Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Applications of time-of-flight photoelectron spectrometers in ultrafast optical experiments

ZHU Xiaoxian GAO Yitan WANG Yiming ZHAO Kun

Citation:

Applications of time-of-flight photoelectron spectrometers in ultrafast optical experiments

ZHU Xiaoxian, GAO Yitan, WANG Yiming, ZHAO Kun
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Time-of-flight photoelectron spectroscopy (TOF-PES) with exceptional energy and temporal resolution has emerged as a cornerstone diagnostic tool in attosecond science and ultrafast dynamics. This work comprehensively reviews the TOF-PES technology, its basic principles, and its crucial role in attosecond metrology. The first part in this paper introduces the historical development of TOF methods, from early ion mass spectrometry to modern photoelectron applications, detailing key innovations such as energy and spatial focusing, magnetic shielding, and delay-line detectors. The implementation of magnetic bottle spectrometers (MBES) is discussed in depth, emphasizing their advantages in wide-angle electron collection and improving energy resolution through trajectory collimation and magnetic gradient design.We then focus on the application of TOF-PES in attosecond pulse characterization, particularly in the RABBITT(reconstruction of attosecond beating by interference of two-photon transitions, and attosecond streaking techniques. A broad array of experimental breakthroughs is reviewed, including ultrafast delay scanning, energy-time mapping through photoelectron modulation, and the use of MBES to analyze the phase and amplitude of attosecond pulse trains with accuracy below 50 attosecond. These advances indicate that the TOF-PES is a key driving factor for temporal phase reconstruction and group delay measurement in an extreme-ultraviolet (XUV) spectral range.Then the integration of TOF-based detection in time- and angle-resolved photoemission spectroscopy (TR-ARPES and ARTOF) is explored, making it possible to realize the full 3D momentum-resolved detection without mechanical rotation or slits. The synergistic effect between TOF and ultrafast laser sources promotes the simultaneous resolution of energy and momentum resolution in the Brillouin zone, with applications covering topological materials, superconductors, and charge-density wave systems.Finally, this review extends to momentum-resolved ultrafast electron-ion coincidence techniques. The use of TOF in COLTRIMS (cold target recoil ion momentum spectroscopy) and VMI (velocity map imaging) is evaluated, highlighting its indispensable role in resolving related electron-ion dynamics, few-body fragmentation processes, and tunneling time delays on attosecond and even zeptosecond scales.Overall, this work emphasizes the central role of TOF-PES in advancing the frontiers of ultrafast science. Although current challenges include space-charge effects, detector response limitations, and data handling complexity, future advances in quantum detection, AI-driven trajectory correction, and high-repetition-rate light sources are expected to overcome these barriers. TOF-PES, through its continuous evolution, is still a key platform for detecting quantum dynamics on the fastest known timescale.
  • 图 1  TOF结构示意图

    Figure 1.  Schematic diagram of the TOF structure.

    图 2  MBES结构示意图

    Figure 2.  Schematic diagram of the MBES.

    图 3  RABBITT实验示意图

    Figure 3.  Schematic diagram of the RABBITT experiment.

    图 4  电子谱仪的比较 (a) 半球形分析仪; (b) 角分辨飞行时间谱仪

    Figure 4.  Comparison of electron spectrometers: (a) Hemispherical analyzer; (b) angle-resolved time-of-flight spectrometer.

    图 5  COLTRIMS装置原理示意图

    Figure 5.  Schematic diagram of the COLTRIMS apparatus.

    图 6  VMI装置原理示意图

    Figure 6.  Schematic diagram of the VMI apparatus.

  • [1]

    Cameron A E, Eggers Jr D F 1948 An Ion" Velocitron" (Atomic Energy Commission) p1

    [2]

    Wiley W C, McLaren I H 1955 Rev. Sci. Instrum. 26 1150Google Scholar

    [3]

    Baldwin G C, Friedman S I 1967 Rev. Sci. Instrum. 38 519Google Scholar

    [4]

    Nakai M Y, LaBar D A, Harter J A, Birkhoff R D 1967 Rev. Sci. Instrum. 38 820Google Scholar

    [5]

    Bachrach R Z, Brown F C, Hagström S B M 1975 J. Vac. Sci. Technol. 12 309Google Scholar

    [6]

    Hemmers O, Whitfield S B, Glans P, Wang H, Lindle D W, Wehlitz R, Sellin I A 1998 Rev. Sci. Instrum. 69 3809Google Scholar

    [7]

    Ulrich V, Barth S, Lischke T, Joshi S, Arion T, Mucke M, Förstel M, Bradshaw A M, Hergenhahn U 2011 J. Electron Spectrosc. Relat. Phenom. 183 70Google Scholar

    [8]

    Bostedt C, Bozek J D, Bucksbaum P H, Coffee R N, Hastings J B, Huang Z, Lee R W, Schorb S, Corlett J N, Denes P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 164003Google Scholar

    [9]

    Hsu T, Hirshfield J L 1976 Rev. Sci. Instrum. 47 236Google Scholar

    [10]

    Beamson G, Porter H Q, Turner D W 1980 J. Phys. E: Sci. Instrum. 13 64Google Scholar

    [11]

    Kruit P, Read F H 1983 J. Phys. E: Sci. Instrum. 16 313Google Scholar

    [12]

    Giniger R, Hippler T, Ronen S, Cheshnovsky O 2001 Rev. Sci. Instrum. 72 2543Google Scholar

    [13]

    Hikosaka Y, Sawa M, Soejima K, Shigemasa E 2014 J. Electron Spectrosc. Relat. Phenom. 192 69Google Scholar

    [14]

    Kothe A, Metje J, Wilke M, Moguilevski A, Engel N, Al-Obaidi R, Richter C, Golnak R, Kiyan I Y, Aziz E F 2013 Rev. Sci. Instrum. 84 023106Google Scholar

    [15]

    Zhao K, Zhang Q, Chini M, Chang Z H 2012 Multiphoton Processes and Attosecond Physics Berlin, Heidelberg, July 3—8, 2012 p109

    [16]

    Zhang Q, Zhao K, Chang Z H 2014 J. Electron Spectrosc. Relat. Phenom. 195 48Google Scholar

    [17]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G, Agostini P 2001 Science 292 1689Google Scholar

    [18]

    Mairesse Y, De Bohan A, Frasinski L J, Merdji H, Dinu L C, Monchicourt P, Breger P, Kovačev M, Taïeb R, Carré B, Muller H G, Agostini P, Salières P 2003 Science 302 1540Google Scholar

    [19]

    Klünder K, Dahlström J M, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A 2011 Phys. Rev. Lett. 106 143002Google Scholar

    [20]

    Gruson V, Barreau L, Jiménez-Galan Á, Risoud F, Caillat J, Maquet A, Carré B, Lepetit F, Hergott J F, Ruchon T, Argenti L, Taïeb R, Martín F, Salières P 2016 Science 354 734Google Scholar

    [21]

    Jordan I, Jain A, Gaumnitz T, Ma J, Wörner H J 2018 Rev. Sci. Instrum. 89 053103Google Scholar

    [22]

    Wang A L, Serov V V, Kamalov A, Bucksbaum P H, Kheifets A, Cryan J P 2021 Phys. Rev. A 104 063119Google Scholar

    [23]

    Kumar M, Singhal H, Ansari A, Chakera J A 2023 Rev. Sci. Instrum. 94 023303Google Scholar

    [24]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [25]

    Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U 2004 Nature 427 817Google Scholar

    [26]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R 2006 Science 314 443Google Scholar

    [27]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R 2008 Science 320 1614Google Scholar

    [28]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X W, Chang Z H 2012 Opt. Lett. 37 3891Google Scholar

    [29]

    Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, Chang Z H 2017 Nat. Commun. 8 186

    [30]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506Google Scholar

    [31]

    Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201Google Scholar

    [32]

    王向林, 徐鹏, 李捷, 袁浩, 白永林, 王屹山, 赵卫 2020 中国激光 47 415002

    Wang X L, Xu P, Li J, Yuan H, Bai Y L, Wang Y S, Zhao W 2020 Chin. J. Lasers 47 415002

    [33]

    Wang X W, Xiao F, Wang J C, Wang L, Zhang B, Liu J L, Zhao J, Zhao Z X 2024 Ultrafast Sci. 4 0080Google Scholar

    [34]

    Lee C, Rohwer T, Sie E J, Zong A, Baldini E, Straquadine J, Walmsley P, Gardner D, Lee Y S, Fisher I R 2020 Rev. Sci. Instrum. 91 043102Google Scholar

    [35]

    Boschini F, Zonno M, Damascelli A 2024 Rev. Mod. Phys. 96 015003Google Scholar

    [36]

    Madéo J, Man M K, Sahoo C, Campbell M, Pareek V, Wong E L, Al-Mahboob A, Chan N S, Karmakar A, Mariserla B M K 2020 Science 370 1199Google Scholar

    [37]

    Buss J H, Wang H, Xu Y, Maklar J, Joucken F, Zeng L, Stoll S, Jozwiak C, Pepper J, Chuang Y D 2019 Rev. Sci. Instrum. 90 023105Google Scholar

    [38]

    Na M, Mills A K, Jones D J 2023 Phys. Rep. 1036 1Google Scholar

    [39]

    Haight R, Silberman J A, Lilie M I 1988 Rev. Sci. Instrum. 59 1941Google Scholar

    [40]

    Kirchmann P S, Rettig L, Nandi D, Lipowski U, Wolf M, Bovensiepen U 2008 Appl. Phys. A 91 211Google Scholar

    [41]

    Wannberg B 2009 Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 601 182Google Scholar

    [42]

    Öhrwall G, Karlsson P, Wirde M, Lundqvist M, Andersson P, Ceolin D, Wannberg B, Kachel T, Dürr H, Eberhardt W 2011 J. Electron Spectrosc. Relat. Phenom. 183 125Google Scholar

    [43]

    Berntsen M H, Götberg O, Tjernberg O 2011 Rev. Sci. Instrum. 82 095113Google Scholar

    [44]

    Ovsyannikov R, Karlsson P, Lundqvist M, Lupulescu C, Eberhardt W, Föhlisch A, Svensson S, Mårtensson N 2013 J. Electron Spectrosc. Relat. Phenom. 191 92Google Scholar

    [45]

    Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453Google Scholar

    [46]

    Holldack K, Ovsyannikov R, Kuske P, Müller R, Schälicke A, Scheer M, Gorgoi M, Kühn D, Leitner T, Svensson S 2014 Nat. Commun. 5 4010Google Scholar

    [47]

    Oloff L P, Oura M, Rossnagel K, Chainani A, Matsunami M, Eguchi R, Kiss T, Nakatani Y, Yamaguchi T, Miyawaki J 2014 New J. Phys. 16 123045Google Scholar

    [48]

    Medjanik K, Fedchenko O, Chernov S, Kutnyakhov D, Ellguth M, Oelsner A, Schönhense B, Peixoto T R, Lutz P, Min C H 2017 Nat. Mater. 16 615Google Scholar

    [49]

    Kühn D, Sorgenfrei F, Giangrisostomi E, Jay R, Musazay A, Ovsyannikov R, Stråhlman C, Svensson S, Mårtensson N, Föhlisch A 2018 J. Electron Spectrosc. Relat. Phenom. 224 45Google Scholar

    [50]

    Zong A, Kogar A, Bie Y Q, Rohwer T, Lee C, Baldini E, Ergeçen E, Yilmaz M B, Freelon B, Sie E J 2019 Nat. Phys. 15 27Google Scholar

    [51]

    Maklar J, Dong S, Beaulieu S, Pincelli T, Dendzik M, Windsor Y W, Xian R P, Wolf M, Ernstorfer R, Rettig L 2020 Rev. Sci. Instrum. 91 123112Google Scholar

    [52]

    Schoenhense G, Kutnyakhov D, Pressacco F, Heber M, Wind N, Agustsson S Y, Babenkov S, Vasilyev D, Fedchenko O, Chernov S 2021 Rev. Sci. Instrum. 92 053703Google Scholar

    [53]

    Berntsen M H, Götberg O, Tjernberg O 2011 Rev. Sci. Instrum. 82 095113Google Scholar

    [54]

    Guo Q, Dendzik M, Grubišić-Čabo A, Berntsen M H, Li C, Chen W, Matta B, Starke U, Hessmo B, Weissenrieder J 2022 Struct. Dyn. 9 024304Google Scholar

    [55]

    朱小龙, 马新文, 沙杉, 刘惠萍, 魏宝仁, 汪正林, 曹士娉, 钱东斌 2004 核电子学与探测技术 24 253Google Scholar

    Zhu X L, Ma X W, Sha S, Liu H P, Wei B R, Wang Z L, Cao S P, Qian D B 2004 Nucl. Electron. Detect. Technol. 24 253Google Scholar

    [56]

    郭大龙, 马新文, 冯文天, 张少锋, 朱小龙 2011 物理学报 60 236

    Guo D L, Ma X W, Feng W T, Zhang S F, Zhu X L 2011 Acta Phys. Sin. 60 236

    [57]

    Ullrich J, Schmidt-Böcking H 1987 Phys. Lett. A 125 193Google Scholar

    [58]

    Frohne V, Cheng S, Ali R, Raphaelian M, Cocke C L, Olson R E 1993 Phys. Rev. Lett. 71 696Google Scholar

    [59]

    Mergel V, Dörner R, Ullrich J, Jagutzki O, Lencinas S, Nüttgens S, Spielberger L, Unverzagt M, Cocke C L, Olson R E, Schulz M, Buck U, Zanger E, Theisinger W, Isser M, Geis S, Schmidt-Böcking H 1995 Phys. Rev. Lett. 74 2200Google Scholar

    [60]

    Moshammer R, Unverzagt M, Schmitt W, Ullrich J, Schmidt-Böcking H 1996 Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 108 425Google Scholar

    [61]

    Mergel V, Achler M, Dörner R, Khayyat Kh, Kambara T, Awaya Y, Zoran V, Nyström B, Spielberger L, McGuire J H, Feagin J, Berakdar J, Azuma Y, Schmidt-Böcking H 1998 Phys. Rev. Lett. 80 5301Google Scholar

    [62]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [63]

    Weber Th, Weckenbrock M, Staudte A, Spielberger L, Jagutzki O, Mergel V, Afaneh F, Urbasch G, Vollmer M, Giessen H, Dörner R 2000 Phys. Rev. Lett. 84 443Google Scholar

    [64]

    Ergler Th, Rudenko A, Feuerstein B, Zrost K, Schröter C D, Moshammer R, Ullrich J 2006 Phys. Rev. Lett. 97 193001Google Scholar

    [65]

    Schmidt L Ph H, Jahnke T, Czasch A, Schöffler M, Schmidt-Böcking H, Dörner R 2012 Phys. Rev. Lett. 108 073202Google Scholar

    [66]

    Sabbar M, Heuser S, Boge R, Lucchini M, Gallmann L, Cirelli C, Keller U 2014 Rev. Sci. Instrum. 85 103113Google Scholar

    [67]

    Fehre K, Eckart S, Kunitski M, Pitzer M, Zeller S, Janke C, Trabert D, Rist J, Weller M, Hartung A, Schmidt L Ph H, Jahnke T, Berger R, Dörner R, Schöffler M S 2019 Sci. Adv. 5 eaau7923Google Scholar

    [68]

    Grundmann S, Trabert D, Fehre K, Strenger N, Pier A, Kaiser L, Kircher M, Weller M, Eckart S, Schmidt L Ph H, Trinter F, Jahnke T, Schöffler M S, Dörner R 2020 Science 370 339Google Scholar

    [69]

    Eppink A T, Parker D H 1997 Rev. Sci. Instrum. 68 3477Google Scholar

    [70]

    Takahashi M, Cave J P, Eland J H D 2000 Rev. Sci. Instrum. 71 1337Google Scholar

    [71]

    Gebhardt C R, Rakitzis T P, Samartzis P C, Ladopoulos V, Kitsopoulos T N 2001 Rev. Sci. Instrum. 72 3848Google Scholar

    [72]

    Townsend D, Minitti M P, Suits A G 2003 Rev. Sci. Instrum. 74 2530Google Scholar

    [73]

    Lin J J, Zhou J, Shiu W, Liu K 2003 Rev. Sci. Instrum. 74 2495Google Scholar

    [74]

    Lee S K, Cudry F, Lin Y F, Lingenfelter S, Winney A H, Fan L, Li W 2014 Rev. Sci. Instrum. 85 123303Google Scholar

    [75]

    Lin Y F, Lee S K, Adhikari P, Herath T, Lingenfelter S, Winney A H, Li W 2015 Rev. Sci. Instrum. 86 096110Google Scholar

    [76]

    Urbain X, Bech D, Van Roy J P, Géléoc M, Weber S J, Huetz A, Picard Y J 2015 Rev. Sci. Instrum. 86 023305Google Scholar

    [77]

    Orunesajo E, Basnayake G, Ranathunga Y, Stewart G, Heathcote D, Vallance C, Lee S K, Li W 2021 J. Phys. Chem. A 125 5220Google Scholar

    [78]

    Nomerotski A 2019 Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 937 26Google Scholar

    [79]

    Zhao A, van Beuzekom M, Bouwens B, Byelov D, Chakaberia I, Cheng C, Maddox E, Nomerotski A, Svihra P, Visser J 2017 Rev. Sci. Instrum. 88 11

    [80]

    Winney A H, Lee S K, Lin Y F, Liao Q, Adhikari P, Basnayake G, Schlegel H B, Li W 2017 Phys. Rev. Lett. 119 123201Google Scholar

  • [1] ZHANG Yichen, DING Nannan, LI Jialin, FU Yuxi. Attosecond transient absorption spectroscopy: an ultrafast optical probe for revealing electron dynamics. Acta Physica Sinica, doi: 10.7498/aps.74.20250546
    [2] Wei Zhi-Yuan, Hu Yong, Zeng Ling-Yong, Li Ze-Yu, Qiao Zhen-Hua, Luo Hui-Xia, He Jun-Feng. Angle-resolved photoemission spectroscopy of electronic structure of 1T-NbSeTe. Acta Physica Sinica, doi: 10.7498/aps.71.20220458
    [3] Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang. Angle-resolved photoemission spectroscopy studies on the electronic structure and superconductivity mechanism for high temperature superconductors. Acta Physica Sinica, doi: 10.7498/aps.70.20201913
    [4] Liu Chang, Liu Xiang-Rui. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators. Acta Physica Sinica, doi: 10.7498/aps.68.20191450
    [5] Deng Tao, Yang Hai-Feng, Zhang Jing, Li Yi-Wei, Yang Le-Xian, Liu Zhong-Kai, Chen Yu-Lin. Progress of ARPES study on topological semimetals. Acta Physica Sinica, doi: 10.7498/aps.68.20191544
    [6] Wang Yan-Mei, Tang Ying, Zhang Song, Long Jin-You, Zhang Bing. Excited state dynamics of molecules studied with femtosecond time-resolved mass spectrometry and photoelectron imaging. Acta Physica Sinica, doi: 10.7498/aps.67.20181334
    [7] Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang. Angle-resolved photoemission studies on iron based high temperature superconductors. Acta Physica Sinica, doi: 10.7498/aps.67.20181768
    [8] Liu Can-Dong, Jia Zheng-Mao, Zheng Ying-Hui, Ge Xiao-Chun, Zeng Zhi-Nan, Li Ru-Xin. Research progress of the control and measurement of the atomic and molecular ultrafast electron dynamics using two-color field. Acta Physica Sinica, doi: 10.7498/aps.65.223206
    [9] Feng Xiao-Jing, Guo Wei, Lu Xing-Qiang, Yao Hong-Bin, Li Yue-Hua. Theoretical investigation of femtosecond-resolved photoelectron spectra of three-level ladder K2 molecules. Acta Physica Sinica, doi: 10.7498/aps.64.143303
    [10] Zhang Min, Tang Tian-Tian, Zhang Chao-Min. Theoretical study of the influence of femtosecond pump-probe pluse on the photoionization of NaLi molecule. Acta Physica Sinica, doi: 10.7498/aps.63.023302
    [11] Wu Yu-Yu, Chen Shi, Gao Xin-Yu, Andrew Thye Shen Wee, Xu Peng-Shou. Synchrotron radiation angle-resolved photoelectron spectroscopy studies of 6H-SiC(0001)-6[KF(]3[KF)]×6[KF(]3[KF)] R30° surface. Acta Physica Sinica, doi: 10.7498/aps.58.4288
    [12] Yuan Yong-Bo, Liu Yu-Zhen, Deng Kai-Ming, Yang Jin-Long. Assignment of photoelectron spectra of SiN cluster. Acta Physica Sinica, doi: 10.7498/aps.55.4496
    [13] He Shao-Long, Li Hong-Nian, Wang Xiao-Xiong, Li Hai-Yang, Kurash I., Qian Hai-Jie, Su Run, Abbas M. I., Zhong Jun, Hong Cai-Hao. Synchrotron radiation photoemission study of Yb2.75C60. Acta Physica Sinica, doi: 10.7498/aps.54.1400
    [14] Ge Yu-Cheng. A new method for directly measuring frequency and intensity temporal profiles of attosecond XUV pulse simultaneously and completely. Acta Physica Sinica, doi: 10.7498/aps.54.2653
    [15] Yang Zhi-Hong, Shi Da-Ning, Luo Da-Feng. Effects of proximity coupling and substitutions for Ba-sites on the transition temperature and ARPES of high-T_c superconductors. Acta Physica Sinica, doi: 10.7498/aps.53.3902
    [16] CHEN YAN, DONG GUO-SHENG, ZHANG MING, Jin Xiao-Feng, LU ER-DONG, PAN HAI-BING, XU PENG-SHOU, ZHANG XIN-YI, FAN CHAO-YANG. . Acta Physica Sinica, doi: 10.7498/aps.44.145
    [17] ZHANG XUN-SHENG, DONG FENG, BAO DE-SONG, DU ZHI-QIANG. ARUPS OF THE ADSORPTION OF NITRIC OXIDE ON Cu(llO) SURFACE AT 150K. Acta Physica Sinica, doi: 10.7498/aps.42.1194
    [18] BAO SHI-NING, XU RONG, LI HAI-YANG, ZHU LI, XU CHUN-YI, XU YA-BO. ARUPS STUDY OF THE COADSORPTION OF CO AND K ON Cu(111). Acta Physica Sinica, doi: 10.7498/aps.41.523
    [19] BAO SHI-NINO, ZHU LI, XU YA-BO. ARUPS INVESTIGATION OF CO COADSORPTION WITH K ON W(100) SURFACE. Acta Physica Sinica, doi: 10.7498/aps.40.1888
    [20] LU XUE-KUN, HOU XIAO-YUAN, CING XUN-MIN, CHEN PING. GaP BAND STRUCTURE STUDIED BY ARUPS. Acta Physica Sinica, doi: 10.7498/aps.39.108
Metrics
  • Abstract views:  171
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  29 May 2025
  • Accepted Date:  28 June 2025
  • Available Online:  05 July 2025
  • /

    返回文章
    返回