B 1958 Il Nuovo Cimento (1955-1965) 9 45Google Scholar

    [11]

    Besnard M, Dianoux A J, Lalanne P, Lassegues J C 1977 J. Phys. 38 1417Google Scholar

    [12]

    Janik J A 1982 Adv. Liq. Cryst. 5 215

    [13]

    Gaskell P H, Saeed A, Chieux P, Mckenzie D R 1991 Phys. Rev. Lett. 67 1286Google Scholar

    [14]

    Loong C K, Vashishta P, Kalia R K, Degani M H, Zheng Y 1989 Phys. Rev. Lett. 62 2628Google Scholar

    [15]

    Banerjee A, Yan J, Knolle J, Bridges C A, Stone M B, Lumsden M D, Mandrus D G, Tennant D A, Moessner R, Nagler S E 2017 Science 356 1055Google Scholar

    [16]

    Squires G L, Lynn J W 1978 Phys. Today 32 69

    [17]

    Song J M, Luo W, Liu B Q, Li X, Hu B F, Huang C Q, Chen B, Sun G A, Pang B B, Zhang Y, et al 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 968 163929Google Scholar

    [18]

    李世亮, 戴鹏程 2011 物理 40 33

    Li S L, Dai P C 2011 Wuli 40 33

    [19]

    李天富, 武梅梅, 焦学胜, 孙凯, 陈东风 2020 原子核物理评论 37 364

    Li T F, Wu M M, Jiao X S, Sun K, Chen D F 2020 Nucl. Phys. Rev. 37 364

    [20]

    Brockhouse B, Stewart A 1955 Phys. Rev. 100 756Google Scholar

    [21]

    Rodriguez J A, Adler D M, Brand P C, Broholm C, Cook J C, Brocker C, Hammond R, Huang Z, Hundertmark P, Lynn J W, Maliszewskyj N C, Moyer J, Orndorff J, Pierce D, Pike T D, Scharfstein G, Smee S A, Vilaseca R 2008 Meas. Sci. Technol. 19 034023Google Scholar

    [22]

    Lynn J, Chen Y, Chang S, Zhao Y, Chi S, W Ratcliff I, Ueland B, Erwin R 2012 J. Res. Natl. Inst. Stand. Technol. 117 61

    [23]

    Boehm M, Hiess A, Kulda J, Roux S, Saroun J 2008 Meas. Sci. and Technol. 19 034024Google Scholar

    [24]

    Jimenez-Ruiz M, Hiess A, Currat R, Kulda J, Bermejo F 2006 Physica B Condens. Matter 385 1086

    [25]

    Wu C M, Deng G, Gardner J, Vorderwisch P, Li W H, Yano S, Peng J C, Imamovic E 2016 J. Instrum. 11 P10009Google Scholar

    [26]

    Danilkin S A, Yethiraj M, Saerbeck T, Klose F, Ulrich C, Fujioka J, Miyasaka S, Tokura Y, Keimer B 2012 J. Phys. Conf. Ser. 340 012003Google Scholar

    [27]

    Kikuchi H, Asai S, Sato T J, Nakajima T, Harriger L, Zaliznyak I, Masuda T 2024 J. Phys. Soc. Japan 93 091004Google Scholar

    [28]

    Nawa K, Okuyama D, Wu H C, Murasaki R, Matsuzaka S, Kinjo K, Sato T J 2024 J. Phys. Soc. Japan 93 091001Google Scholar

    [29]

    Fischer W 1997 Physica B Condens. Matter 234-236 1202Google Scholar

    [30]

    Stuhr U, Roessli B, Gvasaliya S, Rnnow H, Filges U, Graf D, Bollhalder A, Hohl D, Bürge R, Schild M, Holitzner L, C K, Keller P, Mühlebach T 2017 Nucl. Instrum. Methods Phys. Res., Sect. A 853 16Google Scholar

    [31]

    Cheng P, Zhang H, Bao W, Schneidewind A, Link P, Grünwald A, Georgii R, Hao L, Liu Y 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 821 17Google Scholar

    [32]

    Demmel F, Fleischmann A, Gläser W 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 416 115Google Scholar

    [33]

    Kempa M, Janousova B, Saroun J, Flores P, Boehm M, Demmel F, Kulda J 2006 Physica B Condens. Matter 385-386 1080Google Scholar

    [34]

    Groitl F, Toft-Petersen R, Quintero-Castro D L, Meng S, Lu Z, Huesges Z, Le M D, Alimov S, Wilpert T, Kiefer K, et al 2017 Sci. Rep. 7 13637Google Scholar

    [35]

    Utschick C, Skoulatos M, Schneidewind A, Böni P 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 837 88Google Scholar

    [36]

    Sobolev O, Hoffmann R, Gibhardt H, Jünke N, Knorr A, Meyer V, Eckold G 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 772 63Google Scholar

    [37]

    Kikuchi H, Asai S, Sato T J, Nakajima T, Harriger L, Zaliznyak I, Masuda T 2024 J. Phys. Soc. Japan 93 091004Google Scholar

    [38]

    Wang J, Liu J, Xu D, Grünauer F, Hao L, Liu Y, Zhang H, Cheng P, Bao W 2024 Chin. Phys. B 33 057801Google Scholar

    [39]

    Firk F 1979 Nucl. Instrum. Methods 162 539Google Scholar

    [40]

    Yu D, Mole R, Noakes T, Kennedy S, Robinson R 2013 J. Phys. Soc. Japan 82 SA027Google Scholar

    [41]

    Cicognani G, Mutka H, Sacchetti F 2000 Physica B Condens. Matter 276 83

    [42]

    Ollivier J, Mutka H, Didier L 2010 Neutron News 21 22Google Scholar

    [43]

    Kajimoto R, Yokoo T, Nakajima K, Nakamura M, Soyama K, Ino T, Shamoto S, Fujita M, Ohoyama K, Hiraka H, et al 2007 J. Neutron Res. 15 5Google Scholar

    [44]

    Nakajima K, Ohira-Kawamura S, Kikuchi T, Nakamura M, Kajimoto R, Inamura Y, Takahashi N, Aizawa K, Suzuya K, Shibata K, et al 2011 J. Phys. Soc. Japan 80 SB028Google Scholar

    [45]

    Le M D, Guidi T, Bewley R, Stewart J R, Schooneveld E M, Raspino D, Pooley D E, Boxall J, Gascoyne K F, Rhodes N J, et al 2023 Nucl. Instrum. Methods Phys. Res., Sect. A 1056 168646Google Scholar

    [46]

    Bewley R, Eccleston R, McEwen K, Hayden S, Dove M, Bennington S, Treadgold J, Coleman R 2006 Physica B Condens. Matter 385-386 1029Google Scholar

    [47]

    Bewley R, Taylor J, Bennington S 2011 Nucl. Instrum. Methods Phys. Res., Sect. A 637 128Google Scholar

    [48]

    Abernathy D L, Stone M B, Loguillo M, Lucas M, Delaire O, Tang X, Lin J, Fultz B 2012 Rev. Sci. Instrum 83 015114Google Scholar

    [49]

    Ehlers G, Podlesnyak A A, Niedziela J L, Iverson E B, Sokol P E 2011 Rev. Sci. Instrum. 82 085108Google Scholar

    [50]

    Luo W, Feng Y, Liu X, Wang M, Zhu D, Gao W, Geng Y, Ren Q, Shen J, Sun Y, et al 2023 Nucl. Instrum. Methods Phys. Res., Sect. A 1046 167676Google Scholar

    [51]

    Lanigan-Atkins T, Yang S, Niedziela J L, Bansal D, Delaire O 2020 Nat. Commun. 11 4430Google Scholar

    [52]

    Sidis Y, Pailhès S, Hinkov V, Fauquxe B, Ulrich C, Capogna L, Ivanov A, Regnault L P, Keimer B, Bourges P 2007 C. R. Phys. 8 745Google Scholar

    [53]

    Fujita M, Hiraka H, Matsuda M, Matsuura M, M Tranquada J, Wakimoto S, Xu G, Yamada K 2012 J. Phys. Soc. Japan 81 011007Google Scholar

    [54]

    Dai P 2015 Rev. Mod. Phys. 87 855Google Scholar

    [55]

    Xie T, Huo M, Ni X, Shen F, Huang X, Sun H, Walker H C, Adroja D, Yu D, Shen B, He L, Cao K, Wang M 2024 Sci. Bull. 69(20) 3221

    [56]

    Tranquada J, Woo H, Perring T, Goka H, Gu G, Xu G, Fujita M, Yamada K 2004 Nature 429 534Google Scholar

    [57]

    Dai P, Hu J, Dagotto E 2012 Nat. Phys. 8 709Google Scholar

    [58]

    Si Q, Yu R, Abrahams E 2016 Nat. Rev. Mater. 1 1

    [59]

    Zhou X, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Törmä P, Eremets M 2021 Nat. Rev. Phys. 3 462Google Scholar

    [60]

    Wang M, Zhang C, Lu X, Tan G, Luo H, Song Y, Wang M, Zhang X, Goremychkin E, Perring T, et al 2013 Nat. Commun. 4 2874Google Scholar

    [61]

    Hong W, Song L, Liu B, Li Z, Zeng Z, Li Y, Wu D, Sui Q, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J, Zhao L, Zhou X, Qiu X, Li S, Luo H 2020 Phys. Rev. Lett. 125 117002Google Scholar

    [62]

    Gu Q, Wen H H 2022 Innovation 3 100202

    [63]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chinese Phys. Lett. 41 077402Google Scholar

    [64]

    Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, et al 2023 Nature 621 493Google Scholar

    [65]

    Wang N, Wang G, Shen X, Hou J, Luo J, Ma X, Yang H, Shi L, Dou J, Feng J, et al 2024 Nature 634 579Google Scholar

    [66]

    Wxu W, Luo Z, Yao D X, Wang M 2024 Sci. China Phys. Mech. 67 117402Google Scholar

    [67]

    Zhou Y, Kanoda K, Ng T K 2017 Rev. Mod. Phys. 89 025003Google Scholar

    [68]

    Zhu Z, Pan B, Nie L, Ni J, Yang Y, Chen C, Jiang C, Huang Y, Cheng E, Yu Y, et al 2023 Innovation 4 100459

    [69]

    Lin G, Ma J 2023 Innovation 4 100484

    [70]

    Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R, Senthil T 2020 Science 367 eaay0668Google Scholar

    [71]

    王颖, 殳蕾 2024 物理学报 73 197601Google Scholar

    Wang Y, Shu L 2024 Acta Phys. Sin. 73 197601Google Scholar

    [72]

    Paddison J A, Daum M, Dun Z, Ehlers G, Liu Y, Stone M B, Zhou H, Mourigal M 2017 Nat. Phys. 13 117Google Scholar

    [73]

    Stone, Matthew, B, Lumsden, Ma rk, D, Moessner, Roderich, Banerjee, Arnab 2017 Science 356 1055Google Scholar

    [74]

    Chillal S, Iqbal Y, Jeschke H O, Rodriguez-Rivera J A, Lake B 2020 Nat. Commun. 11 2348Google Scholar

    [75]

    Bansal D, Niedziela J L, Sinclair R, Garlea V O, Abernathy D L, Chi S, Ren Y, Zhou H, Delaire O 2018 Nat. Commun. 9 15Google Scholar

    [76]

    Wei B, Sun Q, Li C, Hong J 2021 Sci. China Phys. Mech. 64 117001Google Scholar

    [77]

    Ren Q, Gupta M K, Jin M, Ding J, Wu J, Chen Z, Lin S, Fabelo O, Rodrxıguez-Velamazxan J A, Kofu M, et al 2023 Nat. Mater. 22 999Google Scholar

    [78]

    Han S, Dai S, Ma J, Ren Q, Hu C, Gao Z, Duc Le M, Sheptyakov D, Miao P, Torii S, et al 2023 Nat. Phys. 19 1649Google Scholar

    [79]

    Kofu M, Hashimoto N, Akiba H, Kobayashi H, Kitagawa H, Iida K, Nakamura M, Yamamuro O 2017 Phys. Rev. B 96 054304Google Scholar

    [80]

    Shrestha U R, Mamontov E, O’Neill H M, Zhang Q, Kolesnikov A I, Chu X 2022 Innovation 3 100199

    [81]

    Hong L, Jain N, Cheng X, Bernal A, Tyagi M, Smith J C 2016 Sci. Adv. 2 e1600886Google Scholar

  • [1] Li Ze-Zong, Hong Wen-Shan, Xie Tao, Liu Chang, Luo Hui-Qian. Spin Excitation Spectrum of Iron Pnictide Superconductors. Acta Physica Sinica, doi: 10.7498/aps.74.20241534
    [2] Li Qiang, Li Yang, Lü You, Pan Zi-Wen, Bao Yu. Muon spectrometers on China Spallation Neutron Source and its application prospects. Acta Physica Sinica, doi: 10.7498/aps.73.20240926
    [3] Wang Yi, Zhang Qiu-Nan, Han Dong, Li Yuan-Jing. Time of flight technology based on multi-gap resistive plate chamber. Acta Physica Sinica, doi: 10.7498/aps.68.20182192
    [4] Deng Pei-Na, Yi Zhou, Zhang Li-Li, Li Hua. Analysis of the dynamics of water confined in hydrated calcium silica(C-S-H) based on the quasi-elastic neutron scattering spectra. Acta Physica Sinica, doi: 10.7498/aps.65.106101
    [5] Liu Ben-Qiong, Song Jian-Ming, Zhang Wei-Bin, Luo Wei, Wang Yan, Xia Yuan-Hua, Zong He-Hou, Gao Guo-Fang, Sun Guang-Ai. Inelastic neutron scattering and ab initio studies of cyclotrimethylenetrinitramine. Acta Physica Sinica, doi: 10.7498/aps.65.047802
    [6] Zhang Mei, Zhang Xian-Peng, Li Kui-Nian, Sheng Liang, Yuan Yuan, Song Chao-Hui, Li Yang. Angular resolution of a neutron scatter imaging system. Acta Physica Sinica, doi: 10.7498/aps.64.042801
    [7] Yi Zhou, Zhang Li-Li, Li Hua. Spectral analysis of water dynamics in cement paste by quasi-elastic neutron scattering. Acta Physica Sinica, doi: 10.7498/aps.64.056101
    [8] Shen Fei, Liang Tai-Ran, Yin Wen, Yu Quan-Zhi, Zuo Tai-Sen, Yao Ze-En, Zhu Tao, Liang Tian-Jiao. Shielding design of the multi-purpose reflectometer of China spallation neutron source. Acta Physica Sinica, doi: 10.7498/aps.63.152801
    [9] Zhang Fa-Qiang, Yang Jian-Lun, Li Zheng-Hong, Ying Chun-Tong, Liu Guang-Jun. Monte Carlo simulation of effect of neutron scattering on image information in 14MeV fast neutron radiography. Acta Physica Sinica, doi: 10.7498/aps.56.3577
    [10] Yang Chang-Ping, Zhou Zhi-Hui, Wang Hao, K. Iwasa, M. Kohgi. Kondo interactions in the CeOs4Sb12 skutterudite studied by inelastic neutron scattering. Acta Physica Sinica, doi: 10.7498/aps.55.6643
    [11] TAO FANG, ZHANG TAI-YONG, NIU SHI-WEN, GOU CHENG, SHI ZHONG-JIAN, LIN QUAN. INELASTIC NEUTRON SCATTERING STUDY ON ACOUSTICAL ACTIVITY OF Bi12GeO20 AND Bi12SiO20. Acta Physica Sinica, doi: 10.7498/aps.35.196
    [12] CAO MING-ZHONG, WANG FU-TUAN, WANG GEN-SHI, SONG DE-YING, CHEN GUI-YING, RUAN JING-HUI. THERMAL NEUTRON INELASTIC SCATTERING SPECTRA OF LaNi4.5Mn0.5Hx. Acta Physica Sinica, doi: 10.7498/aps.34.689
    [13] RUAN JING-HUI, CHENG ZHI-XU, CHEN GUI-YING. INELASTIC SCATTERING SPECTRA OF THERMAL NEUTRONS BY ALUMINIUM HYDRIDE (AlH3)n. Acta Physica Sinica, doi: 10.7498/aps.30.538
    [14] CHEN GUI-YING, CHENG ZHI-XU, WU XIAN-NAN, RUAN JING-HUI. THERMAL NEUTRON INELASTIC SCATTERING OF PALLADIUM HYDRIDES (PdHx). Acta Physica Sinica, doi: 10.7498/aps.29.257
    [15] LI ZHU-QI, KUAN JING-HUI, WU SHAN-LING, YANG TONG-HUA, HE MIN, LU TING, CHENG ZHI-XU, CHEN GUI-YING, YE CHUN-TANG. A ROTATING CRYSTAL NEUTRON TIME-OF-FLIGHT SPECTRO-METER FOR CONDENSED MATTER INVESTIGATION. Acta Physica Sinica, doi: 10.7498/aps.29.1462
    [16] LI TIE-CHENG, XU ZHENG-YI. QUASI-ELASTIC SCATTERING OF LIGHT, NEUTRONS AND ELECTRONS FOR AN IONIC CONDUCTOR GOVERNED BY THE DEBYE-HüCKEL EQUATION. Acta Physica Sinica, doi: 10.7498/aps.27.175
    [17] . Acta Physica Sinica, doi: 10.7498/aps.24.210
    [18] FANG LI-ZHI, GU SHI-JIE. INELASTIC SCATTERING OF NEUTRONS IN FERROMAGNETICS WITH IMPERFECTIONS. Acta Physica Sinica, doi: 10.7498/aps.19.673
    [19] РАЗРЕШАЮЩАЯ ШИРИНА КРИСТАЛЛИЧЕСКОГО НЕЙТРОННОГО СПЕКТРОМЕТРА С ПЛОСКИМ КРИСТАЛЛОМ. Acta Physica Sinica, doi: 10.7498/aps.19.477
    [20] УСТРОЙСТВО И ХАРАКТЕР НЕЙТРОННОГО ДИФФРАКТОМЕТРА. Acta Physica Sinica, doi: 10.7498/aps.17.222
Metrics
  • Abstract views:  196
  • PDF Downloads:  12
  • Cited By: 0
Publishing process
  • Available Online:  03 December 2024

/

返回文章
返回