Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Excited state dynamics of molecules studied with femtosecond time-resolved mass spectrometry and photoelectron imaging

Wang Yan-Mei Tang Ying Zhang Song Long Jin-You Zhang Bing

Citation:

Excited state dynamics of molecules studied with femtosecond time-resolved mass spectrometry and photoelectron imaging

Wang Yan-Mei, Tang Ying, Zhang Song, Long Jin-You, Zhang Bing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Study of quantum states of molecules, especially the evolution of excited states can help to understand their basic features and the interactions among different states. Furthermore, the information about the chemical reaction process and the interactions among several reaction channels can be obtained. Femtosecond time-resolved mass spectrometry (TRMS) and time-resolved photoelectron imaging (TRPEI), which combine pump-probe technique with time of flight mass spectrometry and photoelectron imaging, are powerful tools for detecting the molecular quantum state and for studying the molecular quantum state interaction and molecular ultrafast dynamics. With these methods, the photochemistry and photophysics mechanism of isolated molecule reaction process can be investigated on a femtosecond time scale. The principles of TRMS and TRPEI are introduced here in detail. On the basis of substantial research achievements in our group, the applications of TRMS and TRPEI are presented in the study of ultrafast internal conversion and intersystem crossing, wavepacket evolution dynamics at excited states of polyatomic molecules, energy transfer process of polyatomic molecules, ultrafast photodissociation dynamics and structural evolution dynamics of molecular excited states. In the study of ultrafast internal conversion and intersystem crossing, the methyl substituted benzene derivatives and benzene halides are discussed as typical molecular systems. In the study of wavepacket evolution dynamics at excited states of polyatomic molecules, the real-time visualization of the dynamic evolution of CS2 4d and 6s Rydberg wave packet components, the vibrational wave packet dynamics in electronically excited pyrimidine, the rotational wave packet revivals and field-free alignment in excited o-dichlorobenzene are reported. In order to discuss the energy transfer process of polyatomic molecules, the intramolecular vibrational energy redisctribution between different vibrational states in p-difluorobenzene in the S1 low-energy regime and the intramolecular energy transfer between different electronic states in excited cyclopentanone are presented. For the study of ultrafast photodissociation dynamics, the dissociation constants and dynamics of the A band and even higher Rydberg states are investigated for the iodine alkanes and iodine cycloalkanes. Structural evolution dynamics of molecular excited states is the main focus of our recent research. The structural evolution dynamics can be extracted from the coherent superposition preparation of quantum states and the observation of quantum beat phenomenon, by taking 2, 4-difluorophenol and o-fluorophenol as examples. Time-dependent photoelectron peaks originating from the planar and nonplanar geometries in the first excited state in 2, 4-difluorophenol exhibit the clear beats with similar periodicities but a phase shift of π rad, offering an unambiguous picture of the oscillating nuclear motion between the planar geometry and the nonplanar minimum. Also, the structural evolution dynamics in o-fluorophenol via the butterfly vibration between planar geometry and nonplanar minimum is mapped directly. Finally, the potential developments and further possible research work and future directions of these techniques and researches are prospected.
      Corresponding author: Zhang Bing, bzhang@wipm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21573279, 11574351, 11674355, 21303255, 91121006, 21273274, 21773299) and the National Basic Research Program of China (Grant No. 2013CB922200).
    [1]

    Zewail A H 2000 J. Phys. Chem. A 104 5660

    [2]

    Bixon M, Jortner J 1968 J. Chem. Phys. 48 715

    [3]

    Jortner J, Rice S A, Hochstrasser R M 1969 Adv. Photochem. 7 149

    [4]

    Henry S R, Siebrand W 1973 Organic Molecular Photophysics (Vol. 1) (London: Wiley) p152

    [5]

    Freed K F 1976 Radiationless Processes in Molecules and Condensed Phases (Berlin: Springer-Verlag) p23

    [6]

    Stock G, Domche W 1997 Adv. Phys. Chem. 100 1

    [7]

    Michl J, Bonacic-Koutechy V 1990 Electronic Aspects of Organic Photochemistry (New York: Wiley) p284

    [8]

    Schoenlein R W, Peteanu L A, Mathies R A, Shank C V 1991 Science 254 412

    [9]

    Jortner J, Ratner M A 1997 Molecular Electronics (Oxford: Blackwell) p5

    [10]

    Berera R, van Grondelle R, Kennis J T M 2009 Photosynth. Res. 101 105

    [11]

    Ruckebusch C, Sliwa M, Pernot P, de Juan A, Tauler R 2012 J. Photoch. Photobiol. C 13 1

    [12]

    Murti Y, Vijayan C 2014 Essentials of Nonlinear Optics (Chapter 5) (Chichester: Wiley & Sons) p77

    [13]

    Zewail A H 1988 Science 242 1645

    [14]

    Willberg D M, Breen J J, Gutmann M, Zewail A H 1991 J. Chem. Phys. 95 7136

    [15]

    Ashfold M N R, Howe J D 1994 Annu. Rev. Phys. Chem. 45 57

    [16]

    Urban P L, Chen Y C, Wang Y S 2016 Time-Resolved Mass Spectrometry: From Concept to Applications (Chichester: Wiley) p5

    [17]

    Chen Y C, Urban P L 2013 TrAC Trends Anal. Chem. 44 106

    [18]

    Suzuki T 2006 Annu. Rev. Phys. Chem. 57 555

    [19]

    Suzuki T 2012 Int. Rev. Phys. Chem. 31 265

    [20]

    Pedersen S, Herek J L, Zewail A H 1994 Science 266 1359

    [21]

    Eland J H D 1984 Photoelectron Spectroscopy (London: Butterworth) p134

    [22]

    Seel M, Domcke W 1991 J. Chem. Phys. 95 7806

    [23]

    Seel M, Domcke W 1991 Chem. Phys. 151 59

    [24]

    Born M, Oppenheimer R 1927 Ann. Phys. 389 457

    [25]

    Suzuki T, Wang L, Kohguchi H 1999 J. Chem. Phys. 111 4859

    [26]

    Wang L, Kohguchi H, Suzuki T 1999 Faraday Discuss. 113 37

    [27]

    Davies J A, LeClaire J E, Continetti R E, Hayden C C 1999 J. Chem. Phys. 111 1

    [28]

    Bragg A E, Verlet J R R, Kammrath A, Cheshnovsky O, Neumark D M 2004 Science 306 669

    [29]

    Verlet J R R, Bragg A E, Kammrath A, Cheshnovsky O, Neumark D M 2005 Science 307 93

    [30]

    Dantus M, Janssen M H M, Zewail A H 1991 Chem. Phys. Lett. 181 281

    [31]

    Bragg A E, Verlet J R R, Kammrath A, Cheshnovsky O, Neumark D M 2004 J. Am. Chem. Soc. 127 15283

    [32]

    King S B, Stephansen A B, Yokoi Y, Yandell M A, Kunin A, Takayanagi T, Neumark D M 2015 J. Chem. Phys. 143 024312

    [33]

    Li W L, Kunin A, Matthews E, Yoshikawa N, Dessent C E H, Neumark D M 2015 J. Chem. Phys. 145 044319

    [34]

    Kunin A, Li W L, Neumark D M 2016 Phys. Chem. Chem. Phys. 18 33226

    [35]

    Studzinski H, Zhang S, Wang Y, Temps F 2008 J. Chem. Phys. 128 164314

    [36]

    Huter O, Sala M, Neumann H, Zhang S, Studzinski H, Egorova D, Temps F 2016 J. Chem. Phys. 145 014302

    [37]

    Huter O, Temps F 2016 J. Chem. Phys. 145 214312

    [38]

    Noller B, Poisson L, Maksimenka R, Gobert O, Fischer I, Mestdagh J M 2009 J. Phys. Chem. A 113 3041

    [39]

    Wang B, Liu B, Wang Y, Wang L 2010 Int. J. Mass Spectrom. 289 92

    [40]

    Yang D, Chen Z, He Z, Wang H, Min Y, Yuan K, Dai D, Wu G, Yang X 2017 Phys. Chem. Chem. Phys. 19 29146

    [41]

    Yang D, Min Y, Chen Z, He Z, Yuan K, Dai D, Yang X, Wu G 2018 Phys. Chem. Chem. Phys. 20 15015

    [42]

    He Z, Yang D, Chen Z, Yuan K, Dai D, Wu G, Yang X 2017 Phys. Chem. Chem. Phys. 19 29795

    [43]

    Chandler D W, Houston P L 1987 J. Chem. Phys. 87 1445

    [44]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [45]

    Hertel I V, Radloff W 2006 Rep. Prog. Phys. 69 1897

    [46]

    Zewail A H 2000 Angew. Chem. Int. Ed. 39 2586

    [47]

    Domcke W, Stock G 1997 Adv. Chem. Phys. 100 1

    [48]

    Lee E K C 1980 Adv. Photochem. 121 1

    [49]

    Farmanara P, Stert V, Radloff W, Hertel I V 2001 J. Phys. Chem. A 105 5613

    [50]

    Liu Z, Hu C, Li S, Xu Y, Wang Y, Zhang B 2015 Chem. Phys. Lett. 619 44

    [51]

    Radloff W, Stert V, Freudenberg Th, Hertel I V, Jouvet C, Dedonder-Lard-eux C, Solgadi D 1997 Chem. Phys. Lett. 281 20

    [52]

    Suzuki Y, Horio T, Fuji T, Suzuki T 2011 J. Chem. Phys. 134 184313

    [53]

    Spears K G, Rice S A 1971 J. Chem. Phys. 55 5561

    [54]

    Wunsch L, Neusser H J, Schlag E W 1975 Chem. Phys. Lett. 32 210

    [55]

    Clara M, Hellerer Th, Neusser H J 2000 Appl. Phys. B 71 431

    [56]

    Riedle E, Neusser H J, Schlag E W 1982 J. Phys. Chem. 86 4847

    [57]

    Sobolewski A, Woywod L, Domcke C W 1993 J. Chem. Phys. 8 5627

    [58]

    Bryce-Smith D, Longuet-Higgins H C 1966 Chem. Commun. 17 593

    [59]

    Liu Y, Tang B, Shen H, Zhang S, Zhang B 2010 Opt. Express 18 5791

    [60]

    Dzvonik M, Yang S, Bersohn C R 1974 J. Chem. Phys. 61 4408

    [61]

    Freedman A, Yang S, Kawasaki C, Bersohn M R 1980 J. Chem. Phys. 72 1028

    [62]

    Freitas J E, Hwang H J, El-Sayed M A 1993 J. Phys. Chem. 97 12481

    [63]

    Zhang H, Zhu R S, Wang G J, Han K L, He G Z, Lou N Q 1999 J. Chem. Phys. 110 2922

    [64]

    Zhu R S, Zhang H, Wang G J, Gu X B, Han K L, He G Z, Lou N Q 1999 Chem. Phys. Lett. 248 285

    [65]

    Gu X B, Wang G J, Huang J H, Han K L, He G Z, Lou N Q 2001 J. Phys. Chem. A 105 354

    [66]

    Yuan L W, Zhu J Y, Wang Y Q, Wang L, Bai J L, He G Z 2005 Chem. Phys. Lett. 410 352

    [67]

    Borg O A, Liu Y J, Persson P, Lunell S, Karlsson D, Kadi M, Davidsson J 2006 J. Phys. Chem. A 110 7045

    [68]

    Karlsson D, Davidsson J 2008 J. Photochem. Photobiol. A: Chem. 195 242

    [69]

    Ajitha D, Fedorov D G, Finley J P, Hirao K 2002 J. Chem. Phys. 17 7068

    [70]

    Liu Y J, Persson P, Karlsson H O, Lunell S, Kadi M, Karlsson D, Davidsson J 2004 J. Chem. Phys. 120 6502

    [71]

    Liu Y J, Persson P, Lunell S 2004 J. Phys. Chem. A 10 2339

    [72]

    Liu Y J, Persson P, Lunell S 2004 J. Chem. Phys. 121 11000

    [73]

    Liu Y J, Lunell S 2005 Phys. Chem. Chem. Phys. 7 3938

    [74]

    Karlsson D, Borg O A, Lunell S, Davidsson J, Karlsson H O 2008 J. Chem. Phys. 128 034307

    [75]

    Cao Z, Wei Z, Hua L, Hu C, Zhang S, Zhang B 2009 J. Chem. Phys. 130 144309

    [76]

    Heritage J P, Gustafson T K, Lin C H 1975 Phys. Rev. Lett. 34 1299

    [77]

    Felker P M, Baskin J S, Zewail A H 1986 J. Phys. Chem. 90 724

    [78]

    Baskin J S, Felker P M, Zewail A H 1987 J. Chem. Phys. 86 2483

    [79]

    Felker P M, Zewail A H 1987 J. Chem. Phys. 86 2460

    [80]

    Tsubouchi M, Whitaker B J, Wang L, Kohguchi H, Suzuki T 2001 Phys. Rev. Lett. 86 4500

    [81]

    Tsubouchi M, Suzuki T 2004 J. Chem. Phys. 121 8846

    [82]

    Cao Z Z, Wei Z R, Hua L Q, Hu C J, Zhang S, Zhang B 2009 ChemPhysChem 10 1299

    [83]

    Yeazell J A, Uzer T 2000 The Physics and Chemistry of Wave Packets (New York: Wiley) p221

    [84]

    Averbukh I S, Perelman N F 1989 Phys. Lett. A 139 449

    [85]

    Knospe O, Schmidt R 1996 Phys. Rev. A 54 1154

    [86]

    Leichtle C, Averbukh I S, Schleich W P 1996 Phys. Rev. Lett. 77 3999

    [87]

    Suzuki Y, Seideman T 2005 J. Chem. Phys. 122 234302

    [88]

    Yeazell J A, Mallalieu M, Stroud Jr C R 1990 Phys. Rev. Lett. 64 2007

    [89]

    Yeazell J A, Stroud Jr C R 1991 Phys. Rev. A 43 5153

    [90]

    Hammond C J, Reid K L, Ronayne K L 2006 J. Chem. Phys. 124 201102

    [91]

    Gruebele M, Zewail A H 1993 J. Chem. Phys. 98 883

    [92]

    Fischer I, Villeneuve D M, Vrakking M J J, Stolow A 1995 J. Chem. Phys. 102 5566

    [93]

    Vrakking M J J, Villeneuve D M, Stolow A 1996 Phys. Rev. A 54 R37

    [94]

    Fischer I, Vrakking M J J, Villeneuve D M, Stolow A 1996 Chem. Phys. 207 331

    [95]

    Baumert T, Engel V, Röttgermann C, Strunz W T, Gerber G 1992 Chem. Phys. Lett. 191 639

    [96]

    Averbukh I S, Vrakking M J J, Villeneuve D M, Stolow A 1996 Phys. Rev. Lett. 77 3518

    [97]

    Skovsen E, Machholm M, Ejdrup T, Thøgersen J, Stapelfeldt H 2002 Phys. Rev. Lett. 89 133004

    [98]

    Katsuki H, Chiba H, Girard B, Meier C, Ohmori K 2006 Science 311 1589

    [99]

    Arasaki Y, Takatsuka K, Wang K, Mckoy V 2003 Phys. Rev. Lett. 90 248303

    [100]

    Long J Y, Liu Y Z, Qin C C, Zhang S, Zhang B 2011 Opt. Express 19 4542

    [101]

    Li S, Long J Y, Lin F, Wang Y, Song X, Zhang B 2017 J. Chem. Phys. 147 044309

    [102]

    Bartels R A, Weinacht T C, Wagner N, Baertschy M, Greene C H, Murnane M M, Kapteyn H C 2002 Phys. Rev. Lett. 88 013903

    [103]

    Spence J C H, Schmidt K, Wu J S, Hembree G, Weierstall U, Doak B, Fromme P 2005 Acta Crystallogr. Sect. A: Found. Crystallogr. 61 237

    [104]

    Peterson E R, Buth C, Arms D A, Dunford R W, Kanter E P, Krassig B, Landahl E C, Pratt S T, Santra R, Southworth S H, Young L 2008 Appl. Phys. Lett. 92 094106

    [105]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867

    [106]

    Meckel M, Comtois D, Zeidler D, Staudte A, Pavicic D, Bandulet H C, Pepin H, Kieffer J C, Dorner R, Villeneuve D M, Corkum P B 2008 Science 320 1478

    [107]

    Kanai T, Minemoto S, Sakai H 2005 Nature 435 470

    [108]

    Vozzi C, Calegari F, Benedetti E, Caumes J P, Sansone G, Stagira S, Nisoli M, Torres R, Heesel E, Kajumba N, Marangos J P, Altucci C, Velotta R 2005 Phys. Rev. Lett. 95 153902

    [109]

    Viftrup S S, Kumarappan V, Holmegaard L, Bisgaard C Z, Stapelfeldt H, Artamonov M, Hamilton E, Seideman T 2009 Phys. Rev. A 79 023404

    [110]

    Mairesse Y, Haessler S, Fabre B, Higuet J, Boutu W, Breger P, Constant E, Descamps D, Mevel E, Petit S, Salieres P 2008 New J. Phys. 10 025028

    [111]

    Ramakrishna S, Seideman T 2007 Phys. Rev. Lett. 99 103001

    [112]

    Poulsen M D, Peronne E, Stapelfeldt H, Bisgaard C Z, Viftrup S S, Hamilton E, Seideman T 2004 J. Chem. Phys. 121 783

    [113]

    Lee K F, Villeneuve D M, Corkum P B, Stolow A, Underwood J G 2006 Phys. Rev. Lett. 97 173001

    [114]

    Ramakrishna S, Seideman T 2005 Phys. Rev. Lett. 95 113001

    [115]

    Reuter M G, Sukharev M, Seideman T 2008 Phys. Rev. Lett. 101 208303

    [116]

    Spence J C H, Doak R B 2004 Phys. Rev. Lett. 92 198102

    [117]

    Qin C C, Liu Y Z, Zhang S, Wang Y M, Tang Y, Zhang B 2011 Phys. Rev. A 83 033423

    [118]

    Long J Y, Qin C C, Liu Y Z, Zhang S, Zhang B 2011 Phys. Rev. A 84 063409

    [119]

    Wang Y, Liu Z, Xu Y, Zhang B 2015 J. Chem. Phys. 143 064304

    [120]

    Hertel I V, Radloff W 2006 Rep. Prog. Phys. 69 1897

    [121]

    Dantus M, Zewail A H 2004 Chem. Rev. 104 1717

    [122]

    Xu Y, Qiu X, Abulimiti B, Wang Y, Tang Y, Zhang B 2012 Chem. Phys. Lett. 554 53

    [123]

    Wang Y M, Shen H, Hua L Q, Hu C J, Zhang B 2009 Opt. Express 17 10506

    [124]

    Hu C, Wang L, Wang Y, Tang Y, Long J, Zhang B 2016 Chem. Phys. Lett. 658 134

    [125]

    Lin F, Li S, Song X, Tang Y, Wang Y, Zhang B 2017 Phys. Rev. A 95 043421

    [126]

    Lin F, Li S, Song X, Wang Y, Long J Y, Zhang B 2017 Sci. Rep. 7 15362

  • [1]

    Zewail A H 2000 J. Phys. Chem. A 104 5660

    [2]

    Bixon M, Jortner J 1968 J. Chem. Phys. 48 715

    [3]

    Jortner J, Rice S A, Hochstrasser R M 1969 Adv. Photochem. 7 149

    [4]

    Henry S R, Siebrand W 1973 Organic Molecular Photophysics (Vol. 1) (London: Wiley) p152

    [5]

    Freed K F 1976 Radiationless Processes in Molecules and Condensed Phases (Berlin: Springer-Verlag) p23

    [6]

    Stock G, Domche W 1997 Adv. Phys. Chem. 100 1

    [7]

    Michl J, Bonacic-Koutechy V 1990 Electronic Aspects of Organic Photochemistry (New York: Wiley) p284

    [8]

    Schoenlein R W, Peteanu L A, Mathies R A, Shank C V 1991 Science 254 412

    [9]

    Jortner J, Ratner M A 1997 Molecular Electronics (Oxford: Blackwell) p5

    [10]

    Berera R, van Grondelle R, Kennis J T M 2009 Photosynth. Res. 101 105

    [11]

    Ruckebusch C, Sliwa M, Pernot P, de Juan A, Tauler R 2012 J. Photoch. Photobiol. C 13 1

    [12]

    Murti Y, Vijayan C 2014 Essentials of Nonlinear Optics (Chapter 5) (Chichester: Wiley & Sons) p77

    [13]

    Zewail A H 1988 Science 242 1645

    [14]

    Willberg D M, Breen J J, Gutmann M, Zewail A H 1991 J. Chem. Phys. 95 7136

    [15]

    Ashfold M N R, Howe J D 1994 Annu. Rev. Phys. Chem. 45 57

    [16]

    Urban P L, Chen Y C, Wang Y S 2016 Time-Resolved Mass Spectrometry: From Concept to Applications (Chichester: Wiley) p5

    [17]

    Chen Y C, Urban P L 2013 TrAC Trends Anal. Chem. 44 106

    [18]

    Suzuki T 2006 Annu. Rev. Phys. Chem. 57 555

    [19]

    Suzuki T 2012 Int. Rev. Phys. Chem. 31 265

    [20]

    Pedersen S, Herek J L, Zewail A H 1994 Science 266 1359

    [21]

    Eland J H D 1984 Photoelectron Spectroscopy (London: Butterworth) p134

    [22]

    Seel M, Domcke W 1991 J. Chem. Phys. 95 7806

    [23]

    Seel M, Domcke W 1991 Chem. Phys. 151 59

    [24]

    Born M, Oppenheimer R 1927 Ann. Phys. 389 457

    [25]

    Suzuki T, Wang L, Kohguchi H 1999 J. Chem. Phys. 111 4859

    [26]

    Wang L, Kohguchi H, Suzuki T 1999 Faraday Discuss. 113 37

    [27]

    Davies J A, LeClaire J E, Continetti R E, Hayden C C 1999 J. Chem. Phys. 111 1

    [28]

    Bragg A E, Verlet J R R, Kammrath A, Cheshnovsky O, Neumark D M 2004 Science 306 669

    [29]

    Verlet J R R, Bragg A E, Kammrath A, Cheshnovsky O, Neumark D M 2005 Science 307 93

    [30]

    Dantus M, Janssen M H M, Zewail A H 1991 Chem. Phys. Lett. 181 281

    [31]

    Bragg A E, Verlet J R R, Kammrath A, Cheshnovsky O, Neumark D M 2004 J. Am. Chem. Soc. 127 15283

    [32]

    King S B, Stephansen A B, Yokoi Y, Yandell M A, Kunin A, Takayanagi T, Neumark D M 2015 J. Chem. Phys. 143 024312

    [33]

    Li W L, Kunin A, Matthews E, Yoshikawa N, Dessent C E H, Neumark D M 2015 J. Chem. Phys. 145 044319

    [34]

    Kunin A, Li W L, Neumark D M 2016 Phys. Chem. Chem. Phys. 18 33226

    [35]

    Studzinski H, Zhang S, Wang Y, Temps F 2008 J. Chem. Phys. 128 164314

    [36]

    Huter O, Sala M, Neumann H, Zhang S, Studzinski H, Egorova D, Temps F 2016 J. Chem. Phys. 145 014302

    [37]

    Huter O, Temps F 2016 J. Chem. Phys. 145 214312

    [38]

    Noller B, Poisson L, Maksimenka R, Gobert O, Fischer I, Mestdagh J M 2009 J. Phys. Chem. A 113 3041

    [39]

    Wang B, Liu B, Wang Y, Wang L 2010 Int. J. Mass Spectrom. 289 92

    [40]

    Yang D, Chen Z, He Z, Wang H, Min Y, Yuan K, Dai D, Wu G, Yang X 2017 Phys. Chem. Chem. Phys. 19 29146

    [41]

    Yang D, Min Y, Chen Z, He Z, Yuan K, Dai D, Yang X, Wu G 2018 Phys. Chem. Chem. Phys. 20 15015

    [42]

    He Z, Yang D, Chen Z, Yuan K, Dai D, Wu G, Yang X 2017 Phys. Chem. Chem. Phys. 19 29795

    [43]

    Chandler D W, Houston P L 1987 J. Chem. Phys. 87 1445

    [44]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [45]

    Hertel I V, Radloff W 2006 Rep. Prog. Phys. 69 1897

    [46]

    Zewail A H 2000 Angew. Chem. Int. Ed. 39 2586

    [47]

    Domcke W, Stock G 1997 Adv. Chem. Phys. 100 1

    [48]

    Lee E K C 1980 Adv. Photochem. 121 1

    [49]

    Farmanara P, Stert V, Radloff W, Hertel I V 2001 J. Phys. Chem. A 105 5613

    [50]

    Liu Z, Hu C, Li S, Xu Y, Wang Y, Zhang B 2015 Chem. Phys. Lett. 619 44

    [51]

    Radloff W, Stert V, Freudenberg Th, Hertel I V, Jouvet C, Dedonder-Lard-eux C, Solgadi D 1997 Chem. Phys. Lett. 281 20

    [52]

    Suzuki Y, Horio T, Fuji T, Suzuki T 2011 J. Chem. Phys. 134 184313

    [53]

    Spears K G, Rice S A 1971 J. Chem. Phys. 55 5561

    [54]

    Wunsch L, Neusser H J, Schlag E W 1975 Chem. Phys. Lett. 32 210

    [55]

    Clara M, Hellerer Th, Neusser H J 2000 Appl. Phys. B 71 431

    [56]

    Riedle E, Neusser H J, Schlag E W 1982 J. Phys. Chem. 86 4847

    [57]

    Sobolewski A, Woywod L, Domcke C W 1993 J. Chem. Phys. 8 5627

    [58]

    Bryce-Smith D, Longuet-Higgins H C 1966 Chem. Commun. 17 593

    [59]

    Liu Y, Tang B, Shen H, Zhang S, Zhang B 2010 Opt. Express 18 5791

    [60]

    Dzvonik M, Yang S, Bersohn C R 1974 J. Chem. Phys. 61 4408

    [61]

    Freedman A, Yang S, Kawasaki C, Bersohn M R 1980 J. Chem. Phys. 72 1028

    [62]

    Freitas J E, Hwang H J, El-Sayed M A 1993 J. Phys. Chem. 97 12481

    [63]

    Zhang H, Zhu R S, Wang G J, Han K L, He G Z, Lou N Q 1999 J. Chem. Phys. 110 2922

    [64]

    Zhu R S, Zhang H, Wang G J, Gu X B, Han K L, He G Z, Lou N Q 1999 Chem. Phys. Lett. 248 285

    [65]

    Gu X B, Wang G J, Huang J H, Han K L, He G Z, Lou N Q 2001 J. Phys. Chem. A 105 354

    [66]

    Yuan L W, Zhu J Y, Wang Y Q, Wang L, Bai J L, He G Z 2005 Chem. Phys. Lett. 410 352

    [67]

    Borg O A, Liu Y J, Persson P, Lunell S, Karlsson D, Kadi M, Davidsson J 2006 J. Phys. Chem. A 110 7045

    [68]

    Karlsson D, Davidsson J 2008 J. Photochem. Photobiol. A: Chem. 195 242

    [69]

    Ajitha D, Fedorov D G, Finley J P, Hirao K 2002 J. Chem. Phys. 17 7068

    [70]

    Liu Y J, Persson P, Karlsson H O, Lunell S, Kadi M, Karlsson D, Davidsson J 2004 J. Chem. Phys. 120 6502

    [71]

    Liu Y J, Persson P, Lunell S 2004 J. Phys. Chem. A 10 2339

    [72]

    Liu Y J, Persson P, Lunell S 2004 J. Chem. Phys. 121 11000

    [73]

    Liu Y J, Lunell S 2005 Phys. Chem. Chem. Phys. 7 3938

    [74]

    Karlsson D, Borg O A, Lunell S, Davidsson J, Karlsson H O 2008 J. Chem. Phys. 128 034307

    [75]

    Cao Z, Wei Z, Hua L, Hu C, Zhang S, Zhang B 2009 J. Chem. Phys. 130 144309

    [76]

    Heritage J P, Gustafson T K, Lin C H 1975 Phys. Rev. Lett. 34 1299

    [77]

    Felker P M, Baskin J S, Zewail A H 1986 J. Phys. Chem. 90 724

    [78]

    Baskin J S, Felker P M, Zewail A H 1987 J. Chem. Phys. 86 2483

    [79]

    Felker P M, Zewail A H 1987 J. Chem. Phys. 86 2460

    [80]

    Tsubouchi M, Whitaker B J, Wang L, Kohguchi H, Suzuki T 2001 Phys. Rev. Lett. 86 4500

    [81]

    Tsubouchi M, Suzuki T 2004 J. Chem. Phys. 121 8846

    [82]

    Cao Z Z, Wei Z R, Hua L Q, Hu C J, Zhang S, Zhang B 2009 ChemPhysChem 10 1299

    [83]

    Yeazell J A, Uzer T 2000 The Physics and Chemistry of Wave Packets (New York: Wiley) p221

    [84]

    Averbukh I S, Perelman N F 1989 Phys. Lett. A 139 449

    [85]

    Knospe O, Schmidt R 1996 Phys. Rev. A 54 1154

    [86]

    Leichtle C, Averbukh I S, Schleich W P 1996 Phys. Rev. Lett. 77 3999

    [87]

    Suzuki Y, Seideman T 2005 J. Chem. Phys. 122 234302

    [88]

    Yeazell J A, Mallalieu M, Stroud Jr C R 1990 Phys. Rev. Lett. 64 2007

    [89]

    Yeazell J A, Stroud Jr C R 1991 Phys. Rev. A 43 5153

    [90]

    Hammond C J, Reid K L, Ronayne K L 2006 J. Chem. Phys. 124 201102

    [91]

    Gruebele M, Zewail A H 1993 J. Chem. Phys. 98 883

    [92]

    Fischer I, Villeneuve D M, Vrakking M J J, Stolow A 1995 J. Chem. Phys. 102 5566

    [93]

    Vrakking M J J, Villeneuve D M, Stolow A 1996 Phys. Rev. A 54 R37

    [94]

    Fischer I, Vrakking M J J, Villeneuve D M, Stolow A 1996 Chem. Phys. 207 331

    [95]

    Baumert T, Engel V, Röttgermann C, Strunz W T, Gerber G 1992 Chem. Phys. Lett. 191 639

    [96]

    Averbukh I S, Vrakking M J J, Villeneuve D M, Stolow A 1996 Phys. Rev. Lett. 77 3518

    [97]

    Skovsen E, Machholm M, Ejdrup T, Thøgersen J, Stapelfeldt H 2002 Phys. Rev. Lett. 89 133004

    [98]

    Katsuki H, Chiba H, Girard B, Meier C, Ohmori K 2006 Science 311 1589

    [99]

    Arasaki Y, Takatsuka K, Wang K, Mckoy V 2003 Phys. Rev. Lett. 90 248303

    [100]

    Long J Y, Liu Y Z, Qin C C, Zhang S, Zhang B 2011 Opt. Express 19 4542

    [101]

    Li S, Long J Y, Lin F, Wang Y, Song X, Zhang B 2017 J. Chem. Phys. 147 044309

    [102]

    Bartels R A, Weinacht T C, Wagner N, Baertschy M, Greene C H, Murnane M M, Kapteyn H C 2002 Phys. Rev. Lett. 88 013903

    [103]

    Spence J C H, Schmidt K, Wu J S, Hembree G, Weierstall U, Doak B, Fromme P 2005 Acta Crystallogr. Sect. A: Found. Crystallogr. 61 237

    [104]

    Peterson E R, Buth C, Arms D A, Dunford R W, Kanter E P, Krassig B, Landahl E C, Pratt S T, Santra R, Southworth S H, Young L 2008 Appl. Phys. Lett. 92 094106

    [105]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867

    [106]

    Meckel M, Comtois D, Zeidler D, Staudte A, Pavicic D, Bandulet H C, Pepin H, Kieffer J C, Dorner R, Villeneuve D M, Corkum P B 2008 Science 320 1478

    [107]

    Kanai T, Minemoto S, Sakai H 2005 Nature 435 470

    [108]

    Vozzi C, Calegari F, Benedetti E, Caumes J P, Sansone G, Stagira S, Nisoli M, Torres R, Heesel E, Kajumba N, Marangos J P, Altucci C, Velotta R 2005 Phys. Rev. Lett. 95 153902

    [109]

    Viftrup S S, Kumarappan V, Holmegaard L, Bisgaard C Z, Stapelfeldt H, Artamonov M, Hamilton E, Seideman T 2009 Phys. Rev. A 79 023404

    [110]

    Mairesse Y, Haessler S, Fabre B, Higuet J, Boutu W, Breger P, Constant E, Descamps D, Mevel E, Petit S, Salieres P 2008 New J. Phys. 10 025028

    [111]

    Ramakrishna S, Seideman T 2007 Phys. Rev. Lett. 99 103001

    [112]

    Poulsen M D, Peronne E, Stapelfeldt H, Bisgaard C Z, Viftrup S S, Hamilton E, Seideman T 2004 J. Chem. Phys. 121 783

    [113]

    Lee K F, Villeneuve D M, Corkum P B, Stolow A, Underwood J G 2006 Phys. Rev. Lett. 97 173001

    [114]

    Ramakrishna S, Seideman T 2005 Phys. Rev. Lett. 95 113001

    [115]

    Reuter M G, Sukharev M, Seideman T 2008 Phys. Rev. Lett. 101 208303

    [116]

    Spence J C H, Doak R B 2004 Phys. Rev. Lett. 92 198102

    [117]

    Qin C C, Liu Y Z, Zhang S, Wang Y M, Tang Y, Zhang B 2011 Phys. Rev. A 83 033423

    [118]

    Long J Y, Qin C C, Liu Y Z, Zhang S, Zhang B 2011 Phys. Rev. A 84 063409

    [119]

    Wang Y, Liu Z, Xu Y, Zhang B 2015 J. Chem. Phys. 143 064304

    [120]

    Hertel I V, Radloff W 2006 Rep. Prog. Phys. 69 1897

    [121]

    Dantus M, Zewail A H 2004 Chem. Rev. 104 1717

    [122]

    Xu Y, Qiu X, Abulimiti B, Wang Y, Tang Y, Zhang B 2012 Chem. Phys. Lett. 554 53

    [123]

    Wang Y M, Shen H, Hua L Q, Hu C J, Zhang B 2009 Opt. Express 17 10506

    [124]

    Hu C, Wang L, Wang Y, Tang Y, Long J, Zhang B 2016 Chem. Phys. Lett. 658 134

    [125]

    Lin F, Li S, Song X, Tang Y, Wang Y, Zhang B 2017 Phys. Rev. A 95 043421

    [126]

    Lin F, Li S, Song X, Wang Y, Long J Y, Zhang B 2017 Sci. Rep. 7 15362

  • [1] Wei Zhi-Yuan, Hu Yong, Zeng Ling-Yong, Li Ze-Yu, Qiao Zhen-Hua, Luo Hui-Xia, He Jun-Feng. Angle-resolved photoemission spectroscopy of electronic structure of 1T-NbSeTe. Acta Physica Sinica, 2022, 71(12): 127901. doi: 10.7498/aps.71.20220458
    [2] Shen Huan, Hua Lin-Qiang, Wei Zheng-Rong. Solvent effect on ultrafast decay of uracil studied by femtosecond transient absorption spectroscopy. Acta Physica Sinica, 2022, 71(18): 184206. doi: 10.7498/aps.71.20220515
    [3] Ji Pei-Yu, Huang Tian-Yuan, Chen Jia-Li, Zhuge Lan-Jian, Wu Xue-Mei. In-situ diagnosis of Ar/CH4 helicon wave plasma for synthesis of carbon nanomaterials. Acta Physica Sinica, 2021, 70(9): 097201. doi: 10.7498/aps.70.20201809
    [4] Zheng Zhen-Fa, Jiang Xiang, Chu Wei-Bin, Zhang Li-Li, Guo Hong-Li, Zhao Chuan-Yu, Wang Ya-Nan, Wang Ao-Lei, Zheng Qi-Jing, Zhao Jin. Investigation of ab initio nonadiabatic molecular dynamics of excited carriers in condensed matter systems. Acta Physica Sinica, 2021, 70(17): 177101. doi: 10.7498/aps.70.20210626
    [5] Xiang Mei, Ling Feng-Zi, Deng Xu-Lan, Wei Jie, Bumaliya Abulimiti, Zhang Bing. Ultrafast dynamics of electron excited states of phenylacetylene. Acta Physica Sinica, 2021, 70(5): 053302. doi: 10.7498/aps.70.20201473
    [6] Bumaliya Abulimiti, Ling Feng-Zi, Deng Xu-Lan, Wei Jie, Song Xin-Li, Xiang Mei, Zhang Bing. Intersystem crossing of 2-Methlypyrazine studied by femtosecond photoelectron imaging. Acta Physica Sinica, 2020, 69(10): 103301. doi: 10.7498/aps.69.20200092
    [7] Deng Tao, Yang Hai-Feng, Zhang Jing, Li Yi-Wei, Yang Le-Xian, Liu Zhong-Kai, Chen Yu-Lin. Progress of ARPES study on topological semimetals. Acta Physica Sinica, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [8] Shen Huan, Hu Chun-Long, Deng Xu-Lan. Excited-state dynamics of m-dichlorobezene in ultrashort laser pulses. Acta Physica Sinica, 2017, 66(15): 157801. doi: 10.7498/aps.66.157801
    [9] Feng Xiao-Jing, Guo Wei, Lu Xing-Qiang, Yao Hong-Bin, Li Yue-Hua. Theoretical investigation of femtosecond-resolved photoelectron spectra of three-level ladder K2 molecules. Acta Physica Sinica, 2015, 64(14): 143303. doi: 10.7498/aps.64.143303
    [10] Yang Qing, Du Guang-Qing, Chen Feng, Wu Yan-Min, Ou Yan, Lu Yu, Hou Xun. Investigation on the electron dynamics of periodic nano ripple formation on fused silica induced by temporally shaped femtosecond laser. Acta Physica Sinica, 2014, 63(4): 047901. doi: 10.7498/aps.63.047901
    [11] Zhang Min, Tang Tian-Tian, Zhang Chao-Min. Theoretical study of the influence of femtosecond pump-probe pluse on the photoionization of NaLi molecule. Acta Physica Sinica, 2014, 63(2): 023302. doi: 10.7498/aps.63.023302
    [12] Zheng Shi-Jian, Ding Fang, Xie Xin-Hua, Tang Zhong-Liang, Zhang Yi-Chuan, Li Huan, Yang Kuan, Zhu Xiao-Dong. A diagnosis of gas-phase processes in a high pressure DC CH4/H2 plasma. Acta Physica Sinica, 2013, 62(16): 165204. doi: 10.7498/aps.62.165204
    [13] Zhao Xiao-Hui, Ma Fei, Wu Yi-Shi, Ai Xi-Cheng, Zhang Jian-Ping. Ultrafast internal conversion and vibrational relaxation in singlet excited-state all-trans-β-carotene as revealed by femtosecond time-resolved stimulated Raman spectroscopy. Acta Physica Sinica, 2008, 57(1): 298-306. doi: 10.7498/aps.57.298
    [14] Cao Ning, Long Yong-Bing, Zhang Zhi-Guo, Gao Li-Juan, Yuan Jie, Zhao Bo-Ru, Zhao Shi-Ping, Yang Qian-Sheng, Zhao Ji-Min, Fu Pan-Ming. Femtosecond time-resolved dynamics in electron-doped high-Tc superconductor La2-xCexCuO4. Acta Physica Sinica, 2008, 57(4): 2543-2547. doi: 10.7498/aps.57.2543
    [15] Wang Xiao-Xiong, Li Hong-Nian. Core-level photoemission of Sm fullerides. Acta Physica Sinica, 2006, 55(8): 4259-4264. doi: 10.7498/aps.55.4259
    [16] Yang Hang-Sheng. Surface growth mechanism of cubic boron nitride thin films prepared by plasma-enhanced chemical vapor deposition. Acta Physica Sinica, 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [17] Guo Li-Jun, Wüstenberg Jan-Peter, Oleksiy Andreyev, Bauer Michael, Aeschlimann Martin. Spin dynamics of GaAs(100) by two-photon photoemission. Acta Physica Sinica, 2005, 54(7): 3200-3205. doi: 10.7498/aps.54.3200
    [18] Ge Yu-Cheng, Li Yuan-Jing, Kang Ke-Jun. Direct measurement of the temporal structure of narrow bandwidth femtosecond XUV using ultra-short laser via differential photoelectron energy spectrum. Acta Physica Sinica, 2005, 54(6): 2669-2675. doi: 10.7498/aps.54.2669
    [19] ZHANG XUN-SHENG, DONG FENG, BAO DE-SONG, DU ZHI-QIANG. ARUPS OF THE ADSORPTION OF NITRIC OXIDE ON Cu(llO) SURFACE AT 150K. Acta Physica Sinica, 1993, 42(7): 1194-1198. doi: 10.7498/aps.42.1194
    [20] LU XUE-KUN, HOU XIAO-YUAN, CING XUN-MIN, CHEN PING. GaP BAND STRUCTURE STUDIED BY ARUPS. Acta Physica Sinica, 1990, 39(8): 108-114. doi: 10.7498/aps.39.108
Metrics
  • Abstract views:  6714
  • PDF Downloads:  159
  • Cited By: 0
Publishing process
  • Received Date:  10 July 2018
  • Accepted Date:  23 August 2018
  • Published Online:  20 November 2019

/

返回文章
返回