Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Applications of time-of-flight photoelectron spectrometers in ultrafast optics experiments

Zhu Xiaoxian Gao Yitan Wang Yiming Zhao Kun

Citation:

Applications of time-of-flight photoelectron spectrometers in ultrafast optics experiments

Zhu Xiaoxian, Gao Yitan, Wang Yiming, Zhao Kun
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Time-of-Flight Photoelectron Spectroscopy (TOF-PES) has emerged as a cornerstone diagnostic tool in attosecond science and ultrafast dynamics, offering exceptional energy and temporal resolution. This article presents a comprehensive review of TOF-PES technology, its underlying principles, and its crucial role in attosecond metrology. The first part introduces the historical development of TOF methods, from early ion mass spectrometry to modern photoelectron applications, detailing key innovations such as energy and spatial focusing, magnetic shielding, and delay-line detectors. The implementation of magnetic bottle spectrometers (MBES) is discussed in depth, emphasizing their advantages in wide-angle electron collection and enhanced energy resolution, achieved through trajectory collimation and magnetic gradient design.
    We then focus on the application of TOF-PES in attosecond pulse characterization, particularly in the RABBITT (Reconstruction of Attosecond Beating by Interference of Two-photon Transitions) and attosecond streaking techniques. A broad array of experimental breakthroughs is reviewed, including ultrafast delay scanning, energy-time mapping through photoelectron modulation, and the use of MBES to resolve phase and amplitude of attosecond pulse trains with sub-50 attosecond precision. These advances demonstrate TOF-PES as a critical enabler of temporal phase reconstruction and group delay measurement across extreme-ultraviolet (XUV) spectral regimes.
    Further sections explore the integration of TOF-based detection in time- and angle-resolved photoemission spectroscopy (TR-ARPES and ARTOF), enabling full 3D momentum-resolved detection without mechanical rotation or slits. The synergy between TOF and ultrafast laser sources facilitates simultaneous energy and momentum resolution across the Brillouin zone, with applications spanning topological materials, superconductors, and charge-density wave systems.
    Finally, the review extends to momentum-resolved ultrafast electron-ion coincidence techniques. The use of TOF in COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) and VMI (Velocity Map Imaging) is evaluated, highlighting its indispensable role in resolving correlated electron-ion dynamics, few-body fragmentation processes, and tunneling time delays on attosecond and even zeptosecond scales.
    Overall, this work underscores the central role of TOF-PES in pushing the frontiers of ultrafast science. While current challenges include space-charge effects, detector response limitations, and data handling complexity, future advances in quantum detection, AI-driven trajectory correction, and high-repetition-rate light sources are poised to overcome these barriers. TOF-PES, through its continuous evolution, remains a critical platform for probing quantum dynamics at the fastest timescales known.
  • [1]

    Cameron A E 1948An ion" velocitron" (Atomic Energy Commission) p1

    [2]

    Wiley W C, McLaren I H 1955Rev. Sci. Instrum. 26 1150

    [3]

    Baldwin G C, Friedman S I 1967Rev. Sci. Instrum. 38 519

    [4]

    Nakai M Y, LaBar D A, Harter J A, Birkhoff R D 1967Rev. Sci. Instrum. 38 820

    [5]

    Bachrach R Z, Brown F C, Hagström S B M 1975J. Vac. Sci. Technol. 12 309

    [6]

    Hemmers O, Whitfield S B, Glans P, Wang H, Lindle D W, Wehlitz R, Sellin I A 1998Rev. Sci. Instrum. 69 3809

    [7]

    Ulrich V, Barth S, Lischke T, Joshi S, Arion T, Mucke M, Förstel M, Bradshaw A M, Hergenhahn U 2011J. Electron Spectrosc. Relat. Phenom. 183 70

    [8]

    Bostedt C, Bozek J D, Bucksbaum P H, Coffee R N, Hastings J B, Huang Z, Lee R W, Schorb S, Corlett J N, Denes P 2013J. Phys. B: At. Mol. Opt. Phys. 46 164003

    [9]

    Hsu T, Hirshfield J L 1976Electrostatic energy analyzer using a nonuniform axial magnetic field Department of Engineering and Applied Science, Yale University, New Haven, Connecticut 06520

    [10]

    Beamson G, Porter H Q, Turner D W 1980J. Phys. E: Sci. Instrum. 13 64

    [11]

    Kruit P, Read F H 1983J. Phys. E: Sci. Instrum. 16 313

    [12]

    Giniger R, Hippler T, Ronen S, Cheshnovsky O 2001Rev. Sci. Instrum. 72 2543

    [13]

    Hikosaka Y, Sawa M, Soejima K, Shigemasa E 2014J. Electron Spectrosc. Relat. Phenom. 192 69

    [14]

    Kothe A, Metje J, Wilke M, Moguilevski A, Engel N, Al-Obaidi R, Richter C, Golnak R, Kiyan I Y, Aziz E F 2013Rev. Sci. Instrum. 84 023106

    [15]

    Zhao K, Zhang Q, Chini M, Chang Z 2012Multiphoton Processes and Attosecond Physics Berlin, Heidelberg, 2012 pp109

    [16]

    Zhang Q, Zhao K, Chang Z 2014J. Electron Spectrosc. Relat. Phenom. 195 48

    [17]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G, Agostini P 2001Science 292 1689

    [18]

    Mairesse Y, De Bohan A, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovačev M, Taïeb R, Carré B, Muller H G, Agostini P, Salières P 2003Science 302 1540

    [19]

    Klünder K, Dahlström J M, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A 2011Phys. Rev. Lett. 106 143002

    [20]

    Gruson V, Barreau L, Jiménez-Galan Á, Risoud F, Caillat J, Maquet A, Carré B, Lepetit F, Hergott J F, Ruchon T, Argenti L, Taïeb R, Martín F, Salières P 2016Science 354 734

    [21]

    Jordan I, Jain A, Gaumnitz T, Ma J, Wörner H J 2018Rev. Sci. Instrum. 89 053103

    [22]

    Wang A L, Serov V V, Kamalov A, Bucksbaum P H, Kheifets A, Cryan J P 2021Phys. Rev. A 104 063119

    [23]

    Kumar M, Singhal H, Ansari A, Chakera J A 2023Rev. Sci. Instrum. 94 023303

    [24]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001Nature 414 509

    [25]

    Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U 2004Nature 427 817

    [26]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R 2006Science 314 443

    [27]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R 2008Science 320 1614

    [28]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z 2012Opt. Lett. 37 3891

    [29]

    Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y 2017Nat. Commun. 8 186

    [30]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017Opt. Express 25 27506

    [31]

    Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013Chin. Phys. Lett. 30 093201

    [32]

    Wang X L, Xu P, Li J, Yuan H, Bai Y L, Wang Y S, Zhao W 2020Chin. J. Lasers 47 415002(in Chinese) [王向林, 徐鹏, 李捷, 袁浩, 白永林, 王屹山, 赵卫2020中国激光47 415002]

    [33]

    Wang X, Xiao F, Wang J, Wang L, Zhang B, Liu J, Zhao J, Zhao Z 2024Ultrafast Sci. 4 0080

    [34]

    Lee C, Rohwer T, Sie E J, Zong A, Baldini E, Straquadine J, Walmsley P, Gardner D, Lee Y S, Fisher I R 2020Rev. Sci. Instrum. 91 043102

    [35]

    Boschini F, Zonno M, Damascelli A 2024Rev. Mod. Phys. 96 015003

    [36]

    Madéo J, Man M K, Sahoo C, Campbell M, Pareek V, Wong E L, Al-Mahboob A, Chan N S, Karmakar A, Mariserla B M K 2020Science 370 1199

    [37]

    Buss J H, Wang H, Xu Y, Maklar J, Joucken F, Zeng L, Stoll S, Jozwiak C, Pepper J, Chuang Y D 2019Rev. Sci. Instrum. 90 023105

    [38]

    Na M, Mills A K, Jones D J 2023Phys. Rep. 1036 1

    [39]

    Haight R, Silberman J A, Lilie M I 1988Rev. Sci. Instrum. 59 1941

    [40]

    Kirchmann P S, Rettig L, Nandi D, Lipowski U, Wolf M, Bovensiepen U 2008Appl. Phys. A 91 211

    [41]

    Wannberg B 2009Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 601 182

    [42]

    Öhrwall G, Karlsson P, Wirde M, Lundqvist M, Andersson P, Ceolin D, Wannberg B, Kachel T, Dürr H, Eberhardt W 2011J. Electron Spectrosc. Relat. Phenom. 183 125

    [43]

    Berntsen M H, Götberg O, Tjernberg O 2011Rev. Sci. Instrum. 82 095113

    [44]

    Ovsyannikov R, Karlsson P, Lundqvist M, Lupulescu C, Eberhardt W, Föhlisch A, Svensson S, Mårtensson N 2013J. Electron Spectrosc. Relat. Phenom. 191 92

    [45]

    Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013Science 342 453

    [46]

    Holldack K, Ovsyannikov R, Kuske P, Müller R, Schälicke A, Scheer M, Gorgoi M, Kühn D, Leitner T, Svensson S 2014Nat. Commun. 5 4010

    [47]

    Oloff L P, Oura M, Rossnagel K, Chainani A, Matsunami M, Eguchi R, Kiss T, Nakatani Y, Yamaguchi T, Miyawaki J 2014New J. Phys. 16 123045

    [48]

    Medjanik K, Fedchenko O, Chernov S, Kutnyakhov D, Ellguth M, Oelsner A, Schönhense B, Peixoto T R, Lutz P, Min C H 2017Nat. Mater. 16 615

    [49]

    Kühn D, Sorgenfrei F, Giangrisostomi E, Jay R, Musazay A, Ovsyannikov R, Stråhlman C, Svensson S, Mårtensson N, Föhlisch A 2018J. Electron Spectrosc. Relat. Phenom. 224 45

    [50]

    Zong A, Kogar A, Bie Y Q, Rohwer T, Lee C, Baldini E, Ergeçen E, Yilmaz M B, Freelon B, Sie E J 2019Nat. Phys. 15 27

    [51]

    Maklar J, Dong S, Beaulieu S, Pincelli T, Dendzik M, Windsor Y W, Xian R P, Wolf M, Ernstorfer R, Rettig L 2020Rev. Sci. Instrum. 91 123112

    [52]

    Schoenhense G, Kutnyakhov D, Pressacco F, Heber M, Wind N, Agustsson S Y, Babenkov S, Vasilyev D, Fedchenko O, Chernov S 2021Rev. Sci. Instrum. 92 053703

    [53]

    Berntsen M H, Götberg O, Tjernberg O 2011Rev. Sci. Instrum. 82 095113

    [54]

    Guo Q, Dendzik M, Grubišić-Čabo A, Berntsen M H, Li C, Chen W, Matta B, Starke U, Hessmo B, Weissenrieder J 2022Struct. Dyn. 9 024304

    [55]

    Zhu X L, Ma X W, Sha S, Liu H P, Wei B R, Wang Z L, Cao S P, Qian D B 2004Nucl. Electron. Detect. Technol. 24 253(in Chinese) [朱小龙, 马新文, 沙杉, 刘惠萍, 魏宝仁, 汪正林, 曹士娉, 钱东斌2004核电子学与探测技术24 253]

    [56]

    Guo D L, Ma X W, Feng W T, Zhang S F, Zhu X L 2011Acta Phys. Sin. 60 236(in Chinese) [郭大龙, 马新文, 冯文天, 张少锋, 朱小龙2011物理学报60 236]

    [57]

    Ullrich J, Schmidt-Böcking H 1987Phys. Lett. A 125 193

    [58]

    Frohne V, Cheng S, Ali R, Raphaelian M, Cocke C L, Olson R E 1993Phys. Rev. Lett. 71 696

    [59]

    Ullrich J, Schmidt-Böcking H, Dörner R, Mergel V, Spielberger L, Jagutzki O 1994Cold-target recoil-ion momentum-spectroscopy: First results and future perspectives of a novel high resolution technique for the investigation of collision induced many-particle reactions SCAN-9410386

    [60]

    Moshammer R, Unverzagt M, Schmitt W, Ullrich J, Schmidt-Böcking H 1996Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 108 425

    [61]

    Mergel V, Achler M, Dörner R, Khayyat Kh, Kambara T, Awaya Y, Zoran V, Nyström B, Spielberger L, McGuire J H, Feagin J, Berakdar J, Azuma Y, Schmidt-Böcking H 1998Phys. Rev. Lett. 80 5301

    [62]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000Phys. Rep. 330 95

    [63]

    Weber Th, Weckenbrock M, Staudte A, Spielberger L, Jagutzki O, Mergel V, Afaneh F, Urbasch G, Vollmer M, Giessen H, Dörner R 2000Phys. Rev. Lett. 84 443

    [64]

    Ergler Th, Rudenko A, Feuerstein B, Zrost K, Schröter C D, Moshammer R, Ullrich J 2006Phys. Rev. Lett. 97 193001

    [65]

    Schmidt L Ph H, Jahnke T, Czasch A, Schöffler M, Schmidt-Böcking H, Dörner R 2012Phys. Rev. Lett. 108 073202

    [66]

    Sabbar M, Heuser S, Boge R, Lucchini M, Gallmann L, Cirelli C, Keller U 2014Rev. Sci. Instrum. 85 103113

    [67]

    Fehre K, Eckart S, Kunitski M, Pitzer M, Zeller S, Janke C, Trabert D, Rist J, Weller M, Hartung A, Schmidt L Ph H, Jahnke T, Berger R, Dörner R, Schöffler M S 2019Sci. Adv. 5 eaau7923

    [68]

    Grundmann S, Trabert D, Fehre K, Strenger N, Pier A, Kaiser L, Kircher M, Weller M, Eckart S, Schmidt L Ph H, Trinter F, Jahnke T, Schöffler M S, Dörner R 2020Science 370 339

    [69]

    Eppink A T, Parker D H 1997Rev. Sci. Instrum. 68 3477

    [70]

    Takahashi M, Cave J P, Eland J H D 2000Rev. Sci. Instrum. 71 1337

    [71]

    Gebhardt C R, Rakitzis T P, Samartzis P C, Ladopoulos V, Kitsopoulos T N 2001Rev. Sci. Instrum. 72 3848

    [72]

    Townsend D, Minitti M P, Suits A G 2003Rev. Sci. Instrum. 74 2530

    [73]

    Lin J J, Zhou J, Shiu W, Liu K 2003Rev. Sci. Instrum. 74 2495

    [74]

    Lee S K, Cudry F, Lin Y F, Lingenfelter S, Winney A H, Fan L, Li W 2014Rev. Sci. Instrum. 85 123303

    [75]

    Lin Y F, Lee S K, Adhikari P, Herath T, Lingenfelter S, Winney A H, Li W 2015Rev. Sci. Instrum. 86 096110

    [76]

    Urbain X, Bech D, Van Roy J P, Géléoc M, Weber S J, Huetz A, Picard Y J 2015Rev. Sci. Instrum. 86 023305

    [77]

    Orunesajo E, Basnayake G, Ranathunga Y, Stewart G, Heathcote D, Vallance C, Lee S K, Li W 2021J. Phys. Chem. A 125 5220

    [78]

    Nomerotski A 2019Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 937 26

    [79]

    Winney A H, Lee S K, Lin Y F, Liao Q, Adhikari P, Basnayake G, Schlegel H B, Li W 2017Phys. Rev. Lett. 119 123201

  • [1] ZHANG Yichen, DING Nannan, LI Jialin, FU Yuxi. Attosecond transient absorption spectroscopy: an ultrafast optical probe for revealing electron dynamics. Acta Physica Sinica, doi: 10.7498/aps.74.20250546
    [2] Wei Zhi-Yuan, Hu Yong, Zeng Ling-Yong, Li Ze-Yu, Qiao Zhen-Hua, Luo Hui-Xia, He Jun-Feng. Angle-resolved photoemission spectroscopy of electronic structure of 1T-NbSeTe. Acta Physica Sinica, doi: 10.7498/aps.71.20220458
    [3] Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang. Angle-resolved photoemission spectroscopy studies on the electronic structure and superconductivity mechanism for high temperature superconductors. Acta Physica Sinica, doi: 10.7498/aps.70.20201913
    [4] Liu Chang, Liu Xiang-Rui. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators. Acta Physica Sinica, doi: 10.7498/aps.68.20191450
    [5] Deng Tao, Yang Hai-Feng, Zhang Jing, Li Yi-Wei, Yang Le-Xian, Liu Zhong-Kai, Chen Yu-Lin. Progress of ARPES study on topological semimetals. Acta Physica Sinica, doi: 10.7498/aps.68.20191544
    [6] Wang Yan-Mei, Tang Ying, Zhang Song, Long Jin-You, Zhang Bing. Excited state dynamics of molecules studied with femtosecond time-resolved mass spectrometry and photoelectron imaging. Acta Physica Sinica, doi: 10.7498/aps.67.20181334
    [7] Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang. Angle-resolved photoemission studies on iron based high temperature superconductors. Acta Physica Sinica, doi: 10.7498/aps.67.20181768
    [8] Liu Can-Dong, Jia Zheng-Mao, Zheng Ying-Hui, Ge Xiao-Chun, Zeng Zhi-Nan, Li Ru-Xin. Research progress of the control and measurement of the atomic and molecular ultrafast electron dynamics using two-color field. Acta Physica Sinica, doi: 10.7498/aps.65.223206
    [9] Feng Xiao-Jing, Guo Wei, Lu Xing-Qiang, Yao Hong-Bin, Li Yue-Hua. Theoretical investigation of femtosecond-resolved photoelectron spectra of three-level ladder K2 molecules. Acta Physica Sinica, doi: 10.7498/aps.64.143303
    [10] Zhang Min, Tang Tian-Tian, Zhang Chao-Min. Theoretical study of the influence of femtosecond pump-probe pluse on the photoionization of NaLi molecule. Acta Physica Sinica, doi: 10.7498/aps.63.023302
    [11] Wu Yu-Yu, Chen Shi, Gao Xin-Yu, Andrew Thye Shen Wee, Xu Peng-Shou. Synchrotron radiation angle-resolved photoelectron spectroscopy studies of 6H-SiC(0001)-6[KF(]3[KF)]×6[KF(]3[KF)] R30° surface. Acta Physica Sinica, doi: 10.7498/aps.58.4288
    [12] Yuan Yong-Bo, Liu Yu-Zhen, Deng Kai-Ming, Yang Jin-Long. Assignment of photoelectron spectra of SiN cluster. Acta Physica Sinica, doi: 10.7498/aps.55.4496
    [13] Feng Yu-Qing, Zhao Kun, Zhu Tao, Zhan Wen-Shan. Thermal stability of magnetic tunnel junctions investigated by x-ray photoelectron spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.54.5372
    [14] Ge Yu-Cheng. A new method for directly measuring frequency and intensity temporal profiles of attosecond XUV pulse simultaneously and completely. Acta Physica Sinica, doi: 10.7498/aps.54.2653
    [15] Yang Zhi-Hong, Shi Da-Ning, Luo Da-Feng. Effects of proximity coupling and substitutions for Ba-sites on the transition temperature and ARPES of high-T_c superconductors. Acta Physica Sinica, doi: 10.7498/aps.53.3902
    [16] CHEN YAN, DONG GUO-SHENG, ZHANG MING, Jin Xiao-Feng, LU ER-DONG, PAN HAI-BING, XU PENG-SHOU, ZHANG XIN-YI, FAN CHAO-YANG. . Acta Physica Sinica, doi: 10.7498/aps.44.145
    [17] ZHANG XUN-SHENG, DONG FENG, BAO DE-SONG, DU ZHI-QIANG. ARUPS OF THE ADSORPTION OF NITRIC OXIDE ON Cu(llO) SURFACE AT 150K. Acta Physica Sinica, doi: 10.7498/aps.42.1194
    [18] BAO SHI-NING, XU RONG, LI HAI-YANG, ZHU LI, XU CHUN-YI, XU YA-BO. ARUPS STUDY OF THE COADSORPTION OF CO AND K ON Cu(111). Acta Physica Sinica, doi: 10.7498/aps.41.523
    [19] BAO SHI-NINO, ZHU LI, XU YA-BO. ARUPS INVESTIGATION OF CO COADSORPTION WITH K ON W(100) SURFACE. Acta Physica Sinica, doi: 10.7498/aps.40.1888
    [20] LU XUE-KUN, HOU XIAO-YUAN, CING XUN-MIN, CHEN PING. GaP BAND STRUCTURE STUDIED BY ARUPS. Acta Physica Sinica, doi: 10.7498/aps.39.108
Metrics
  • Abstract views:  22
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  05 July 2025
  • /

    返回文章
    返回