Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Physics and devices of quanutm light emission from semicoductor self-assembled quantum Dots

Shang Xiang-Jun Ma Ben Chen Ze-Sheng Yu Ying Zha Guo-Wei Ni Hai-Qiao Niu Zhi-Chuan

Citation:

Physics and devices of quanutm light emission from semicoductor self-assembled quantum Dots

Shang Xiang-Jun, Ma Ben, Chen Ze-Sheng, Yu Ying, Zha Guo-Wei, Ni Hai-Qiao, Niu Zhi-Chuan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Self-assembled semiconductor single quantum dots (QDs), as a good candidate of solid-state real single photon (SP) emitters in high purity and counting rate, have attracted great attention in recent two decades, promising for quantum information, optical quantum computation, quantum storage, and quantum coherent manipulation. To isolate single QD from the other QDs surrounding, 1) dilute QD density is well controlled during epitaxy; 2) micro-pillars or nanowires individually in space as hosts are fabricated. To enhance their uni-directional emission, GaAs/AlAs distributed Bragg reflector (DBR) planar cavity is integrated. To improve the system (i.e. confocal microscope, traditionally) stability and its optical collection efficiency, a near-field fiber coupling by adhering a micro-pillar chip to fiber facets directly is used. To enhance the coherence of QD spontaneous emission, resonant excitation technique is applied. In this article, we review our research progress in self-assembled QD SP emission, including SP emission from InAs or GaAs QDs on Ga droplet-self-catalyzed GaAs nanowires (with g2(0) of 0.031 or 0.18, respectively), SP emission from InAs/GaAs QDs coupled with high-Q (1000-5000) DBR micro-pillar cavities and their fiber-coupled device fabrication with SP fiber output rate ~1.8 MHz, single QD resonant fluorescence with inter-dot coherent visibility of 40%, strain-coupled bilayer InAs QDs to extend their emission wavelength to 1320 nm and parametric down conversion of 775 nm SP emission from single QD in nanowire to realize entangled photon pairs at 1550 nm (entanglement fidelity of 91.8%) for telecomm application, and definite quantum storage of InAs QD SPs at 879 nm in ion-doped solid (at most 100 time-bins). In future, there will be still several urgent things to do, including 1) puring the environment of a single QD (e.g. growing GaAs QDs to avoid the wetting layer, and optimizing QD growth to avoid smaller QDs) to reduce its spectral diffusion and developing a high-symmetric QD (e.g. GaAs QD) to reduce the fine structure splitting of its emission; 2) positioning single QD precisely for a good alignment of single QD to a micro-cavity or fiber cone (single mode with high numerical aperture) to increase optical excitation efficiency and SP collection efficiency; 3) developing optical quantum integrated chip, including hybrid structures of active micro-cavity and passive waveguide, and high-transmission waveguide beamsplitter or Mach-Zender interferometer to improve SP extraction (micro-cavity), collection (optical setup) and counting rate (at avalanched photon detectors and coincidence counting module).
      Corresponding author: Niu Zhi-Chuan, zcniu@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91321313, 90921015, 61505196).
    [1]

    Dou X M, Chang X Y, Sun B Q, Xiong Y H, Niu Z C, Huang S S, Ni H Q, Du Y, Xia J B 2008 Appl. Phys. Lett. 93 101107

    [2]

    Ding X, He Y, Duan Z C, Gregersen N, Chen M C, Unsleber S, Maier S, Schneider C, Kamp M, Hofling S, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 116 020401

    [3]

    Heindel T, Schneider C, Lermer M, Kwon S H, Braun T, Reitzenstein S, Höfling S, Kamp M, Forchel A 2010 Appl. Phys. Lett. 96 011107

    [4]

    Hargart F, Kessler C A, Schwarzbäck T, Koroknay E, Weidenfeld S, Jetter M, Michler P 2013 Appl. Phys. Lett. 102 011126

    [5]

    Muller M, Bounouar S, Jons K D, Glassl M, Michler P 2014 Nat. Photon. 8 224

    [6]

    Wang H, Duan Z C, Li Y H, Chen S, Li J P, He Y M, Chen M C, He Y, Ding X, Peng C Z, Schneider C, Kamp M, Hofling S, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 116 213601

    [7]

    He Y, He Y M, Wei Y J, Jiang X, Chen M C, Xiong F L, Zhao Y, Schneider C, Kamp M, Hofling S, Lu C Y, Pan J W 2013 Phys. Rev. Lett. 111 237403

    [8]

    Keil R, Zopf M, Chen Y, Hofer B, Zhang J X, Ding F, Schmidt O G 2017 Nat. Comm. 8 15501

    [9]

    Chen Y, Zhang J X, Zopf M, Jung K, Zhang Y, Keil R, Ding F, Schmidt O G 2016 Nat. Comm. 7 10387

    [10]

    Chen Z S, Ma B, Shang X J, Ni H Q, Wang J L, Niu Z C 2017 Nanoscale Research Lett. 12 378

    [11]

    Ma B, Chen Z S, Wei S H, Shang X J, Ni H Q, Niu Z C 2017 Appl. Phys. Lett. 110 142104

    [12]

    Zha G W, Shang X J, Su D, Yu Y, Wei B, Wang L, Li M F, Wang L J, Xu J X, Ni H Q, Ji Y, Sun B Q, Niu Z C 2014 Nanoscale 6 3190

    [13]

    Yu Y, Li M F, He J F, He Y M, Wei Y J, He Y, Zha G W, Shang X J, Wang J, Wang G W, Ni H Q, Lu C Y, Niu Z C 2013 Nano Lett. 13 1399

    [14]

    Yu Y, Dou X M, Wei B, Zha G W, Shang X J, Wang L, Su D, Xu J X, Wang H Y, Ni H Q, Sun B Q, Ji Y, Han X D, Niu Z C 2014 Adv. Mater. 26 2710

    [15]

    Zha G W, Shang X J, Ni H Q, Yu Y, Xu J X, Wei S H, Ma B, Zhang L C, Niu Z C 2015 Nanotechnology 26 385706

    [16]

    Tang J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D Y, Chen G, Sun Y N, Yu Y, Li M F, Zha G W, Ni H Q, Niu Z C, Li C F, Guo G C 2015 Nat. Comm. 6 8652

    [17]

    Konthasinghe K, Peiris M, Yu Y, Li M F, He J F, Wang L J, Ni H Q, Niu Z C, Shih C K, Muller A 2012 Phys. Rev. Lett. 109 267402

    [18]

    Konthasinghe K, Walker J, Peiris M, Shih C K, Yu Y, Li M F, He J F, Wang L J, Ni H Q, Niu Z C, Muller A 2012 Phys. Rev. B 85 235315

    [19]

    Peiris M, Konthasinghe K, Yu Y, Niu Z C, Muller A 2014 Phys. Rev. B 89 155305

    [20]

    Chen G, Zou Y, Xu X Y, Tang J S, Li Y L, Xu J S, Han Y J, Li C F, Guo G C, Ni H Q, Yu Y, Li M F, Zha G W, Niu Z C, Kedem Y 2014 Phys. Rev. X 4 021043

    [21]

    Chen G, Zou Y, Zhang W H, Zhang Z H, Zhou Z Q, He D Y, Tang J S, Liu B H, Yu Y, Zha G W, Ni H Q, Niu Z C, Han Y J, Li C F, Guo G C 2016 Sci. Rep. 6 26680

    [22]

    Shang X J, Xu J X, Ma B, Chen Z S, Wei S H, Li M F, Zha G W, Zhang L C, Yu Y, Ni H Q, Niu Z C 2016 Chin. Phys. B 25 107805

    [23]

    Zhou P Y, Dou X M, Wu X F, Ding K, Li M F, Ni H Q, Niu Z C, Jiang D S, Sun B Q 2014 Sci. Rep. 4 3633

    [24]

    Michler P, Kiraz A, Zhang L, Becher C, Hu E, Imamoglu A 2000 Appl. Phys. Lett. 77 184

  • [1]

    Dou X M, Chang X Y, Sun B Q, Xiong Y H, Niu Z C, Huang S S, Ni H Q, Du Y, Xia J B 2008 Appl. Phys. Lett. 93 101107

    [2]

    Ding X, He Y, Duan Z C, Gregersen N, Chen M C, Unsleber S, Maier S, Schneider C, Kamp M, Hofling S, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 116 020401

    [3]

    Heindel T, Schneider C, Lermer M, Kwon S H, Braun T, Reitzenstein S, Höfling S, Kamp M, Forchel A 2010 Appl. Phys. Lett. 96 011107

    [4]

    Hargart F, Kessler C A, Schwarzbäck T, Koroknay E, Weidenfeld S, Jetter M, Michler P 2013 Appl. Phys. Lett. 102 011126

    [5]

    Muller M, Bounouar S, Jons K D, Glassl M, Michler P 2014 Nat. Photon. 8 224

    [6]

    Wang H, Duan Z C, Li Y H, Chen S, Li J P, He Y M, Chen M C, He Y, Ding X, Peng C Z, Schneider C, Kamp M, Hofling S, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 116 213601

    [7]

    He Y, He Y M, Wei Y J, Jiang X, Chen M C, Xiong F L, Zhao Y, Schneider C, Kamp M, Hofling S, Lu C Y, Pan J W 2013 Phys. Rev. Lett. 111 237403

    [8]

    Keil R, Zopf M, Chen Y, Hofer B, Zhang J X, Ding F, Schmidt O G 2017 Nat. Comm. 8 15501

    [9]

    Chen Y, Zhang J X, Zopf M, Jung K, Zhang Y, Keil R, Ding F, Schmidt O G 2016 Nat. Comm. 7 10387

    [10]

    Chen Z S, Ma B, Shang X J, Ni H Q, Wang J L, Niu Z C 2017 Nanoscale Research Lett. 12 378

    [11]

    Ma B, Chen Z S, Wei S H, Shang X J, Ni H Q, Niu Z C 2017 Appl. Phys. Lett. 110 142104

    [12]

    Zha G W, Shang X J, Su D, Yu Y, Wei B, Wang L, Li M F, Wang L J, Xu J X, Ni H Q, Ji Y, Sun B Q, Niu Z C 2014 Nanoscale 6 3190

    [13]

    Yu Y, Li M F, He J F, He Y M, Wei Y J, He Y, Zha G W, Shang X J, Wang J, Wang G W, Ni H Q, Lu C Y, Niu Z C 2013 Nano Lett. 13 1399

    [14]

    Yu Y, Dou X M, Wei B, Zha G W, Shang X J, Wang L, Su D, Xu J X, Wang H Y, Ni H Q, Sun B Q, Ji Y, Han X D, Niu Z C 2014 Adv. Mater. 26 2710

    [15]

    Zha G W, Shang X J, Ni H Q, Yu Y, Xu J X, Wei S H, Ma B, Zhang L C, Niu Z C 2015 Nanotechnology 26 385706

    [16]

    Tang J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D Y, Chen G, Sun Y N, Yu Y, Li M F, Zha G W, Ni H Q, Niu Z C, Li C F, Guo G C 2015 Nat. Comm. 6 8652

    [17]

    Konthasinghe K, Peiris M, Yu Y, Li M F, He J F, Wang L J, Ni H Q, Niu Z C, Shih C K, Muller A 2012 Phys. Rev. Lett. 109 267402

    [18]

    Konthasinghe K, Walker J, Peiris M, Shih C K, Yu Y, Li M F, He J F, Wang L J, Ni H Q, Niu Z C, Muller A 2012 Phys. Rev. B 85 235315

    [19]

    Peiris M, Konthasinghe K, Yu Y, Niu Z C, Muller A 2014 Phys. Rev. B 89 155305

    [20]

    Chen G, Zou Y, Xu X Y, Tang J S, Li Y L, Xu J S, Han Y J, Li C F, Guo G C, Ni H Q, Yu Y, Li M F, Zha G W, Niu Z C, Kedem Y 2014 Phys. Rev. X 4 021043

    [21]

    Chen G, Zou Y, Zhang W H, Zhang Z H, Zhou Z Q, He D Y, Tang J S, Liu B H, Yu Y, Zha G W, Ni H Q, Niu Z C, Han Y J, Li C F, Guo G C 2016 Sci. Rep. 6 26680

    [22]

    Shang X J, Xu J X, Ma B, Chen Z S, Wei S H, Li M F, Zha G W, Zhang L C, Yu Y, Ni H Q, Niu Z C 2016 Chin. Phys. B 25 107805

    [23]

    Zhou P Y, Dou X M, Wu X F, Ding K, Li M F, Ni H Q, Niu Z C, Jiang D S, Sun B Q 2014 Sci. Rep. 4 3633

    [24]

    Michler P, Kiraz A, Zhang L, Becher C, Hu E, Imamoglu A 2000 Appl. Phys. Lett. 77 184

  • [1] Wei Yu-Yan, Gao Zi-Kai, Wang Si-Ying, Zhu Ya-Jing, Li Tao. Deterministic secure quantum communication with double-encoded single photons. Acta Physica Sinica, 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [2] Zhao Ning, Jiang Ying-Hua, Zhou Xian-Tao. Efficient quantum secure direct communication scheme based on single photons. Acta Physica Sinica, 2022, 71(15): 150304. doi: 10.7498/aps.71.20220202
    [3] Deterministic secure quantum communication with double-encoded single photons. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210907
    [4] Zhang Bai-Fu, Zhu Kang, Wu Heng, Hu Hai-Feng, Shen Zhe, Xu Ji. Numerical study of metallic semiconductor nanolasers with double-concave cavity structures. Acta Physica Sinica, 2019, 68(22): 224201. doi: 10.7498/aps.68.20190972
    [5] Bai Peng, Zhang Yue-Heng, Shen Wen-Zhong. Research progress of semiconductor up-conversion single photon detection technology. Acta Physica Sinica, 2018, 67(22): 221401. doi: 10.7498/aps.67.20180618
    [6] Huang Ke, Li Song, Ma Yue, Tian Xin, Zhou Hui, Zhang Zhi-Yu. Theoretical model and correction method of range walk error for single-photon laser ranging. Acta Physica Sinica, 2018, 67(6): 064205. doi: 10.7498/aps.67.20172228
    [7] Liu Zhi-Hao, Chen Han-Wu. Information leakage problem in quantum secure direct communication protocol based on the mixture of Bell state particles and single photons. Acta Physica Sinica, 2017, 66(13): 130304. doi: 10.7498/aps.66.130304
    [8] Zhang Sen, Tao Xu, Feng Zhi-Jun, Wu Gan-Hua, Xue Li, Yan Xia-Chao, Zhang La-Bao, Jia Xiao-Qing, Wang Zhi-Zhong, Sun Jun, Dong Guang-Yan, Kang Lin, Wu Pei-Heng. Enhanced laser ranging with superconducting nanowire single photon detector for low dark count rate. Acta Physica Sinica, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [9] Cao Zheng-Wen, Zhao Guang, Zhang Shuang-Hao, Feng Xiao-Yi, Peng Jin-Ye. Quantum secure direct communication protocol based on the mixture of Bell state particles and single photons. Acta Physica Sinica, 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [10] Zhang Jia, Xu Xu-Ming, He Ling-Juan, Yu Tian-Bao, Guo Hao. Four-wavelength multiplexer/demultiplexer based on photonic crystal resonant coupling. Acta Physica Sinica, 2012, 61(5): 054213. doi: 10.7498/aps.61.054213
    [11] Wang Jing-Jing, He Bo, Yu Bo, Liu Yan, Wang Xiao-Bo, Xiao Lian-Tuan, Jia Suo-Tang. Fabry-Perot cavity locked by using single photon modulation. Acta Physica Sinica, 2012, 61(20): 204203. doi: 10.7498/aps.61.204203
    [12] Zhou Chang-Zhu, Wang Chen, Li Zhi-Yuan. Fabrication and spectra-measurement of high Q photonic crystal cavity on silicon slabs. Acta Physica Sinica, 2012, 61(1): 014214. doi: 10.7498/aps.61.014214
    [13] Zhou Yu, Zhang La-Bao, Jia Tao, Zhao Qing-Yuan, Gu Min, Qiu Jian, Kang Lin, Chen Jian, Wu Pei-Heng. Response properties of NbN superconductor nanowire for multi-photon. Acta Physica Sinica, 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [14] Chen Xiang, Mi Xian-Wu. Studys of characteristics for pump-induced emission and anharmonic cavity-QED in quantum dot-cavity systems. Acta Physica Sinica, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [15] Zhang La-Bao, Kang Lin, Chen Jian, Zhao Qing-Yuan, Jia Tao, Xu Wei-Wei, Cao Chun-Hai, Jin Biao-Bing, Wu Pei-Heng. Fabrication of superconducting nanowiresingle-photon detector. Acta Physica Sinica, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [16] Ke Xi-Zheng, Nu Ning, Yang Qin-Ling. Research of transmission characteristics of single-photon orbital angular momentum. Acta Physica Sinica, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [17] Quan Dong-Xiao, Pei Chang-Xing, Liu Dan, Zhao Nan. One-way deterministic secure quantum communication protocol based on single photons. Acta Physica Sinica, 2010, 59(4): 2493-2497. doi: 10.7498/aps.59.2493
    [18] Yang Lei, Li Xiao-Ying, Wang Bao-Shan. Experimental schemes for developing fiber-based source of entangled photon pairs. Acta Physica Sinica, 2008, 57(8): 4933-4940. doi: 10.7498/aps.57.4933
    [19] . Acta Physica Sinica, 2002, 51(2): 310-314. doi: 10.7498/aps.51.310
    [20] XIAO JUN-JUN, SUN CHAO, XUE DE-SHENG, LI FA-SHEN. STUDY ON MAGNETIC PROPERTIES OF Fe-NANOWIRES BY MICROMAGNETIC SIMULATION. Acta Physica Sinica, 2001, 50(8): 1605-1609. doi: 10.7498/aps.50.1605
Metrics
  • Abstract views:  7134
  • PDF Downloads:  151
  • Cited By: 0
Publishing process
  • Received Date:  03 April 2018
  • Accepted Date:  28 July 2018
  • Published Online:  20 November 2019

/

返回文章
返回